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ABSTRACT Sign language recognition(SLR) is a multidisciplinary research topic in pattern recognition
and computer vision. Due to large amount of data from the continuous frames of sign language videos,
selecting representative data to eliminate irrelevant information has always been a challenging problem in
data preprocessing of sign language samples. In recent years, skeletal data emerged as a new type of data
but received insufficient attention. Meanwhile, due to the increasing diversity of sign language features,
making full use of them has also been an important research topic. In this paper, we improve keyframe-
centered clips (KCC) sampling to get a new kind of sampling method called optimized keyframe-centered
clips (OptimKCC) sampling to select key actions from sign language videos. Besides, we design a new
kind of skeletal feature called Multi-Plane Vector Relation (MPVR) to describe the video samples. Finally,
combined with the attention mechanism, we also use Attention-Based networks to distribute weights to
the temporal features and the spatial features extracted from skeletal data. We implement comparison
experiments on our own and the public sign language dataset under the Signer-Independent and the Signer-
Dependent circumstances to show the advantages of our methods.

INDEX TERMS Sign language recognition, keyframe sampling, skeletal features, attention-based BLSTM.

I. INTRODUCTION
Sign language is an effective way for hearing impaired

people to convey their ideas to others. Sign language recog-
nition(SLR) provides good communication media between
deaf-mute and ordinary people, which has important appli-
cation value [1]. The research of SLR is mainly divided
into isolated SLR and continuous SLR. The former aims at
recognizing word by word, the other focuses on translating
sentences from a sequence of actions. We will discuss the
methodology of isolated SLR in this paper.

The traditional equipment for acquiring sign language data
can be divided into data gloves and visual image systems [2].
The former use gesture motion sensors to get sequential tra-
jectory data [3], [4]. This method can have a high identifica-
tion rate but bring so much labor and financial consumption.
In contrast, a visual image system uses cameras to collect
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information [5]. However, the identification rate is low, and
real-time performance is poor, especially it is not able to
collect large sign language datasets. AfterMicrosoft launched
Kinect-2.0, we can get the RGB, depth, and skeletal data
simultaneously from a frame sampled from the video [6].
Using Kinect-2.0, we recorded a large vocabulary Chinese
Sign Language(CSL) dataset with 200 sign language words.
Each word contains 100 samples by 10 signers who repeated
the same sign language word 10 times. The CSL dataset will
be used for the experiments in our paper.

Sign language videos are composed of continuous frames
sampled at a specific sampling rate by cameras. Due to
the high sampling rate, the number of frames in a sign
language video is large, which causes much data storage
memory and redundant information between adjacent frames.
Therefore, we need to select keyframes from the whole
sign language video as the descriptor of it. In this way,
the redundant information is eliminated, and data storage
memory is greatly reduced, making the feature extraction
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more convenient without negatively affecting recognition
performance. In this paper, we design a method called
optimized keyframe-centered clips(Optim KCC) sampling
and received better results compared with the state-of-art
method in [7].

In recent years, skeletal coordinate data emerged as a new
type of data in SLR [8], [9]. It can eliminate the influence
from the background and the illumination of the signing
environment. and describe the three-dimensional spatial tra-
jectories of finger joints. Besides, the storage memory of
skeletal data is much less than that of RGB images and depth
images. However, to our knowledge, the number of literatures
researching on extracting skeletal features is limited. Thus,
making full use of skeletal data, we design a kind of feature
called Multi-Plane Vector Relation(MPVR) in this paper to
get better descriptions of sign language videos.

With the development of the attention mechanism,
researchers proposed Attention-Based networks for SLR,
which distribute corresponding weights to different
keyframes’ features to achieve more efficient feature extrac-
tion. However, current research mainly focuses on the tem-
poral attention mechanism. In this paper, we also consider
the spatial attention mechanism. In the 3D skeletal data
provided by Kinect-2.0, the XY plane represents the screen
of the camera facing the signers, the YZ plane represents the
ground, and the XZ plane represents the sidewall orthogonal
to the previous two subplanes. The skeletal joint trajectories’
projection onto the three subplanes has different importance
in feature representation. Therefore, we design the spatial
Attention-Based BLSTM referencing the Attention-Based
network proposed in [10] to weight different subplanes’
features.

The contribution of this paper can be summarized as
follows:
• Based on the keyframe-centered clips(KCC) sampling
proposed in [7], we improve it for better data prepro-
cessing and feature descriptions.

• In this paper, a new kind of skeletal feature called Multi-
Plane Vector Relation(MPVR) is proposed. We project
each skeletal joint’s 3D coordinate data to 3 subplanes
to get 3 2D vectors. And then, we explore the vector
relation in different subplanes, which is the principal
component of the MPVR feature.

• Based on the Attention-Based network proposed in [10],
we design a spatial Attention-Based BLSTM to dis-
tribute weights to corresponding subplanes’ features in
MPVR.

• According to the ideas proposed above, we imple-
ment the comparison experiments under the Signer-
Independent and the Signer-Dependent circumstances
distinguished by whether there are signers who appear
in both training sets and test sets. The recognition
accuracy under two cases can validate the adaptiveness
of our networks to the practical Signer-Independent
situation.

II. RELATED WORKS
In this section, we will review the work related to our

research in this paper.

A. KEY FRAME SAMPLING
Huang et al. [7] proposed keyframe-centered clips(KCC)

sampling, which aims at selecting a certain number of frames
to describe the whole sign language videos. He got bet-
ter recognition performance compared with other sampling
methods. The keyframe extraction algorithm in this paper is
based on [7].

B. FEATURE EXTRACTION
In the field of SLR, the initial research on feature

extraction focused on extracting features such as HOG,
LBP, optical flow, or SIFT [11] from RGB images and
depth images using traditional image-processing algorithms
[12]–[14]. With the development of deep learning,
CNN [15]–[17] and RNN [18]–[21] can directly extract the
temporal features or the spatial features from image data,
which gradually made themselves become the mainstream
research methods in SLR.

After Microsoft launched Kinect-2.0, skeletal data gradu-
ally received attention. In recent years, a few literatures began
to research on extracting skeletal features and have made
some progress. Kumar et al. [22] proposed joint distance
and angular coded Color topographical descriptor(JTDT) and
got 84.12% accuracy on the Indian sign language dataset.
Rastgoo et al. [23] proposed the multi-view hand skeleton,
which obtained skeletal coordinate information frommultiple
perspectives and achieved 99.6% accuracy on his own labo-
ratory’s dataset. The above works only stay in the use of rect-
angular coordinate data. In consideration of this, MPVR is
designed by us, which uses polar coordinate data to describe
vector relation in different subplanes.

C. NETWORK LEARNING
The types of SLR networks are closely related to the devel-

opment of computer vision and pattern recognition. HMM
is one of the classical models [24], [25]. HMM can model
continuous frames in the time domain and extract temporal
features. Based on traditional HMM, Zhang et al. [26] and
Guo et al. [27] proposed adaptive HMM. Pu et al. [28]
applied HMM to trajectory modeling. In addition, SVM
[12], [18], [29], CRF [30], [31], and some of their variants
have also been used in SLR.

With the development of deep learning, SLR gradually
relies on neural networks [19]. Zamora-Mora and Chacn-
Rivas [32] used CNN for real-time hand detection as the
tool of SLR. Al-Hammadi et al. [33] used 3DCNN to extract
temporal and spatial features simultaneously and got better
recognition performance. Besides, RNN has also been widely
welcomed. For example, Xiao et al. [34] used LSTM to
realize multimedia fusion for Chinese SLR. Li et al. [35]
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proposed an encoder-decoder model using LSTM to model
different features of hand shapes.

In recent years, feature fusion gradually receives atten-
tion. To make full use of different types of features,
Su and Zhu [36] combined the CNN and LSTM to form
the fusion network, H. Zhou and W. Zhou also designed the
spatial-temporal Multi-Cue network [37] for fully exploring
the features from different cues.

Due to the advantages of the attention mechanism,
researchers also began to transfer it to SLR. For example,
Huang et al. [10] used Attention-Based 3DCNN to distribute
different weights to different frames in video sequences.
According to this idea, we not only use a temporal Attention-
Based BLSTM to weight keyframes’ representation but also
add a spatial Attention-Based BLSTM to weight the sub-
planes’ features. Then we fuse them to obtain the fusion
network.

III. OUR METHOD
A. KEY FRAME SAMPLING
1) SAMPLING METHOD

Before feature extraction, we need to select keyframes
from sign language videos. Since each sign language video
exists in the format of continuous frames, keyframe sampling
is downsampling all the frames of the video to select some
representative frames as the descriptor of the whole video.
Currently, the standard method of keyframe sampling is uni-
form sampling, which means that if we select N keyframes
from the sign language video with L frames, the index of the
ith keyframe Ki is:

Ki = [
iL

N + 1
](1 ≤ i ≤ N ) (1)

This method does not consider the importance of different
frames. Therefore, we refer to KCC sampling in [7] and
propose OptimKCC sampling to extract the key actions.

2) KCC SAMPLING
Firstly, we take the first frame as the referenced frame,

and we search the keyframe from the subsequent n(hyper
parameter) frames.We denoteDi(1 ≤ i ≤ n) as the Euclidean
distance between the pixels of the ith frame and the referenced
frame. Long distance means low similarity.

Secondly, we sort the sequence {Di}ni=1 to get a new
sequence {Dsi}

n
i=1 with decreasing similarity (Ds1 ≤ Ds2 ≤

. . . ≤ Dsn ), in which {s1, s2, . . . , sn} = {1, 2, . . . , n}. Then,
we classify n frames into two categories by threshold seg-
mentation. One is similar to the referenced frame; the other
is dissimilar to it. We assume the first k frames corresponding
with Dsi (1 ≤ i ≤ k) as the similar frames. Then, we design
the criterion function as:

C(k) =
(m1 − m2)2

σ12 + σ
2
2

(2)

m1 and m2 represent the means of the first k and the
subsequent (n− k) similarity values.

σ1 and σ2 represent the standard deviation of the first k and
the subsequent (n− k) similarity values.

According to the principle of optimal classification,
the result should make the largest mean square error(MSE)
between classes and the least MSE within every class, which
means the optimal solution k∗ should satisfy:

C(k∗) ≥ C(k)(1 ≤ k ≤ n− 1) (3)

After finding k∗ according to (3), we select the frame
which appears earliest in the video from the (n−k∗) dissimilar
frames as the keyframe. And we set it as the next referenced
frame to find the next keyframe in the same way, until the
number of remaining frames is less than n.

3) OPTIMIZATION
According to KCC, for each sample, we gradually change

n to select keyframes with the fixed number of N . Take the
video sample with L frames as an example, we use X =
(x1, x2, . . . , xL) to denote the frame sequence, and Y =
(y1, y2, . . . , yN ) to denote the keyframe sequence selected
from X using KCC sampling. We assume that:

yi = xsi (1 ≤ i ≤ N , 1 ≤ si ≤ L) (4)

Because L > N , we refer to DTW distance as the measure-
ment of similarity between X and Y . Firstly, we construct a
matrixM ∈ RL×N , in which

Mij = D(xi, yj)(1 ≤ i ≤ L, 1 ≤ j ≤ N ) (5)

D(xi, yj) = ||xi − yj||2 represents the Euclidean distance
between the pixels of xi and yj. Long distance means low
similarity.

We use a path P in matrix M which starts from the
coordinate (1, 1) and ends at (L,N ) to match the sequence
X and Y . For each point (i, j), the next point along the path
can only be one of the following points:

(i+ 1, j), (i, j+ 1), (i+ 1, j+ 1)(1 ≤ i ≤ L, 1 ≤ j ≤ N ) (6)

Each point along the path can be regarded as the matched
point between the two sequences. The summation of all the
elements along the path, which is shown in eq (7), is defined
as the accumulative distance between X and Y :

γ =
∑

(i.j)∈P
Mij (7)

Our objective is to find a path P∗ generating the least accu-
mulative distance, which is defined as the DTW distance:

P∗ = argmin
P

γ (8)

The DTW distance can be calculated by DTW algorithm,
in which γ (1, 1) =M11 and γ (L,N ) is the final result:

γ (i, j)=Mij + min{γ (i− 1, j), γ (i, j− 1), γ (i− 1, j− 1)}

(9)

We attempt to optimize the result of KCC sampling by
using the conception of DTW distance. We set Y as the initial
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sequence and gradually approach the optimal result using the
greedy algorithm. The flowchart of the algorithm is shown as
follow:

Initialization: s0 = 1, sN+1 = L, j∗ = s1
for 1 ≤ i ≤ N :

for si−1 ≤ j ≤ si+1:(search one by one)
yi = xj (change yi to get a new sequence)
if γ (X ,Y ) < γmin :

γmin = γ (X ,Y )
j∗ = j

si = j∗

yi = xj∗ (renew yi)
We use Y ∗ to denote the final keyframe sequence got from

the above algorithm, which will be used for data processing
and feature extraction.

Because that the sequence Y ∗ is based on Y , it preserves
the characteristic that it considers the different weights of
different frames. Besides, Y ∗ shows more similarity between
X compared with Y . So, we can conclude that Y ∗ can better
capture the visual tempo of the video and fully describe the
sign language video.

B. MPVR(MULTI PLANE VECTOR RELATION) FEATURE
1) SKELETAL DATA

Kinect-2.0 can capture the 3D coordinate data of 25 skele-
tal joints. We take the spine joint, which keeps still during
almost the whole process of sign language demonstration,
as the new coordinate origin to normalize the 3D skeletal
coordinate data to eliminate the influence from the heights
and the body shapes of signers. In the new 3D coordinate
space, the lines connecting the spine joint with other joints
can be viewed as 3D vectors.

We select 10 joints closely related to sign language demon-
stration: thumb, wrist, elbow, index fingertip, and palm center
on the left and right sides to get 10 3D vectors. The extraction
of MPVR is based on these 3D vectors.

FIGURE 1. Projection. 3D vector (x, y, z) is projected to 3 orthogonal
subplanes to form 3 2D vectors (x, y ), (x, z), and (y, z).

2) MPVR FEATURE EXTRACTION
Multi-Plane(MP): The meaning of multi-plane is that we

project the 3D vector (x, y, z) onto the three orthogonal 2D
planes, which are the screen of the camera, the ground, and
the sidewall, to obtain three 2D vectors (as shown in Fig. 1).

With the same operation on each joint’s coordinate, we can
get 10 vectors in each plane.

Vector Relation(VR): Take the XY plane as an example,
we use Vi(1 ≤ i ≤ 10) to represent the 10 vectors in this
subplane. For 2 vectors Vi(xi, yi) and Vj(xj, yj), we can use
transformation formula to get the polar coordinate (Pi,2i)
and (Pj,2j) (0 ≤ 2i,2j < 2π ) from the rectangular coordi-
nate. We use 2ij to represent the counterclockwise rotation
angle from Vi to Vj (As shown in Fig. 2).

FIGURE 2. Counterclockwise Rotation Angle.Vector Vi rotates 2ij
counterclockwise to have the same direction as vector Vj . Thus Vj
rotates (2π −2ij ) counterclockwise to have the same direction as Vi .

According to the definition of the counterclockwise rota-
tion angle, we can get that:

2ij = 2j −2i(2i ≤ 2j) (10a)

2ij = 2π +2j −2i(2i > 2j) (10b)

2ij +2ji = 2π (10c)

MPVR feature extraction: For one of the three subplanes,
we use the vector M′

∈ R10 to represent Pi(1 ≤ i ≤ 10).
Meanwhile, we use the matrixM′′

∈ R10×10 to represent the
argument of each vector and the counterclockwise rotation
angle between every two vectors:

M′
i = Pi(1 ≤ i ≤ 10) (11a)

M′′
ij = 2ij(i 6= j, 1 ≤ i ≤ 10, 1 ≤ j ≤ 10) (11b)

M′′
ii = 2i(1 ≤ i ≤ 10) (11c)

In this way, we get the matrix M = concat(M′,M′′) ∈
R10×11 as the vector relation feature of one subplane. Assume
that the vector relation features of the three subplanes are
Mxy, Mxz, and Myz. We stack them to form the 3D tensor
stack(Mxy,Mxz,Myz) ∈ R3×10×11 as the MPVR of one
keyframe. Assume that N keyframes are selected, we stack
their MPVRs to form the tensor with size N × 3 × 10 × 11
as the MPVR of the whole sign language video.

The main advantages of MPVR lie in:
• Scale invariance: Due to the normalization of the skele-
tal data, the length of the skeletal joints’ vectors can be
robust to the diversity of the signers’ heights and body
shapes.

• Equivalent reconstructability: According to the given
feature matrices Mxy, Mxz, and Myz, we can recon-
struct the original spatial distribution of skeletal joints.
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• Rotation invariance: In the process of data acquisition,
due to the shake of the camera, the spatial coordinate
will change suddenly, resulting in discontinuity and
instability of the rectangular coordinate data. However,
the length of the skeletal vectors and the counterclock-
wise rotation angles between them do not change with
translation and rotation of the plane facing the signers.
Therefore, the features can eliminate the error caused by
the camera shaking.

• Multidirectional: We take the skeletal trajectories’ pro-
jection onto the three orthogonal subplanes into con-
sideration, which fully explores the trajectory features
during the sign language demonstration.

C. NETWORK
1) ATTENTION-BASED BLSTM

After obtaining the features from the skeletal data, we need
to feed them into networks for training. Currently, BLSTM
is widely used for extracting features from the sequential
data [34], [36]. However, this network is not sensitive to
the fact that different keyframes have different importance.
Besides, the corresponding weights of the three orthogonal
subplanes in describing the sign language video have also
not been considered. To solve the problem, we adopt the
Attention-Based BLSTM proposed in [10] to weight the
features of the keyframes and the subplanes in MPVR.
The general structure of the Attention-Based network is
shown in Fig. 3.

FIGURE 3. Attention-Based LSTM. Feature sequence F ∈ RN×L. Attention
signal s ∈ R256. Hidden layer outputs the hidden representation
H ∈ RN×256. Weight vector W ∈ RN .

As shown in Fig. 3, F = (f1, f2, . . . , fN)T ∈ RN×L rep-
resents feature sequence. N means the number of the feature
vectors, and L means the length of each feature vector. We set
the number of hidden units in the BLSTM to be 128 and feed

F into the BLSTM. The hidden neurons in the hidden layer
are composed of Multi-Layer Perceptrons(MLP).

In this way, we get the attention signal from the BLSTM:

s = BLSTM(F) ∈ R256 (12)

Hidden layerH outputs the hidden representation H:

(h1,h2, . . . ,hN)T = H = H(F) ∈ RN×256 (13)

whereH = A(FC). FC means fully-connected layer and A
means activation function.

Then we calculate the weight vector (w1,w2, . . . ,wN ) =
W ∈ RN :

wi =
eh

T
i s∑
eh

T
i s
(1 ≤ i ≤ N ) (14)

Finally, we weight different feature vectors by the weight
vectorW to get the final feature vector:

f =
∑

wifi ∈ RL (15)

We use B to denote the whole Attention-Based BLSTM,
thus we get:

f = B(f) ∈ RL (16)

D. TEMPORAL-SPATIAL ATTENTION-BASED BLSTM
Assume that we choose N = 8 as the number of the

keyframes in our experiments and denote the Temporal
Attention-Based BLSTM and the Spatial Attention-Based
BLSTM as BT and BS . Then we feed the feature sequence
f into them. The structure of the fused network is shown
in Fig. 4.

FIGURE 4. Fused Attention-Based BLSTM. The feature sequence is fed
into BT and BS with fT and fs as the outputs. Then, we concatenate them
and feed them into the fully-connected layer and the softmax layer to get
the probability distribution vector p.

As for BT , we set the size of f to be 8× 3× 10× 11. Thus,
we get the temporal feature vector:

fT = BT(f) ∈ R330 (17)
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Similarly, as forBS , we set the size of f to be 3×8×10×11
and get the spatial feature vector:

fS = BS(f) ∈ R880 (18)

Tomake full use of the temporal and spatial characteristics,
we concatenate them to form the fusion feature:

F = concat(fT, fs) ∈ R1210 (19)

Finally, we feed F into the fully-connected layer and the
softmax layer to get the probability distribution vector, where
C is the number of the classes.:

p = softmax(FC(F)) ∈ RC (20)

E. LOSS FUNCTION
WeuseCross Entropy as the loss function. For a probability

distribution vector p = (p1, p2, . . . , pC ), if the ground truth
label is i(1 ≤ i ≤ C), the loss function is:

Loss = −ln(pi) (21)

IV. EXPERIMENT
A. IMPLEMENT DETAILS
1) DATASET

Our experiments were implemented on the DEVISIGN
sign language dataset released by the the ChineseAcademy of
Sciences and Chinese Sign Language(CSL) dataset recorded
by us.

DEVISIGN dataset includes 500 sign language words and
used Kinect-1.0 to capture RGB, depth, and skeletal data. The
500 words cover signs with fundamental postures to complex
postures variations. The data covers 8 different signers. The
vocabularies are recorded twice for 4 signers (2 males and
2 females) and once for the other 4 signers (2 males and
2 females).

CSL dataset contains 200 sign language words, which
are collected by Kinect-2.0. All the 200 words are from
the Chinese Sign Language Textbooks. Each word in CSL
dataset contains 100 video samples obtained by 10 signers
who repeated the same sign language word 10 times. CSL
dataset can provide more detailed skeletal information than
DEVISIGN dataset because of the superiority of Kinect-2.0
over Kinect-1.0.

2) CONTENT OF THE EXPERIMENTS
We did self-comparison experiments on CSL to validate

the effect of keyframe sampling and the attention mechanism.
After that, we realized different methods proposed in other
literature on DEVISIGN and CSL dataset to validate the
advantages of our methods.

Besides, we did experiments under two cases: Signer-
Independent and Signer-Dependent. The former means that
the signers in the training set are completely different from
those in the test set. The latter means that there are some
signers appear in both datasets.

Obviously, experiments under the Signer-Independent cir-
cumstance is more challenging but has more practical appli-
cation value. By comparing the recognition results under
the two cases, the networks’ robustness to the Signer-
Independent circumstance can be observed. Now, many
works researching SLR tend to include the two cases in the
experiments [14], [18].

The experiments were conducted on GPU 1080Ti with the
stochastic gradient descent(SGD) optimizer and the CrossEn-
tropyLoss criteria.We set batch size= 8, learning rate= 0.01,
learning decay= 0.99, momentum= 0.9. 80% of the samples
were used for training, 5% for validation, and the remaining
15% for testing.

B. EXPERIMENTAL RESULTS
1) EXPERIMENTS ON THE NUMBER OF KEYFRAMES

Firstly, we changed the number of keyframes N and
conducted experiments on CSL dataset. The results are shown
in Fig. 5-9.

FIGURE 5. Illustration.The lines with different colors mean different
methods listed in Table 1.

TABLE 1. Illustration for different methods.

FIGURE 6. Illustration. The curves of the accuracy concerning the number
of keyframes N under the case of Signer-Independent using KCC
sampling.

With the number of keyframes N increasing from 2 to 16,
the recognition accuracy also gradually increases. However,
after N equals 8, the rising speed drops sharply, and the
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FIGURE 7. Illustration.The curves of the accuracy concerning the number
of keyframes N under the case of Signer-Indpendent using OptimKCC
sampling.

FIGURE 8. Illustration.The curves of the accuracy concerning the number
of keyframes N under the case of Signer-Dependent using KCC sampling.

FIGURE 9. Illustration.The curves of the accuracy concerning the number
of keyframes N under the case of Signer-Dependent using OptimKCC
sampling.

accuracy reaches saturation. So, we can conclude that when
N = 8, the keyframes can fully describe sign language
videos. Considering that the number of frames of most sign
language videos varies from 80 to 120, keyframe sampling
can significantly reduce the data storage memory without
bringing significantly negative influence on recognition per-
formance. Subsequent comparison experiments are based on
the results when N = 8.

FIGURE 10. Illustration. Different types of lines represent different
methods.

FIGURE 11. Illustration.The recognition accuracy during training under
the case of Signer-Independent using KCC sampling.

FIGURE 12. Illustration.The recognition accuracy during training under
the case of Signer-Independent using optimKCC sampling.

FIGURE 13. Illustration.The recognition accuracy during training under
the case of Signer-Dependent using KCC sampling.

2) EXPERIMENTS ON THE ATTENTION MECHANISM
Under the above parameter settings, we implemented

experiments with different methods and recorded accuracy
and loss during the training process. The accuracy-epoch
curves and loss-epoch curves under the Signer-Independent
and the Signer-Dependent cases are shown in Fig. 10-18.
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FIGURE 14. Illustration.The recognition accuracy during training under
the case of Signer-Dependent using optimKCC sampling.

FIGURE 15. Illustration.The loss during training under the case of
Signer-Independent using KCC sampling.

FIGURE 16. Illustration.The loss during training under the case of
Signer-Independent using optimKCC sampling.

3) COMPARATIVE EXPERIMENTS WITH OTHER METHODS
To validate the advantages of the Fused Attention-Based

BLSTM with MPVR, we did experiments on DEVISIGN
and CSL dataset with our methods and some state-of-art
methods researching extracting skeletal features for SLR. The
experimental results are shown in Tables 2 and 3.

C. ANALYSIS OF EXPERIMENTAL RESULTS
From the experimental results, we can observe that:
• Compared with KCC sampling in [7], OptimKCC sam-
pling could slightly improve the recognition accuracy.

FIGURE 17. Illustration.The loss during training under the case of
Signer-Dependent using KCC sampling.

FIGURE 18. Illustration.The loss during training under the case of
Signer-Dependent using optimKCC sampling.

OptimKCC sampling preserves the characteristic that
it considers the different weights of different frames.
Besides, its results show more similarity between the
original samples compared with the results of KCC sam-
pling. The experiments indeed confirm that optimKCC
sampling could better capture the representation of the
sign language videos.

• Compared with original coordinate data, the new fea-
ture MPVR can significantly enhance recognition accu-
racy. Besides, the networks with the attention mecha-
nism have better performance, and the Spatial Attention-
Based BLSTM performs even better than the Temporal
Attention-Based BLSTM, from which we can conclude
that considering weight distribution of different sub-
planes’ features can better describe the sign language
videos.

• As expected, the recognition accuracy under the Signer-
Dependent circumstance is higher than that under the
Signer-Independent circumstance. Nevertheless, we can
find that there is not much gap between two cases,
which indicates that our networks can avoid the over-
fitting phenomenon on the training set under the Signer-
Independent case, and shows that our networks can be
robust to such circumstance and demonstrate practical
application value.
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TABLE 2. The experimental results on CSL dataset.

TABLE 3. The experimental results on DEVISIGN dataset.

• As shown in Fig. 10-18, when combined with the
attention mechanism, the performance of the networks
is significantly improved in several aspects, including
higher accuracy, faster convergence speed, and lower
loss function with slighter fluctuation amplitude. The
Fused Temporal-Spatial Attention-Based BLSTM has
the highest recognition accuracy, the fastest convergence
speed, and the lowest loss function, which means the
optimal performance.

• As shown in Table 2. and Table 3., our methods per-
formed better than other state-of-art and classical meth-
ods using skeletal features for SLR. It shows that MPVR
and the attention mechanism can fully explore the tem-
poral and the spatial features of sign language videos and
consider the importance of different kinds of features
and different components of a feature, which means the

better ability to capture the representation of the whole
sign language videos.

V. CONCLUSION
In this paper, we proposed a kind of Attention-Based

network utilizing the OptimKCC sampling and the MPVR
skeletal feature to improve the accuracy of SLR. First of all,
we designed OptimKCC sampling based on [7] to get the
keyframes from sign language videos. Secondly, we projected
the skeletal joints’ coordinate data to 3 orthogonal subplanes
to get several 2D vectors and extracted vector relation from
different subplanes as the MPVR skeletal feature.

Afterward, based on the attention mechanism, we adopted
a temporal Attention-Based BLSTM and a spatial Attention-
Based BLSTM for distributing weights to the features of
different keyframes and different subplanes in MPVR.
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Under different cases, we conducted experiments on our
laboratory’s CSL dataset and the public DEVISIGN dataset.
The experimental results showed the advantages of our
methods.
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