
Received November 11, 2020, accepted November 24, 2020, date of publication November 27, 2020,
date of current version December 10, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3040997

Two-Dimensional Models of Thermoelastic
Damping for Out-of-Plane Vibration of
Microrings With Circular Cross-Section
YONGPENG TAI 1, NING CHEN2, JUN XU 2, AND PU LI 3
1College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China
2College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
3School of Mechanical Engineering, Southeast University, Nanjing 211189, China

Corresponding author: Yongpeng Tai (tai@njfu.edu.cn)

This work was supported by the Natural Science Foundation of Jiangsu Province of China under Grant BK20160933.

ABSTRACT Thermoelastic damping is an important dissipation mechanism in microresonators. This article
presents an analytical model of thermoelastic damping for out-of-plane vibration of microrings with circular
cross-section by considering two-dimensional heat conduction. The temperature field of the circular cross-
section is calculated by using the Bessel function and free boundary conditions. The coupled motion of
bending and torsion in out-of-plane mode has been considered to calculate the mechanical energy. The
derivation shows that the analytical expression of thermoelastic damping can be considered as a product
of Zener model and the energy ratio of pure bending energy stored to total elastic energy stored. The present
model is verified by comparing with the finite-element method. The convergence of the analytical expression
has been examined and the characteristics of the expression have been studied by using a normalized form.
The effect of geometry on thermoelastic damping has been studied. The results show that thermoelastic
damping in microrings of circular cross-section under out-of-plane mode depends on geometry, scales, and
vibration frequencies.

INDEX TERMS Microring, out-of-plane vibration, thermoelastic damping, circular cross-section,
microresonator.

I. INTRODUCTION
Microring resonator is a typical device of MEMS (microelec-
tromechanical system), which is widely used in MEMS sen-
sors and actuators [1]–[4]. At present, two vibration modes
are usually used in the design of ring resonator, i.e., in-plane
mode and out-of-plane mode. Using in-plane mode, the ring
resonator is suitable to design rate sensors that can detect
the angular rate of only one direction [5]–[7]. Using the cou-
pling of in-plane and out-of-plane modes, the ring resonator
can be applied to multi-axis rate sensors that can detect the
angular rates more than one direction simultaneously [1], [2].
This kind of sensor has attracted the attention of researchers
due to higher integration and advanced technology. In fact,
microresonators have excellent mechanical properties. How-
ever, some dissipation mechanisms, which reduce the per-
formance of the microresonators, become of significance
at microscale due to the scale effect. The main dissipation

The associate editor coordinating the review of this manuscript and
approving it for publication was Chaitanya U. Kshirsagar.

mechanisms include air damping, support loss, and thermoe-
lastic damping. Among them, thermoelastic damping is the
intrinsic damping that is produced due to the thermoelas-
tic effect of material and cannot be eliminated by proper
design and manufacturing. Therefore, it is very important
to investigate the mechanism of thermoelastic damping in
microresonators.

Zener [8], [9] first investigated thermoelastic damping
in beam resonator of transverse vibration and proposed an
analytical model by using the thermal mode superposition
method. Zener’s study has proved that the analytical model
is available not only for a beam with rectangular cross-
section but also for that with circular cross-section. Zener
model for beam resonator with circular cross-section consid-
ers heat conduction in two directions of the section, given
by [9]

Q−1Zener,circular = 1E

∞∑
q=1

fq
ωτq

1+ ω2τ 2q
(1)
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where 1E = Eα2T0/Cv, E is the Young’s modulus, T0
is the ambient temperature, α is the coefficient of thermal
expansion, Cv is the heat capacity per unit volume, fq is
the weight coefficient associated with the qth thermal mode,
τq is the relaxation time and ω is the angular frequency. With
the development of MEMS, Zener model has attracted more
and more attention, and its validity has been confirmed in
resonators of microscale [10]. Lifshitz and Roukes (LR) [11]
improved upon Zener model by using a complex temperature
field and presented a closed-form expression of thermoelastic
damping for a beam resonator with rectangular cross-section.
However, LR model is not available for resonators with cir-
cular cross-sections.

Based on Zener and LR theory, various models of ther-
moelastic damping are derived for different structural shapes
and vibration modes of microresonators. At present, the ther-
moelastic damping model has been studied in most common
microresonators, such as microbeam [12], microring (in-
plane vibration [13]–[16], out-of-plane vibration [17]), and
microplate [18], [19]. In some complex microresonators,
analytical models of thermoelastic damping are also widely
studied and obtained, such as composite laminated struc-
ture [20], [21], hemispherical structure [22], etc. However,
to our knowledge, most works are focus on the resonator
with rectangular cross-section, and only a few works have
discussed themodels of thermoelastic damping for the case of
circular cross-section. This is because the normal methods of
micromachining are planar technologies which can be used
to fabricate microstructures with rectangular cross-section,
and it is difficult to fabricate the structure with circular
cross-section using the methods. Under such condition, this
work focuses on the theoretical research and has no direct
correlation with the current micro-scale technology. On the
one hand, there are some works that have already studied the
nano/micro-structures with non-rectangular cross-section.
With the development of micromachining, the present model
can be used for future devices with microring resonators with
circular cross-sections. On the other hand, the present model
is applicable to but not limited to microstructure, namely, it is
also applicable to macrostructure. Therefore, the theory in
this article is also effective in other fields and scales.

To date, thermoelastic damping in beam and ring res-
onators with circular cross-section can be calculated by Zener
model and Li’s model [14], respectively. However, Li’s model
is only suitable for the in-plane mode of a ring and cannot
predict thermoelastic damping for the case of out-of-plane
mode. Although in the previous work [17], we have studied
the out-of-plane vibration of a circular ring with rectangular
cross-section, the thermoelastic damping of a circular ring
with circular cross-section cannot be calculated by the theory
of rectangular cross-section due to the fact that the shape
of the cross-section has a great influence on the heat con-
duction. In this article, we derive an analytical model for
thermoelastic damping in microring resonators with circular
cross-section under out-of-plane vibration. We first solve the
two-dimensional heat conduction equation of the circular

cross-section and obtain the temperature field of the ring
resonator by using the thermal mode superposition method
and the properties of the Bessel function. Then, we utilize the
definition of the quality factor to derive an analytical expres-
sion of thermoelastic damping for out-of-plane vibration of a
ring resonator with circular cross-section. The expression can
be regarded as a product of Zener model and the energy ratio
of pure bending energy stored to total elastic energy stored.
The present model is validated by comparing its results with
the finite-element method (FEM) solutions.

II. PROBLEM FORMULATION
We consider a microring resonator of uniform circular cross-
section under out-of-plane vibration with free boundary con-
ditions as shown in Fig. 1. Three coordinate systems are
defined, a global cylindrical coordinate system (R, ϕ, Z ), a
local Cartesian coordinate system (x, y, z), and a polar coordi-
nate system (r , β) attached to the circular cross-section where
x = rsinβ and z = rcosβ. R0 and r0 are the radius of the
undeformed centroidal line and the radius of circular cross-
section, respectively. u, v, and w are the displacements along
the radial, circumferential and axial directions, respectively,
and φ is the torsional displacement about the y-direction.

FIGURE 1. Schematic diagram of the circular cross-section of a ring with
coordinate systems. (a) The global cylindrical coordinate system (R, ϕ, Z )
and the local Cartesian coordinate system (x , y , z). (b) The polar
coordinate system (r , β).

A. COUPLED MOTION OF OUT-OF-PLANE VIBRATION
For the out-of-plane vibration of a ring, the motion is cou-
pling with bending and torsion. The coupling displacements
consists of an axial displacement w and a torsional displace-
ment φ. Assume that the radius of the cross-section r0 is small
in comparison with the radius of the ring R0, and hence, warp-
ing is neglected. Under such condition, the coupled motion of
out-of-plane vibration can be expressed as [2]{

w (ϕ, t) = Weiωnt = W0 cos (nϕ) eiωnt

φ (ϕ, t) = −n2ζWeiωnt = −n2ζW0 cos (nϕ) eiωnt
(2)

where W and W0 represent the amplitude and the maximum
amplitude in the axial direction,ωn is the natural frequency of
out-of-plane vibration, n is themode number (n = 2, 3, 4 . . .),
and ζ is a parameter, given by

ζ =
1
R0

[
1+ µ
1+ n2µ

]
(3)
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where

µ =
GJ
EIx
=

1
1+ υ

(4)

where G is the shear modulus, J is the torsion constant, Ix
is the second moment of area and υ is the Poisson’s ratio.
For circular cross-section with radius r0, J and Ix can be
expressed as

J = 2Ix =
πr40
2

(5)

The out-of-plane displacement field of the ring in cylindri-
cal coordinates can be expressed as [23], [24]

u (R, ϕ,Z , t) = zφ

v (R, ϕ,Z , t) = −z
∂w
R∂ϕ

w (R, ϕ,Z , t) = w (ϕ, t)

(6)

B. STRAIN AND STRESS FIELDS
For the thin ring (r0 � R0), the differences of strains along
the radius direction on the cross-section can be neglected.
Therefore, using (2), (6) and the relevance between w and φ,
the strain field of the ring is obtained and can be expressed in
polar coordinate [17], [25]

εϕ =
u
R0
+

1
R0

∂v
∂ϕ
= −r cosβ

1− R0ζ

R20

∂2w
∂ϕ2

εR = εZ = −υεϕ + (1+ υ) εthermal

γRϕ =
1
R0

∂u
∂ϕ
−

v
R0
= r cosβ

1− n2R0ζ

R20

∂w
∂ϕ

γϕZ = −
x
R0

(
∂φ

∂ϕ
+

∂w
R0∂ϕ

)
= −r sinβ

1− n2R0ζ

R20

∂w
∂ϕ

γRZ = 0
(7)

where εthermal = αθ represents the thermal strain caused by
thermoelastic effect and θ is the change in temperature.
Typically, the temperature change caused by the thermoe-

lastic effect is relatively small. Therefore, compared with the
mechanical stresses, the thermal stress produced by θ can
be ignored [26]. Then, the stress filed of the ring can be
expressed as

σϕ = Eεϕ = −Er cosβ
1− R0ζ

R20

∂2w
∂ϕ2

τrϕ = Gγrϕ =
Er cosβ
2 (1+ υ)

1− n2R0ζ

R20

∂w
∂ϕ

τϕZ = GγϕZ = −
Er sinβ
2 (1+ υ)

1− n2R0ζ

R20

∂w
∂ϕ

(8)

C. HEAT CONDUCTION EQUATION
Assume that the ring is subjected to time-harmonic force
with the natural frequency ωn and then operates in out-of-
plane vibration. The steady-state responses of the translation

displacement and the relative temperature filed in the ring
have the form{

w (ϕ, t) = W (ϕ) eiωnt = W0 cos (nϕ) eiωnt

θ (x, ϕ, z, t) = θ0 (x, ϕ, z) eiωnt
(9)

According to the Fourier Law, the thermoelastic tempera-
ture field is governed by the heat conduction equation, given
by [27]

∂θ

∂t
= χ∇2θ −

EαT0
(1− 2υ)Cv

∂

∂t

∑
j

εjj (10)

where ∇2(•) represents the Laplacian operator and εjj is
the normal strain. In fact, the bending component of out-
of-plane vibration is the main cause of thermoelastic damp-
ing whereas the torsion component causes no local volume
change and hence, suffers no damping [11]. For bending
vibration, most heat flow transports along transverse direc-
tions (x- and z-axes). Accordingly, we assume that the heat
flow along circumferential direction ϕ is neglected. For such
case, ∇2 can be expressed as

∇
2
=

∂2

∂x2
+
∂2

∂z2
=

∂2

∂r2
+

1
r
∂

∂r
+

1
r2

∂2

∂β2
(11)

Therefore, we obtain a two-dimensional heat conduction
equation, given by

∂θ

∂t
= χ

(
∂2θ

∂r2
+

1
r
∂θ

∂r
+

1
r2
∂2θ

∂β2

)
+r cosβ

1E

α

∂

∂t

(
1− Rξ
R2

∂2w
∂ϕ2

)
(12)

The last term on the right side of the above equation is the
internal heat source excitation. When the excitation is 0,
we obtain a two-dimensional free heat conduction equation
on a circular surface, given by

∂θ

∂t
= χ

(
∂2θ

∂r2
+

1
r
∂θ

∂r
+

1
r2
∂2θ

∂β2

)
(13)

Equation (13) is a typical heat conduction equation of a circu-
lar plane. It is very mature to solve the eigenvalue and thermal
mode of the equation by using the separation of variables
method, and the form of the solution can be expressed as
a sum of products of a thermal mode equation θ1, a spatial
frequency equation θ2 and a time-frequency equation θ3,
given by

θ (r, β, ϕ, t) = θ1 (r, ϕ) θ2 (β) θ3 (t) (14)

where θ1 is a Bessel function of the first kind.

III. SOLUTION OF THE HEAT CONDUCTION EQUATION
A. TEMPERATURE FIELD
The thermoelastic effect during vibration of the resonator
results in the internal heat source, that is, the excitation of
heat conduction. For (12), the last term on the right is the
heat source term of the system, which excites the system with
a time-frequency ωn from exp(iωnt) and a spatial frequency
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ωk = 1 from cosβ. Therefore, based on (14), the steady-state
response of the temperature field can be expressed using the
mode superposition method, given by

θ (r, β, ϕ, t) = θ0 (r, β, ϕ) eiωnt

=

∞∑
q=1

cqJ1
(
γqr

)
cosβeiωnt (15)

where γp is a positive number and cq is the weight coefficient
for different thermal modes, which can be determined by
boundary conditions of heat conduction.

Assume that no heat transfer from the ring to the environ-
ment. The adiabatic boundary conditions are employed, i.e.,
∂θ0/∂r = 0 at r = ± r0. Substituting (15) into the boundary
conditions, yields

∂θ0

∂r

∣∣∣∣
r=r0

=

∞∑
q=1

cq
d
dr
J1
(
γqr0

)
cosβ = 0 (16)

Using the properties of the Bessel function, we obtain

J0
(
aq
)
− J2

(
aq
)
=0 or J1

(
aq
)
= aqJ0

(
aq
)

(17)

where aq = γqr0 is the root of (17).
Substituting (15) into (12), we obtain the distribution equa-

tion of temperature field (see APPENDIX A for details)

∞∑
q=1

cq

(
γ 2
q +

iωn
χ

)
J1
(
γqr

)
= r

iωn
χ

1E

α

1−R0ξ

R20

∂2W
∂ϕ2

(18)

To solve the coefficient cq, the weighted orthogonality of the
Bessel function is used, given by∫ r0

0
rJ1

(
γpr

)
J1
(
γqr

)
dr=0, when p 6= q (19)

Let both sides of (18) be multiplied by rJ1(γpβ) and inte-
grated from r = 0 to r0, and hence, we obtain

cq

(
γ 2
q +

iωn
χ

)∫ r0

0
rJ21

(
γqr

)
dr

=
iωn
χ

1E

α

1− R0ξ

R20

∂2W
∂ϕ2

∫ r0

0
r2J1

(
γqr

)
dr (20)

Utilizing the boundary conditions (17), we can solve the
above equation directly and then the coefficient cq is obtained
as (see APPENDIX A for details)

cq =
21Er0

(
ω2
n+iωnχγ

2
q

)
(
χ2γ 4

q +ω
2
n

) (
a2q − 1

)
αJ1

(
aq
) 1−R0ξR20

∂2W
∂ϕ2

(21)

Note that cq is a complex number that represents the out
of phase relationship between temperature field and elastic
vibration caused by thermoelastic damping.

B. THERMOELASTIC DAMPING
According to the definition of quality factor Q, thermoelastic
damping can be expressed as

Q−1 =
1
2π

1W
Wstored

(22)

where 1W is the energy loss per cycle due to thermoelas-
tic damping and Wstored is the maximum energy stored per
cycle of vibration. For vibrating resonators, 1W is related
to the coupling between stress field and thermal strain field
that results in the conversion of mechanical energy into heat
energy, given by

1W = −π
∫∫∫

V
σ̂ϕIm

(
ε̂thermal

)
dV (23)

where the hat (^) denotes the amplitude and the imaginary
part of thermal strain can be expressed as

Im
(
ε̂thermal

)
= αIm (θ0)

= α cosβ
∞∑
q=1

Im
(
cq
)
J1
(
γqr

)
(24)

For out-of-plane vibration, Wstored is caused by the coupled
motion of bending and torsion, given by

Wstored =
1
2

∫∫∫
V

(
σ̂ϕ ε̂ϕ + τ̂rϕ γ̂rϕ + τ̂ϕZ γ̂ϕZ

)
dV (25)

Substituting (7) and (8) into (23) and (25), the energy loss
produced per cycle and the maximum energy stored per cycle
can be expressed as (see APPENDIX B for details)

1W = 2π3E1Eωnχn4W 2
0

× ·
r20
R30

(
n2 − 1

)2
µ2(

1+n2µ
)2 ∞∑

q=1

1(
χ2γ 4

q +ω
2
n

) (
a2q − 1

)
(26)

Wstored =
Eπ2r40
8R30

n4W 2
0

(
n2 − 1

)2
µ2(

1+ n2µ
)2 [

1+
1

(1+ υ) n2µ2

]
(27)

Substituting (26) and (27) into (22), and using (4), the ther-
moelastic damping model for out-of-plane vibration of a ring
with circular cross-section can be expressed as

Q−1 =
1

1+ (1+ υ)
/
n2
1E

∞∑
q=1

fq
ωnτq

1+ ω2
nτ

2
q

(28)

where fq is the weight coefficient and τq is the relaxation time,
given by

fq =
8

a2q
(
a2q − 1

)τq = r20
a2qχ

(29)

According to (1), (28) can also be expressed as

Q−1 =
1

1+ (1+ υ)
/
n2
Q−1Zener,circular (30)
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Additionally, utilizing the energy expression, we can obtain
the energy ratio

Wbending

Wstored
=

1

1+ (1+ υ)
/
n2

(31)

where Wbending is the pure bending energy stored related to
the bending component of the coupled motion. Thus, Q−1

can be regarded as the product of the Zener model and the
energy ratio of pure bending energy stored to total elastic
energy stored.

C. SIMPLIFIED MODEL
Table 1 lists the values of the weight coefficient fq for dif-
ferent thermal modes. Note that high order modes (q =
2, 3, 4 . . .) can be neglected by introducing a very little error.
Hence, we remain only the first term (q = 1) in the summa-
tion of (28), and then the simplified model of thermoelastic
damping can be expressed as

Q−1 =
1

1+ (1+ υ)
/
n2
1E

ωnτ

1+ ω2
nτ

2 (32)

where τ = τ1 = 0.295r20
/
χ . The relaxation time of circular

cross-section τ is different from that of square cross-section
τsquare, given by [9], [11]

τsqrare =
b2

π2χ
(33)

where b is the beam thickness. When b = 0.5431πr0,
we obtain τsquare = τ . Fig. 2 shows a comparison between
τsquare and τ for three different cases. From the figure,
it shows that τsquare > τ , when the diameter of the circular
section is equal to b (b = 2r0), or the two kinds of sections
are of the same area (b = π0.5r0). Also shown in the figure,
τsquare < τ , when r0 is the circumscribed circle of the square
(b = 20.5r0).

TABLE 1. The values of aq and fq for the first six thermal modes.

Note that the thermoelastic damping model (30) is similar
to that for rectangular sections in the reference [17]. However,
the two equations are only similar in form and cannot be sub-
stituted for each other. Through comparison, we find that dif-
ferent cross-section shapes lead to different heat conduction
paths besides the mechanical parameters such as the torsional
constant J and the second moment of area Ix . This is also the
main reason why the model for rectangular cross-section in
the reference [17] cannot be used for circular cross-section.
In this article, a two-dimensional heat conduction equation
is adopted for circular cross-section, which considers the
heat flow in the radial and axial directions (x- and z-axes),

FIGURE 2. Variation of normalized relaxation time with r0.

while the equation of rectangular cross-section [17] only
considers the heat flow in the axial direction. Theoretically,
the two-dimensional heat conduction model has higher accu-
racy than the one-dimensional one, but it is more difficult to
obtain the analytical solution. However, for circular cross-
section, the two-dimensional heat conduction equation is
easier to solve than the one-dimensional heat conduction
equation. Therefore, for the circular cross-section, we use the
two-dimensional heat conduction equation with higher accu-
racy to describe the internal heat transfer phenomenon. On the
contrary, for rectangular cross-section, it is easier to obtain
the analytical solution of one-dimensional heat conduction
equation with sufficient accuracy, because most of the heat
conduction occurs in one direction.

IV. RESULTS
In this section, we first verify the validity of the present model
by comparing with FEM results. Then, the convergence of
the present model as well as its characteristics of normal-
ized expression are examined carefully. Next, the effect of
ring geometry on thermoelastic damping is studied. Last,
the differences of thermoelastic damping in the rings with
circular cross-section and square cross-section are discussed.
The material properties used for the theoretical calculation of
this section are list in Table 2.

TABLE 2. Material properties of polysilicon at 300 K [28].

A. VERIFICATION
In this section, the present model of thermoelastic damping
is verified by comparing with FEM. The present model is

214304 VOLUME 8, 2020
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a two-dimensional model considering the heat flow along
axial and radial directions. Theoretically, FEM is a very high
accurate method to predict thermoelastic damping because
three-dimensional heat conduction is considered in FEM. The
FEM simulation results are obtained by using free boundary
conditions and harmonic exciting force of axial direction
applied to a small area of the ring.

Fig. 3 shows the imaginary part of the temperature of the
ring vibrating in out-of-plane mode n = 2. The specifica-
tions of the ring are r0 = 10 µm and R0 = 200 µm. The
imaginary part of the temperature represents the part of the
material temperature that is out of phase with the mechanical
vibration. As shown in the figure, the temperature gradient of
the cross-section is mainly along the axial direction, but the
role of radial direction cannot be ignored.

Fig. 4 shows the comparison of thermoelastic damping
obtained by FEMand the present model for different structure
dimensions and natural frequencies. The critical parameters
are r0 = 10 µm and R0 = 200 µm, 600 µm, and 1000 µm.
As shown in Fig. 4, the results of the present model are in
good agreement with those of FEM for all cases. Note that
the present model with q = 10 is more accurate than the case
of q = 1. However, the difference between the two cases of
q = 1 and q = 10 is negligibly small. Fig. 5 shows the relative
errors between the results of FEM and the present model.
As shown in the figure, the analytical results obtained using
q = 10 are closer to FEM than those using q = 1. For all
cases, the maximum error of the present model is within 15%
and 4% for q = 1 and q = 10, respectively. Also shown in the
figure, for the case of thin ring (i.e., a large ratio of R0/r0),
the present model exhibits very high accuracy. However, for
the case of R0/r0 = 20, the relative error is remarkable at high
order mode.

FIGURE 3. The imaginary part of the temperature field of a ring resonator
in out-of-plane mode (n = 2). The inset is the temperature distribution of
circular cross-section.

FIGURE 4. Comparison between the results obtained by FEM and the
present model with constant r0 = 10 µm.

FIGURE 5. The relative error of thermoelastic damping between FEM and
the present model for different modes. (a) q = 1. (b) q = 10.

B. CONVERGENCE OF THE THERMOELASTIC
DAMPING EQUATION
The convergence of the thermoelastic damping equation in
this article is checked carefully. Fig. 6 shows thermoelastic
damping calculated by the analytical model (28) for the cases
of q = 1, 2, 5, 10, and 20. The resonator dimensions are r0 =
10 µm and R0 = 100 µm. As shown in the figure, the curve
of q = 1 almost coincides with that of q = 20 at low order
modes. The curve of q = 2 is sufficient precision at mode
n = 20 but not in good agreement with that of q = 20 at
mode n = 30. Note that the curve of q = 5 is in excellent
agreement with that of q = 20 even at very high order modes.
Thus, the convergence can be achieved by using q = 1 or
q = 5 for low or high order modes, respectively.

C. NORMALIZED EQUATION OF
THERMOELASTIC DAMPING
To study the characteristics of the model of thermoelastic
damping derived in this article, we normalize (32) and trans-
form it into a Lorentzianwith normalized frequency η = ωnτ ,
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FIGURE 6. Thermoelastic damping calculated by the present model for
different q.

given by

Q−1

1E
=

1

1+ (1+ υ)
/
n2
L (η) (34)

where L(·) is the Lorentzian, given by

L (η) =
η

1+ η2
(35)

For any value of η, the boundaries of Q−1/1E can be
expressed as

1

1+ (1+ υ)
/
4
L (η) ≤

Q−1

1E
≤ L (η) (36)

Fig. 7 shows the normalized thermoelastic damping vary-
ing with η for the cases of n = 2, 5, 10, and∞. The curves
of n = 2 and ∞ are the boundaries as expected in (36). As
shown in Fig. 7, Debye peak exists when η equals to 1. The
inset shows the Debye peaks for different mode numbers n.
It illustrates that increasing mode number n increases the

FIGURE 7. Variation of normalized thermoelastic damping with the
dimensionless variable η = ωnτ .

value of Debye peak. Moreover, at any frequency, the larger
the mode number n, the larger the thermoelastic damping
value. Note that the curve of n =10 is very close to that
of n = ∞. Therefore, for the high order mode of out-of-
plane vibration, the thermoelastic damping value of a ring is
approaching to that of a beam with circular cross-section in
transverse vibration.

D. EFFECT OF GEOMETRY
In this section, the effect of structure dimensions of ring
resonators on thermoelastic damping is studied for different
modes and ratios R0/r0. Fig. 8 shows the dependence of
thermoelastic damping on mode number nwith constant r0 =
10 µm for different R0. As shown in Fig. 8, increasing the
value of R0 increases the mode number n which is associated
with the Debye peak.

FIGURE 8. Dependence of thermoelastic damping on mode number n
with constant r0 = 10 µm for different R0.

For ring resonators with circular cross-section, R0 and r0
are two key geometric dimensions. Fig. 9 shows the depen-
dence of thermoelastic damping on varying ratios R0/r0 with
constant R0 = 1000 µm for the cases of n = 2 to 6. As shown
in the figure, for any case, a peak value exists when changing
the ratio R0/r0. On both sides of the peak, the curve changes
monotonically with the increase of R0/r0. Also shown in
the figure, the ratio R0/r0, corresponding to the peak value,
increases with increasing mode number n.
Fig. 10 shows thermoelastic damping varying with the

radius r0 for constant R0/r0 = 40. As shown in this figure,
there is a peak value of thermoelastic damping which corre-
sponds to a certain r0 for each curve ofmode number n. As the
increase of n, the radius r0, corresponding to the peak value,
is getting smaller.

E. COMPARISON BETWEEN CIRCULAR AND SQUARE
CROSS-SECTIONS
The microring resonators with rectangular cross-section have
already been widely used in the MEMS field. In this section,

214306 VOLUME 8, 2020



Y. Tai et al.: 2-D Models of Thermoelastic Damping for Out-of-Plane Vibration of Microrings With Circular Cross-Section

FIGURE 9. Dependence of thermoelastic damping on varying ratios R0/r0
with constant R0 = 1000 µm for different n.

FIGURE 10. Dependence of thermoelastic damping on varying r with
constant R/r = 40.

we compare the results of thermoelastic damping between
circular and square cross-sections under the same area of
cross-sections (b = π0.5r0).
Fig. 11 shows the ratio of thermoelastic damping of square

section ring to circular section ring. The value of R0/r0 is
fixed to 40. As shown in this figure, the ratio varies with
mode numbers and scales, and a minimum value of the ratio
exists (> 0.9) for all cases of r0. In the regime of high order
mode, the ratio increases monotonically with the increasing
of mode number n. Also shown in the figure, the differ-
ences of thermoelastic damping between circular and square
cross-sections are not larger than 10% under such condi-
tions. As can be seen from the figure, thermoelastic damping
in circular cross-section is different from those in square
cross-section and it is difficult to find a regular relationship
between the two kinds of cross-sections. This is due to the
different cross-section shapes that affect the modal frequency
and heat conduction. Therefore, it is necessary to establish a

FIGURE 11. The ratio of thermoelastic damping of square section ring to
circular section ring for the case of equal cross-sectional area.

new thermoelastic damping model for microresonators when
the shape of the cross-section and the vibration mode are
changed.

V. CONCLUSION
We presented an analytical model for thermoelastic damp-
ing in microring resonators with circular cross-section under
out-of-plane vibration. We applied the mode superposi-
tion method to solve the heat conduction equation for
two-dimensional heat flow across the circular cross-section
and obtained the temperature field of the ring. The validity
of the present model is verified by comparing with the FEM
simulation. It is found that the results of the present model are
in good agreement with those of FEM. The convergence of
the present model is carefully checked and the characteristics
of the present model are studied by using the normalized
equation. The geometry effects on thermoelastic damping
had been investigated for different ratios R0/r0 and scales.
By comparison, it is found that the differences of thermoelas-
tic damping between circular and square cross-sections under
the same area of cross-sections depend on the mode number
and size scale.

APPENDIX A
SOLUTION OF TEMPERATURE FIELD
Substituting (15) into (12), we obtain
∞∑
q=1

cq

[
J ′′1
(
γqr

)
+

1
r
J ′1
(
γqr

)
−

1
r2
J1
(
γqr

)
−
iωn
χ
J1
(
γqr

)]

= −r
iωn
χ

1E

α

1− R0ξ

R20

∂2W
∂ϕ2

(A.1)

According to the characteristics of the Bessel function,
we obtain

J ′′1
(
γqr

)
+

1
r
J ′1
(
γqr

)
−

1
r2
J1
(
γqr

)
−
iωn
χ
J1
(
γqr

)
= −

(
γ 2
q +

iωn
χ

)
J1
(
γqr

)
(A.2)

VOLUME 8, 2020 214307



Y. Tai et al.: 2-D Models of Thermoelastic Damping for Out-of-Plane Vibration of Microrings With Circular Cross-Section

Then, (A.1) can be expressed as
∞∑
q=1

cq

(
γ 2
q+

iωn
χ

)
J1
(
γqr

)
=r

iωn
χ

1E

α

1−R0ξ

R20

∂2W
∂ϕ2

(A.3)

Using (19), we transform the above equation into the form as
(20). The integrations in (20) can be solved, given by∫ r0

0
rJ21

(
γqr

)
dr =

∥∥J1 (γqr)∥∥2
=

r20
2

(
d
dr
J1
(
aq
))2

+
1
2

(
r20−

1
γ 2
q

)
J21
(
aq
)

(A.4)∫ r0

0
r2J1

(
γpr

)
dr =

r20
γq
J2
(
aq
)

(A.5)

Based on the boundary conditions (17), (A.4) and (A.5) can
be expressed as∫ r0

0
rJ21

(
γqr

)
dr =

1
2

(
r20 −

1
γ 2
q

)
J21
(
aq
)

(A.6)∫ r0

0
r2J1

(
γpr

)
dr =

r20
aqγq

J1
(
aq
)

(A.7)

Substituting (A.6) and (A.7) into (20), yields

cq

(
γ 2
q+

iωn
χ

)
1
2

(
r20−

1
γ 2
q

)
J1
(
aq
)

=
iωn
χ

1E

α

1−R0ξ

R20

∂2W
∂ϕ2

r20
aqγq

(A.8)

By solving the above equation, cq can be obtained as (21).

APPENDIX B
ENERGY CALCULATION
Using (8), (23) and thermal strain expression εthermal = αθ ,
the energy loss per cycle over the entire structure is

1W = −π
∫ ∫ ∫

V
σ̂ϕα cosβ

∞∑
q=1

Im
(
cq
)
J1
(
γqr

)
dV

= 2πE1Eωχr0
(1− R0ξ)2

R40

×

∞∑
q=1

γ 2
q(

χ2γ 4
q + ω

2
n

) (
a2q − 1

)
J1
(
aq
)

·

∫ ∫ ∫
V
r2J1

(
γqr

)
cos2 β

(
∂2W
∂ϕ2

)2

(R0+r sinβ) drdβdϕ

(B.1)

The integration in (B.1) can be solved, given by∫ ∫
V
r2J1

(
γqr

)
cos2 β

(
∂2W
∂ϕ2

)2

(R0 + r sinβ) drdβdϕ

=

∫ 2π

0

(
∂2W
∂ϕ2

)2

dϕ
[
R0

∫ r0

0
r2J1

(
γqr

)
dr ·
∫ 2π

0
cos2 βdβ

+

∫ r0

0
r3J1

(
γqr

)
dr
∫ 2π

0
cos2 β sinβdβ

]
= R0

∫ r0

0
r2J1

(
γqr

)
dr ·
∫ 2π

0
cos2 βdβ ·

∫ 2π

0

(
∂2W
∂ϕ2

)2

dϕ

=
r0R0π2W 2

0 n
4

γ 2
q

J1
(
aq
)

(B.2)

Thus, using (3) and (B.2), 1W can be written as (26).
Substituting (7) and (8) into (25), the maximum energy

stored per cycle is given by

Wstored =
E
2
(1−R0ζ )2

R40

·

∫∫
r3 cos2 β (R0+r sinβ) drdβ ·

∫ (
∂2W
∂ϕ2

)2

dϕ

+
E

4 (1+υ)

(
1−n2R0ζ

)2
R40

·

∫∫
r3 cos2 β (R0+r sinβ) drdβ ·

∫ (
∂W
∂ϕ

)2

dϕ

+
E

4 (1+υ)

(
1−n2R0ζ

)2
R40

·

∫∫
r3 sin2 β (R0 + r sinβ) drdβ ·

∫ (
∂W
∂ϕ

)2

dϕ

=
Eπ2r40
8R30

n4W 2
0

[
(1− Rζ )2 +

(
1− n2Rζ

)2
(1+ υ) n2

]
(B.3)

Finally, using (3), Wstored can be expressed as (27).
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