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ABSTRACT Simultaneous Localization and Mapping (SLAM) plays an important role in the computer
vision and robotic field. The traditional SLAM framework adopts a strong static world assumption for
convenience of analysis. It is very essential to know how to deal with the dynamic environment in the entire
industry with widespread attention. Faced with these challenges, researchers consider introducing semantic
information to collaboratively solve dynamic objects in the scene. So, in this paper, we proposed a PSPNet-
SLAM: Pyramid Scene Parsing Network SLAM, which integrated the Semantic thread of pyramid structure
and geometric threads of reverse ant colony search strategy into ORB-SLAM2. In the proposed system,
a pyramid-structured PSPNet was used for semantic thread to segment dynamic objects in combination with
context information. In the geometric thread, we proposed a OCMulti-View Geometry thread. On the one
hand, the optimal error compensation homography matrix was designed to improve the accuracy of dynamic
point detection. On the other hand, we came up with a reverse ant colony collection strategy to enhance
the real-time performance of the system and reduce its time consumption during the detection of dynamic
objects. We have evaluated our SLAM in public data sheets and real-time world and compared it with ORB-
SLAM2, DynaSLAM. Many improvements have been achieved in this system including location accuracy
in high-dynamic scenarios, which also outperformed the other four state-of-the-art SLAM systems coping
with the dynamic environments. The real-time performance has been delivered, compared with the geometric
thread of the excellent DynaSALM system.

INDEX TERMS PSPNet-SLAM, dynamic, semantic, OCMulti-view geometry.

I. INTRODUCTION
SLAM is a cutting-edge relevant technology in the field of
robot movement. When a robot collects data information
from the surrounding environment through sensors, it uses
relevant effective information to conduct self-positioning and
surrounding environment map construction. An interdepen-
dent relationship between map construction and positioning
can be found here as a continuous iterative process. Accurate
positioning depends on a correct map and construct it as
required. In the process, the continuous optimization algo-
rithm and the loop detection map accuracy are used to correct
the scale drift in the re-access to a certain position. At present,
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according to the collected information of sensor slam can be
divided into laser radar SLAM and visual SLAM. Although
the laser radar applied in the slam technology shows the
advantages of high precision and reliability, its expensiveness
and much increased information demand, gradually lead it
to the SLAM technology based on vision sensors for the
development direction of industry products which fall to the
ground.

With the development of CPU and GPU, more and
more powerful capabilities of graphics processing have been
shown. As camera is not only cheap, but also lightweight and
reliable, it has been used as the data acquisition sensor of
visual SLAM, which has been seen the rapid development
in the past decade. The camera can be detailly divided into
the monocular camera, stereo camera, RGB-D camera, etc.
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However, it is found that real depth can’t be measured by
the stereo camera and can only be used to calculate the
depth through calibration, correction and matching, which
will waste a lot of computing resources. The RGB-D camera
can simply and directly calculate the depth through its stereo,
structured light and TOF technology.

In recent years, the field of visual SLAM has attracted a
large number of researchers with emergence of many excel-
lent SLAM system frameworks such as MonoSLAM [1],
ORB-SLAM [2], ORB-SLAM2 [3], LSD-SLAM [4],
SVO [5], DynaSLAM [6], which can achieve satisfactory
performance while mobile robots are used in a static environ-
ment or some dynamic elements moves in space. Although
these excellent SLAMsystems currently performwell in ideal
static environments to precisely locate and map something,
them, they are still required to be test in our reality space
(indoor and outdoor) where exists numerous moving objects.
for example, walkers, animals, or other dynamic objects. The
accuracy of LSD-SLAM, ORB-SLAM, ORB-SLAM2 and
other systems in the real dynamic space is significantly
reduced, or even the test system completely fail toward them.

In this paper, we propose a real-time parallel seman-
tic SLAM system to deal with the problem of dynamic
objects faced by the running robot. The system based on
the ORB-SLAM2 algorithm framework, adopts semantic
segmentation with a multi-view combination method to
extract dynamic objects through the establishment of parallel
semantic thread. In the semantic thread, we used an efficient
PSPNet [34] to segment dynamic objects in which a pyramid
structure neural net was designed for connecting contex-
tual information. In the position estimation and dynamic
object detection threads of low-cost tracking and multi-view
Geometry, we design an OCMulti-View Geometry thread.
The dual thread collaboratively works to extract the dynamic
objects in the scene, so as to improve the accuracy of the
self-positioning of the SALM system with more real-time
performance andmore robustness of dynamic point detection.

In summary, we highlight our main contribution below:
• Weproposed the algorithm framework of PSNet-SLAM,
and introduced the PSPNet network of the pyramid
structure as a parallel semantic thread on the basis of
ORB-SLAM2. The use of the network can effectively
utilize the characteristics of context information, so that
we can segment dynamic objects in continuous frames
more quickly and reliably.

• The optimal compensation homography matrix is pro-
posed in the geometry thread, which compensates for
the position offset and lack of feature points in the front
and rear frames in the projection transformation, and
optimizes the position of the projection point. Improve
the robustness of system performance.

• In the process of determining dynamic feature points,
a reverse ant colony search strategy is proposed, which
uses the characteristics of community distribution of
dynamic feature points to search on a pre-set route.
When a dynamic feature point is detected, it will shift

to the dynamic feature point community, which avoids a
dynamic and static judgment on all feature points, saves
time consumption and improves the real-time perfor-
mance of the system.

In the rest of this paper, we discuss the related works
first. Then, the proposed system is described in detail. The
experimental results are detailly explained in the third part.
Finally, the paper is concluded.

II. RELATE WORK
At present, the SLAM framework can be divided into two
major categories according to the type of data acquisition
sensor: The first type is laser SLAM that uses lidar as the
sensor. In this field, mapping [7] is a typical SLAM algo-
rithm based on Rao-Blackwellized Particle Filters. Google’s
Cartographer [8] is the newest SLAM algorithm based on
Lidar input, which provides a good loop closure detection.

Visual SLAM divides surrounding obstacles into two
categories according to the movement attributes of static
and dynamic objects. In the scene with only static objects,
more famous cases can be listed such as MonoSLAM [1],
PTAM [9], ORB-SLAM [2], which use ORB feature to
detect feature points. Later, Mur-Artal [3] proposed the
ORB-SLAM2 algorithm, which increases the accuracy of
object detection and map construction. These SLAM frame-
works can perform well in a static environment during the
experiments.

The position of dynamic objects is detected and judged
through geometric information in traditional solutions. For
instance, A. kundu, K.M. Krishna et al. [10] estimates
the distance between the matching feature and the epipo-
lar line in the next frame of the image under the use
of fundamental matrix. When the distance reached a pre-
determined threshold, the object was considered as a
dynamic one. CoSLAM [11] uses the triangulation con-
sistency between the two frames to project the feature
points from the previous image into the current one,
and calculated its error of reprojection. When the value
was less than the threshold, it was judged as a static
feature point, otherwise dynamic feature points. Piag-
gio, Fornaro et al. [12], Chivil, Mezzaro et al. [13], Handa,
Sivaswamy, KM Krishna et al. [14], propose to utilize the
detected difference between person moving and background
inflow vectors. W. Tan, H. Liu [15] verifies the changes
of objects in the scene by projecting map features into the
current frame. Wangsiripitak and Murray [16] also proposes
a dynamic object tracking detection scheme.

With the rise of the neural network, the gradual introduc-
tion of the SLAM semantic information system not only
identifies and classifies, the moving object in a dynamic
environment, but make a segmentation and filtration of them.
It can be learned from human’s common sense and expe-
rience that the dynamic objects are usually people, cars,
etc., which can move itself. In recent years, the development
of deep learning shows that computer tasks such as object

214686 VOLUME 8, 2020



X. Long et al.: PSPNet-SLAM: A Semantic SLAM Detect Dynamic Object by Pyramid Scene Parsing Network

detection and semantic segmentation can be solved excel-
lently and its accuracy can even outperform human being.
Up to now, there are many excellent neural networks used
in SLAM systems. McCormac, Handa et al. [17] combine
the CNNs with a dense SLAM method to lead maps with
semantics that establishes more accurate tracking and map.
Kaveti et al. [18] proposed a refocusing method based on
EMoptimization, which uses semantic segmentation to detect
dynamic objects in a single time step to initialize the back-
ground. Jiyu Cheng et al. [19] proposed to use CRF-RNN
network to detect dynamic objects in the environment. Lingni
and Stuechler et al. [20] presents a novel deep neural network
to predict semantic segmentation in a self-supervised way,
which can enforcemulti-view consistency during the training.
In [21] proposes an RTFNet architecture in a dark environ-
ment at night, uses ResNet to extract features, and combines
the encoder to restore the pixel resolution to improve the
robustness of the system.

In Detect-SLAM [22], they are introduced SSD [23]
network to detect people, animals, cars and other dynamic
objects in the environment. During the time, as long as SSDs
have identified people, animals, and cars as dynamic objects
and regarded them as potential moving ones, it will delete
all the features of the object area. However, in the current
research, it is found that deep learning is only not good at
dealing with the mathematical problems in SLAM, but also
has the problem of insufficient calibration data sets, resulting
in the inability of the detection accuracy of moving objects
for excellent performance. Therefore, it is impossible to com-
pletely replace the traditional SLAM target detection module
with deep learning and neuromorphic vision sensor [38] at
this stage.

The combination of geometric methods and deep learning
has become the research direction of the SLAM system to
deal with dynamic environmental problems in the next stage.
There are, many state-art-of SALM systems [24], [25] con-
tributed. S-SLAM [26] proposed a combination of the SLAM
system and SegNet [27] to filter the moving objects through
semantic information and motion feature points in dynamic
scenes. Liang and Zhang et al. [28] proposed another com-
bination of ORB-SLAM2 and YOLO [29], which utilizes the
dual-module of moving object detection and moving camera
real-time positioning to remove dynamic objects and obtain
a semantic map of the scene. In the study of Berta Bescos’
DynaSLAM [6], the introduction of Mask-RCNN [30] par-
allel threads combined with Multi-view Geometry threads
uses a fully convolutional neural network to segment objects
and transform projections of feature points, jointly removing
dynamic objects. The in-painting. Semantic Optical Flow
SLAM [31] is proposed based on DynaSLAM. Semantic
and geometric threads are tightly coupled to make full use of
the elements hidden in semantic and geometric information
to eliminate dynamic features. Yuxiang Sun at al. [32] pro-
posed a method of using dense optical flow and reprojection
error image group pixels to derive the foreground likelihood
map to infer moving objects and initialize static scenes.

Vincent et al. [33] proposed a DoTMask framework that
uses a combination of YOLA and EKF trackingmodes to seg-
ment dynamic objects in the scene. For above schemes, pure
geometric or semantic information show better performance
for filtering while detecting the direction of moving objects,
compared with the traditional ORB-SAM2. However, taking
some aspects into consideration, for example, the correlation
between objects in semantic information, the accumulation
of projection errors between image frames in the geometric
thread and the real-time performance of the system, it indi-
cates that there is still room for improvement of the research.

In this article, on the basis of excellent scholars, we pro-
pose a SLAM system that combines PSPNet semantic
thread and OCMulti-view geometric thread. Under the ORB-
SLAM2 system, a PSPNet parallel semantic thread with a
pyramid structure is introduced to detect dynamic objects
by all related semantic information. e.g. A book originally
defined as a static object, which was carried out later, would
be detected as a dynamic object during the combination of
related information of the entire semantic thread in PSP-
Net. On the geometric thread, from one point, the opti-
mal error compensation homography matrix is introduced to
compensate for the feature point shift phenomenon caused
by the projection transformation error of the feature points
of the previous frame, and effectively remove the dynamic
feature points at the edge of the object. From the other
point, we propose a reverse ant colony search strategy
in which the characteristics of dynamic point community
distribution was used to selectively detect feature points,
thereby improving the time-consuming geometric threads
and the real-time performance of the system. In total, our
system combines PSPNet and OCMulti-View Geometry into
ORB-SLAM2, showing its excellent robustness and real-time
performance.

III. SYSTEM DESCRIPTION
Figure 1 gives an overview of our system. First of all,
the RGB channels passed through a PSPNet that segmented
out pixel-wise all the a priori dynamic content., such as
people, vehicles or animals. In the ORB-SLAM2 frame-
work, we proposed two parallel threads, which were PSPNet
and OCMulti-View Geometry to increase the accuracy and
robustness in dynamic environment. First, we refined the
segmentation of the dynamic objects previously trained by
the PSPNet. Second, we used the Hybrid module to judge
whether candidate features were static extraction points.

For that purpose, it is necessary to know the camera pose,
for which OCMulti-View Geometry thread has been imple-
mented to localize the camera within the already created
scene map. These segmented frames were the ones to obtain
the camera trajectory and the map of the scene. It is noticed
that Notice that if the moving objects in the scene do use the
PSPNet classification, and fusion the OCMulti-View Geom-
etry model stage would promote the accuracy of detecting the
dynamic content and self-location accuracy.
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FIGURE 1. The PSPNet-SLAM system is built on the ORB-SLAM2
framework, and we proposed parallel thread before the tracking module.
we use the semantic thread introduced in PSPNet and OCMulti-View
Geometry thread to cooperate to remove dynamic objects in the scene.

In the monocular and stereo cases, the images were seg-
mented by the PSPNet so that key points in a priori dynamic
object are neither tracked nor mapped. All the different stages
are described in-depth in the next subsections.

A. SEGMENTATION DYNAMIC CONTENT WITH PSPNet
1) PSPNet FRAMEWORK
The basis of our semantic labeling stream is Compress Pyra-
mid Scene Parsing Network (PSPNet) which is compressed
by PSPNet [34]. In traditional semantic SLAM Fully Con-
volution Network was used to detect the dynamic objects.
There were several problems with this approach, such as lack
of ability to infer from the context, failure of the association
of labels through the relationship between categories; The
model might ignore the small things, while the large things
might exceed the FCN acceptance range, leading to discon-
tinuous predictions. In summary, FCN does not handle the
relationships between scenarios and global information well.

PSPNet is composed of four modules as illustrated
in figure.2. Given an input in the figure.2(a), it used a
pre-trained ResNet [35] model with the dilated network
strategy [36], [37] to extract the feature map. The size of
final feature map is 1/8 of the input image, as shown in
the figure. 2(b). Next is the most important pyramid pooling
module for PSPNet shown in 2(c). A 4-level pyramid was
used to collect context information with the pooling kernels
covering the whole, half of, and small portions of the image,
which were fused as the global prior. Then concatenated the
prior with the original feature map in the final part of 2(c).
It was followed by a convolution layer to generate the final
prediction map in 2(d).

It can be seen in Figure 2 that the feature map with a pyra-
mid structure is transmitted by ResNet in 2(a). In traditional
networks, as the much increase of network, it might introduce
difficulty of additional optimization for image classifica-
tion. ResNet solved this problem with skipped connection in
each block. The latter layers of deep ResNet mainly learned
residues based on previous ones.

In ResNet, a single image X0 was passed through a
convolutional network. In the L-layer network, each layer

FIGURE 2. The PSPNet framework [34] consists of four parts. In the
semantic thread, PSPNet performs semantic segmentation on objects
such as pedestrians, books, tables and chairs in key frames. If the
semantic information of the object moves relative to the position in
consecutive frames, the object is determined to be a dynamic object.

FIGURE 3. ResNet uses the residual function to solve the problem of
training accuracy degradation caused by regularization initialization in
the process of network layer deepening, and improves the accuracy of
network prediction.

implemented a nonlinear transformation Hl(·), where l rep-
resented the number of layers. Hl(·) a compound function,
shows Batch Normalization, ReLU, Conv, or Pooling. The
output of the Lth layer was defined asXl . The simple structure
was shown in figure 3:

The traditional feedforward convolutional network directly
used the output of the l layer as the input of the l + 1 layer
to obtain this transferring function: Xl = Hl(Xl−1). While
ResNet added skip-connection when performing nonlinear
conversion, the following conversion equation was obtained:
Xl = Hl (Xl−1) + Xl−1. The structure of ResNet solved
the degradation problem of CNN, is easier to learn than the
original features. For the reason that, when the residual was 0,
the accumulation layer only performed identity mapping, and
the network performancewould not decrease. However, in the
actual process, the residual error will not be 0, which will also
make the stacking layer learn new features based on the input
features, thereby leading better performance with excellent
object recognition, Classification, cutting performance in the
semantic thread in our SLAM system.

2) IMPLEMENT DETAIL
The data sets used in PSPNet’s official manual are
ADE20K, Cityscapes, PASCAL VOC2012 and PASCAL
VOC2012 enhanced data sets, and ours ultimately imple-
ments PSPNet-SLAM in TUM data. Therefore, we need to
retrain our weight file. In the reference DynaSLAM [6],
MASK-RCNN is used as the semantic thread, and the weight
file mask_rcnn.h5 of the coco model is used. So, we use
pspnet_resnet50.h5 based on the VOC enhanced data set
as the pre-training model in our system, and then train our
own weight files in the TUM data set. During the training
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parameter setting process, because the laboratory only has
two GPUs, the batch size is set to 8, which cannot reach
the original 16. Input size is set to 640∗480. The initial
learning rate is set to 0.0001, which is multiplied by 0.1 every
30 cycles and decreased by 0.1 times. The weight attenuation
coefficient is 0.005.

B. OPTIMAL ERROR COMPENSATION HOMOLOGOUS
MATRIX
For tracking mode, we also considered the real-time per-
formance of system, and used DynaSLAM as lightweight
low-cost pose estimation, to continue to extract dynamic point
in the use of multiple view geometry method. We featured
points from the previous frame projection transformation
to the current frame. Considering the real-time system and
the process of simplicity, we should adopt single matrix
methods described before and after the two feature points
in the mapping relationship. Meanwhile, With the influence
such as noise as the reason of camera movement, we should
put forward the optimal error compensation of single matrix
method to optimize the projection point position, so as to
improve robustness of the system.

1) HOMOGRAPHY MATRIX
In three-dimensional space, there existed any point A, which
formed β plane together with the optical centers O1 and O2.
The plane intersected the lines α1 and α2 with l1 and l2,
as shown in figure 4.

FIGURE 4. The homography transformation can be simply understood as
used to describe the position mapping relationship between the world
coordinate system and the pixel coordinate system. The corresponding
transformation matrix is called the homography matrix H , which can be
derived using Projection Plane.

If B is an point in the π2 plane, the image of point B on
the plane α1 and α2 is A1 and B2, respectively. B2 must be
located on the intersection line l2 between plane β and α2,
and the cross product of two points on l2 can be obtained as
follows:

Xl2 = XE2 × XB2 =
[
XE2

]
· XB2 (1)

where, [X ]X represents the anti-symmetric matrix of vector
X , and the cross product of two vectors can be converted to the
anti-symmetric matrix. If X = (x, y, t)T , the anti-symmetric

matrix is constructed in the form of (2):

[X ]X =

 0 −t y
t 0 −x
−y x 0

 (2)

However, the relationship between A1 and B2 can be
expressed by plane π2, and the projection formula between
any point is as follows:

λ ·

 u
v
1

 = K ·

R ·
 x
y
z

+ T
 (3)

Assumption the three-dimensional coordinate of point B is
C , then there is (4)

λA1 · XA1 = K · (R ·

 x
y
z

+ T ) (4)

The world coordinates are established on plane π2, and the
components on the z-axis of the point on the plane are all 0,
then formula (4) is modified to (5).

λA1 · XA1 = K · (R ·

 x
y
0

+ T ) (5)

At the same time, the column vector of R is extracted, and
the expansion is (6):

λA1 · XA1 = K · (R ·

 x
y
0

+ T ) = K ·
[
r1 r2 T

]
·

 x
y
1


(6)

Let H1 = K [r1, r2,T ], then (6) can be simplified as:

λA1 · XA2 = H1 ·

 x
y
1

 (7)

Similarly, point B2 on plane α2 also satisfies the following
formula:

λB2 · XB2 = H2 ·

 x
y
1

 (8)

where H2 = K
[
r ′1, r

′

2,T
′
]
, can be obtained (9) from (7)

and (8):(
λB2
λA1

)
· XB2 = H2 · H

−1
1 · XA1 = H · XA1 (9)

2) OPTIMAL COMPENSATION HOMOGRAPHY MATRIX
When both the object and the camera are moving, the virtual
image in the same coordination with the current frame is
obtained by using the rotation transformation matrix H. The
corresponding relationship between the two frames of images
is as follows: Ii = HIt−1 in (10), (xt−1, yt−1) and (xt ′ , yt ′ ), the
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FIGURE 5. In the projection transformation, when the triangular and
circular feature points in the previous frame are projected into the current
frame through the homography matrix, the projection positions of the
feature points in the current frame may be offset due to factors such as
system errors and noise. Therefore, optimal compensation homography
matrix is proposed to compensate and obtain the compensation frame to
improve the performance of dynamic object removal.

image coordinates of the object in the previous frame and the
rotated image of the previous frame. xt ′xt ′

1

 =
H11 H12 H13
H21 H22 H23
H31 H32 H33

 xt−1yt−1
1

 (10)

When the homography matrix H is obtained, only 4 pairs
of matching point pairs are needed theoretically to obtain the
homography. However, in practice, in order to obtain more
accurate results, the information of the above four pairs of
matching points is often used for results by combining the
method of reprojection error optimization and random and
sample consensus (RANSAC). In (11), ε is the heavy pro-
jection error of the corresponding pixel points between two
images. When solving the H matrix, Levenberg-Marquardt
method is used to continuously optimize the. When ε is
minimum, the updatedH matrix is the optimal transformation
matrix, and then the optimal transformation matrix can be
used to compensate for camera motion. The optimal trans-
formation matrix R is used to convert the coordinates of all
pixel points in the image frame at the previous time into a
new image with the same resolution as the original image,
which is used as the camera motion compensation frame of
the image at the current time.

ε =
∑
i

((
xt ′ −

H11xt−1 + H12yt−1 + H13

H31xt−1 + H32yt−1 + H33

)
+

(
yt ′ −

H21xt−1 + H22yt−1 + H23

H31xt−1 + H32yt−1 + H33

))
(11)

Through the homography matrix optimized by minimum
error ε, the feature points in the previous frame can be pro-
jected into the current frame in the form of error compen-
sation, and the original projection points with errors can be
modified into projection points more in line with the actual
environment, as shown in figure 5.

C. FAST DYNAMIC POINT DETERMINATION UNDER
REVERSE ANT COLONY STRATEGY
A large number of x ′i obtained after the projection transfor-
mation of the previous frame will be received in the cur-
rent frame image after the projection transformation of the

optimal error homography matrix, and each projection point
will be traversed to determine whether the point is a static
feature point or a dynamic point. In the feature extraction
process, the number of feature points varies from hundreds to
hundreds of thousands. If each projection point is judged as a
static point, the real-time performance of the SLAM system
will be affected to some extent. Considering that the static and
dynamic points in the image are distributed in a swarm rather
than scattered in a single image, we reversely introduced the
theory of ant colony theory. By finding the optimal path of
the dynamic point group, the number of feature points can be
traversed as little as possible, so as to improve the real-time
performance of the SLAM system.

1) ANT COLONY PRINCIPLE
Ant Colony Principle [39] (ACP) algorithm is an artifi-
cial intelligence optimization algorithm used to simulate the
behavior of natural ant colonies in searching for food. The
ant colony optimization algorithm shows that ant can choose
the route according to the pheromone secreted by them in the
past, and the probability of the route to the food source is
proportional to the intensity of pheromone secreted on the
route. Therefore, an information feedback phenomenon will
be formed in the path of the ants. That is, themore ants choose
a certain path, the more pheromones will be left on the path,
and the more likely the ants behind will choose this path, so as
to find the shortest path.

Suppose if there arem ants, and ants all start from the spec-
ified starting point, assuming that they reach the way of food
distribution of n nodes, τij(t) said pheromone concentration
on the path between nodes i and j at time t , ηij(t) is the path
i → j corresponding heuristic information function. For a
certain ant k , the probability of crawling from node i to the
next node j is:

Pkij =


(τij(t))α(ηij(t))β∑

s∈allowedk
(τis(t))α(ηis(t))β

, j ∈ allowedk

0, otherwise

(12)

where, Pkij(t) represents the state transition probability of ant
k from node i to j at time t , α is the ant pheromone heuristic
factor, β is the expected heuristic factor, and allowedk repre-
sents the node-set that ant k has not yet visited. The greater the
β is, the greater the influence of the path distance information
on the decision-making of the ants, and the greedier the ants
are for the current effect. τij is the pheromone concentration of
path (i, j), ηij is the heuristic function, and dij is the Euclidean
distance between the current node i and the node j to be
selected. The smaller dij is, the larger ηij is, and the larger
Pkij is.

nij =
1
dij

(13)

Put the node that ant k has passed into the tabuk table.
According to equation (13), ants prefer to choose the node
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with a short distance from the current node and a high concen-
tration of pheromones. Each ant will update the pheromone in
the path immediately after passing a certain path. The update
formula is as follows:

τij(t + 1) = (1− ρ)τij(t)+1τij(t) (14)

τij(t) =
m∑
k=1

1τ kij (t) (15)

where ρ represents the pheromone volatilization factor, ρ ∈
[0, 1);m is the number of ants;1τij(t) is the pheromone incre-
ment on the path i → j at time t; 1τij(t) is the pheromone
increment released by k on path i→ j at time t .

2) REVERSE ANT COLONY SEARCH STRATEGY
Due to the error compensation of the projection with fea-
ture points of the previous frame in the current frame,
the number of feature points will increase, and these fea-
ture points are irregularly distributed. Under normal circum-
stances, we directly use the multi-view geometry method in
DynaSLAM [6] to determine whether all feature points are
dynamic feature points one by one. However, considering
the increase in the number of feature points, the real-time
performance of the system is affected. Therefore, we propose
a reverse ant colony strategy to reduce the time consumption
of the SLAM system in multi-view geometry threads by
selectively judging feature points.

In the ant colony strategy, it starts from the starting point
and avoids obstacles on the way to the end point, so as to find
the optimal way. And our dynamic distribution is in groups,
as the distribution of the fixed points, so we put forward a
reverse ant colony strategy. Fix an optimal search path from
the beginning to the end, and in turn search. In the entire
search process, when a dynamic point is found, the search
path will shift to the dynamic point group area, until the
dynamic point in the area is detected, then return to the
offset point and continue to search for the next dynamic point
community, specific search scheme in figure 6.

After the feature points of the current frame are projected
into the current frame through error compensation, we do not
need to spend a lot of time to perform dynamic point judge-
ment on all points because the distribution of dynamic feature
points is distributed in the state of the community, According
to the density of feature points, a path L is designed to
meander through the image to point B starting from A. The
ant colony moves continuously from point Ki = 0 to the
next Ki(i = 0, 1, 2, · · · , n) point until it moves to the end
point B. During the movement of the colony, every point K
will use this point as the origin, and R is the dynamic point
in the radius of the search area. When the dynamic point is
found in the circle, the geometry of the discrete points is
calculated by the convex hull, and the search bandwidth of
1Z is extended outward with the geometric edge as the
boundary. Whenever a new one is found in the1Z bandwidth
after the dynamic point, it continues to expand 1Z outward
until no new dynamic point is found in the extended area,

FIGURE 6. In the reverse ant colony strategy, the black ants gradually
search from point A to point B with a circle of radius R. When a dynamic
point is found at node Ki , it is offset to the center of its dynamic point
community and the distance is 1Z Expand outwards until there is no
dynamic feature point in the 1Z range of the current dynamic point
cluster, return to the AB line and continue to search for the
next node Ki+1.

returns to the L path and moves to the next K point to search
for dynamic points in the new area.

When we use Ant colony optimization strategy to deter-
mine whether the feature points are dynamic one it is no
longer necessary to detect all the existing points in the image,
so as to improve the real-time performance of the system to a
certain extent.

IV. EXPERIMENT
In this section, we have carried out an experiment of our
PSPNet-SLAM in the TUM RGB-D dataset to evaluate its
performance in a dynamic environment. First, we will use
PSPNet-SLAM and pure ORB-SLAM2 system, DynaSLAM
systemwhich uses theMask R-CNN as the semantic thread to
verify the improvement of our system. The Semantics of pyra-
mid structure SLAM system is based on ORB-SLAM2 as the
basic framework. PSPNet semantic thread, and multi-view
geometric analysis thread with direction ant colony algorithm
are combined to dynamically move. The detection perfor-
mance of objects has been significantly improved. Besides,
we run both our system and other excellent SLAM systems
in a dynamic environment to analyze their accuracy and
time-consuming mapping in the dynamic environment. From
the comparison, it is demonstrated that the performance of
our system in a laboratory environment is better than other
existing ones.

A. EVALUATION ON TUM RGB-D DATASET
The TUM data set is an excellent data set for evaluating
the positioning accuracy of the camera, because it pro-
vides accurate ground realism for the sequence. It contains
7 sequences recorded by RGB-D cameras at 30fps with a
resolution of 640 x 480. At the same time, the TUM RGB-D
video data set is composed of 39 sequences recorded by
Microsoft Kinect sensors in different indoor environments.
According to the purpose of our experiment, we choose the
data sequence containing dynamic factors for the experiment,
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FIGURE 7. ORB-SALM2, DynaSLAM, PSPNet-SLAM trajectory comparison
in low-dynamic sequence.

including s_static, w_halfphere, w_rpy, w_static, w_xyz,
where s_static is a static sequence, and the rest are dynamic
sequences. In the data set we use, pedestrians are the main
elemental objects, for they show both static and dynamic
behaviors. The word before the underline of the sequence
name denotes the state of people in the scene with the initial
letter ‘‘s’’ for ‘‘setting’’ and ‘‘w’’ for walking. Meanwhile,
the word after the underscore of the sequence name indicates
the movement state of the camera at this time.

We run ORB-SLAM2, DynaSLAM, and our own
PSPNet-SLAM in the same TUM data environment. It was
found that the camera trajectories estimated by these three
systems are plotted together with ground truth in one figure.
Meanwhile, we converted the three-dimensional space track-
ing trajectory into a 2D plane trajectory, displayed the three
SLAM systems in the same plane to show their performance,
and conducted an intuitive comparative analysis. We took the
fit between the estimated 2D trajectory and the real trajectory
as the basic standard of the evaluation system and analyzed
the operation results of the system. In Figure 7 and 8, we can
see that in a static environment, sequence s_static, the trajec-
tories of three systems are all very close to the ground truth.

In highly dynamic environments, pure ORB-SLAM2 is
affected by dynamic objects in the video sequence. The esti-
mated running trajectory has a large error with the ground
truth, and even generates erroneous trajectories in some areas,
without a degree of fit with the ground truth. However, when
two SLAM systems with semantic parallel threads are intro-
duced, faced with dynamic objects, the PSPNet-SLAM and
DynaSLAM systems have excellent performance on ground
truth trajectory estimation, for they can accurately estimate
the true trajectory. It is indeed that in the low-dynamic envi-
ronment pure ORB-SLAM2 can filter and classify the objects
in the scene through the RANSAC algorithm, and optimize
the correction trajectory through the back end. However,
the filter of pure ORB-SLAM2 in the environment cannot
be applied, and it cannot effectively distinguish whether the

FIGURE 8. Trajectory comparison in high-dynamic sequence.

object in the scene is a static object or a dynamic one.
In contrast, the SLAM system that combines the parallel line
semantic process of the pyramid structure and the multi-view
geometry of reverse ant colony search can efficiently and
quickly remove dynamic object points.

Further qualitative comparison of these three systems was
carried out to verify the effectiveness of the PSPNet-SLAM.
Each sequence is processed 5 times, and we get median,
mean, minimum and maximum RMSE (Root Mean Square
Error) results of ATE (Absolute Trajectory Error) to judge its
localization Accuracy, while RMSE is computed by:

RMSE =

√√√√√ n∑
i=1

(Xobs,i − Xmodel,i)2

n
(16)

where n means the number of observations, i denotes the ith

observation. Xobs,i is the ground truth of the ith observation,
while Xmodel,i is the computation result of the ith observation.
According to the results shown in Figure 9, we can see

that in low-dynamic sequence s_static, the results of the
three approaches are actually very close. Our method and
DynaSLAM outperforms ORB-SLAM2 in highly dynamic
scenarios, reaching an error similar to that of the original
pure ORB-SLAM2 system in static scenarios. The SLAM
system introduces semantic threads, whether it is median,
mean, minimum, and maximum while the RMSE value is
decreasing rapidly. At the same time, our system is superior
to DynaSLAM in the decline of the above four values for our
system uses a pyramid-structured convolutional network that
is more capable of linking context information rather than a
fully convolutional neural network, which can combine the
contextual semantic information to segment some dynamic
objects that DynaSLAM cannot do. Another reason is that
the optimal compensation homography matrix is used in the
geometric pose estimation, so as to improve the accuracy of
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FIGURE 9. Comparison of median, mean, minimum and maximum RMSE
in the intuitive form of bar chart for ORB-SLAM2, DynaSLAM and
PSPNet-SLAM.

the projection of the dynamic point of the previous frame
to the current frame and omit the probability of filtering of
dynamic object points.

We not only take our SLAM system to make a contrastive
analysis with original ORB-SLAM2 and DynaSLAM, but
also compare with other state-of-the-art SLAM in the
dynamic scene, such as DS-SLAM, Detect-SLAM, SOF-
SLAM, to analyze the same comparison parameters as
in Table 1. The four SLAM systems are all based on
ORB-SLAM2, and introduce semantic parallel threads to
semantically segment objects in the scene. Among them,
Detect-SLAM, SOF-SLAM and PSPNet-SLAM have pro-
posed their own solutions for dynamic objects in the scene,
eliminating the impact of dynamic objects on material esti-
mation and mapping. From the experimental test data, we can
find that although these four systems are based on the ORB-
SLAM2 framework-derived system, considering that each of
them will make corresponding modifications when designing
the system, it results in a criterion of during cross-evaluation.
Since the difference of evaluation details of RMSE or some
other difference of experiment condition may exist during the
experiment, therefore, in order to verify the effectiveness of
our system objectively, we refer to the literature [31], using
relative RMSE reduction (i.e. relative accuracy improvement)
of each system with respect to the original ORBSLAM2 as
the evaluation metric. The relative metric is more reason-
able as it can eliminate the accuracy difference caused by
other factors which are not related to the dynamic features
processing algorithm. The comparative analysis results are
shown in Table 1. From the table, we can find that in the
low dynamic sequence, several systems have roughly been
in the same degree of improvement in accuracy, and our
system is in the forefront. In high-dynamic sequence, our

TABLE 1. Comparisons of RMSE [m] for our system against the
state-of-the-art in dynamic sequences of TUM RGB-D dataset.

TABLE 2. Comparison of the time consumption of the two SLAM systems
in Geometry thread of the video sequence.

accuracy improvement effect is higher than that of several
other systems, because in a high-dynamic environment, there
are a large number of dynamically moving objects, and some
objects do not have moving attributes themselves, but are
moved by the movement of other objects. (For example,
books, tables, and chairs without movement attributes but
driven by people). Although DynaSLAM and SOF-SLAM
also remove dynamic objects in the scene, they do not con-
sider the context information in the semantic thread and the
geometry thread. The projection error of the feature point
from the previous frame to the current frame, results in a
system with slightly lower accuracy than our system.

B. SYSTEMS TIME CONSUMPTION
The time consumption of dynamic feature point removal
module an element that the On-line SLAM system needs
to consider. In Table 2, our system and DynaSLAM sys-
tem run the five video sequences in the same hardware
environment, and calculate the running time of geometric
threads in real time. It is noted that the dynamic environ-
ment is not optimized for real-time operation. However, its
ability to create a lifetime mapping of static scene con-
tent is also related to running in offline mode. From the
running time-consuming results, we can find that whether
our system is in a static environment or a dynamic envi-
ronment, the geometric thread time-consuming is less than
DynaSLAM. It shows that PSPNet-SLAM has made some
progress in real-time performance.

V. CONCLUSION
In this work, we have presented a PSPNet-SLAM system
that introduces a PSPNet as parallel semantic thread, and
builds based on ORB-SLAM2. In semantic thread, we use
PSPNet to get pixel-wise semantic segmentation. Due to its
pyramid-shaped network structure, more contextual infor-
mation can be obtained, and the interrelationship between
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objects in pixels can be found, which is more effective in
the detection and removal of dynamic feature points than the
full convolutional neural network of other structures. In the
geometry thread, we proposed optimal error compensation
homography matrix first to compensate for the feature point
shift phenomenon caused by the projection transformation
error of the feature points of the previous frame. Second,
we proposed a reverse ant colony search strategy, which
used the characteristics of dynamic point community distri-
bution to selectively detect feature points, thereby improving
the robust and real-time performance of geometric thread
dynamic feature point detection. In order to verify the perfor-
mance of our system, we conducted comparative experiments
on the TUM dataset with other excellent SLAM systems.
The final experimental results also show that our system has
improved localization accuracy and real-time performance
compared with other slam frameworks.

Although some progress has been made in robustness and
real-time performance, there are still many tasks we need
to do. On the one hand, the real-time performance of the
system is still a problem we will face. In the next work,
we will research the real-time processing of image frames in
the SLAM system. On the other hand, we need to improve the
applicability of the system in different scenarios. In future
work, we need to put PSPNet-SLAM in different data sets
for experiments, and continue to tune them to improve the
system’s ability to remove dynamic objects.
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