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ABSTRACT Arbitrary-oriented object detection is an important task in the field of remote sensing object
detection. Existing studies have shown that the polar coordinate system has obvious advantages in dealing
with the problem of rotating object modeling, that is, using fewer parameters to achieve more accurate
rotating object detection. However, present state-of-the-art detectors based on deep learning are all modeled
in Cartesian coordinates. In this article, we introduce the polar coordinate system to the deep learning detector
for the first time, and propose an anchor free Polar Remote Sensing Object Detector (P-RSDet), which can
achieve competitive detection accuracy via using simpler object representation model and less regression
parameters. In P-RSDet method, arbitrary-oriented object detection can be achieved by predicting the center
point and regressing one polar radius and two polar angles. Besides, in order to express the geometric
constraint relationship between the polar radius and the polar angle, a Polar Ring Area Loss function is
proposed to improve the prediction accuracy of the corner position. Experiments on DOTA, UCAS-AOD
and NWPU VHR-10 datasets show that our P-RSDet achieves state-of-the-art performances with simpler
model and less regression parameters.

INDEX TERMS Remote sensing images, oriented detection, polar coordinates, anchor free.

I. INTRODUCTION
In recent years, oriented object detection in remote sensing
images has attracted increasing attention. Detection perfor-
mance has made extraordinary progress driven by the appli-
cations of deep convolution neural network (DCNN). Present
DCNN-based detectors in the remote sensing field can be
divided into two research branches according to the different
output forms: horizontal and oriented bounding box. And
these two types of models have their own advantages in
practical application.

Most horizontal detectors [1]–[4] are designed based on
anchor mechanism which is first proposed in Faster RCNN
[5]. They set up anchor boxes with different sizes and aspect
ratios intensively in feature maps to guide the regressions of
the position as well as the size of each object. This type of
detectors in remote sensing are easy to design and simple to
implement relatively, and sometimes can obtain satisfactory
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results without nearly any changes in the original baselines
[5]–[11]. However, it is imprecise to locate objects which
have large aspect ratios with the output form of a horizontal
bounding box. As shown in Figure 1(a), when the aspect ratio
of an object is large, the horizontal bounding box will bring a
lot of redundant pixels that do not belong to the object, which
will make the final locating results inaccurate. In addition,
in the anchor-based network, when two large aspect ratio
objects park side by side, their horizontal bounding boxes
may have a large Intersection over Union(IOU), which will
cause one of them to be filtered out by Non Maximum Sup-
pression(NMS) resulting in missed detection.

The problems faced with horizontal detectors afore-
mentioned can be solved by oriented detectors [12]–[17].
As shown in Fig. 1(b), the output form of this type of detector
is oriented bounding box which can provide a more precise
location for the object with large aspect ratio. However, the
design of these models is more complicated than that of
horizontal ones. In order to achieve the aim of getting the
oriented bounding box, Ma et al. [12] design Rotated Region
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FIGURE 1. When the aspect ratio of an object (such as warship) is large, the horizontal bounding box is not a good
representation of object as shown in Figure (a). At present, oriented bounding box as shown in Figure (b) becomes
more popular, beacause its location is more accurate.

FIGURE 2. Oriented bounding box representations in Cartesian and Polar coordinates. In Cartesian coordinate system, the oriented bounding
box representations are usually (x, y,w,h, θ) or (x1, y1, x2, y2, x3, y3, x4, y4) as shown in (b). In polar coordinates, a point can be represented
by (ρ, θ), where r is the polar radius and q is the polar angle. When the center point is taken as the pole point of polar coordinates, oriented
bounding box can be represented by (x, y, ρ) as shown in (d).

Proposal Network(RRPN) in which more anchors with dif-
ferent angles will be set. In addition, both the IoU and NMS
in horizontal models should be replaced by more complex
ones with oriented form. Although this kind of anchor-based
detectors are effective in the detection of specific objects, the
cost of devising them is usually large.

Moreover, all the above methods have one characteristic in
common: objects are modeled based on the Cartesian coor-
dinate system. The Cartesian coordinate system has advan-
tages in presenting the horizontal bounding box, because only
width and height are neededwhen the center point is known as
shown in Fig. 2(b). However, in Cartesian coordinate system,
the oriented object is usually represented by five-parameter
(x, y,w, h, θ ) or eight-parameter (x1, y1, x2, y2, x3, y3, x4, y4)
as shown in Fig. 2(d), which are complex. We note that when
a bounding box revolves around its center point, the trajectory
of its four corner points is exactly a circle. Referring to this
kind of rotation and circular problem, polar coordinate system
is a better choice compared with Cartesian coordinates.

In this article, a new model named Polar Remote Sensing
Object Detector (P-RSDet) based on polar coordinate system
is proposed. P-RSDet abandons two inherent modes of most
present remote sensing detectors: anchor-based and Carte-
sian coordinates modeling. Previous detectors usually adopts
anchor-based mechanism, that is, regressing angle, width,
height, center point position and category probability based
on proposals as shown in Fig.3(a). Instead, P-RSDet per-
forms object detection in polar coordinates and an anchor-free
manner. As shown in Fig. 2(d), if the center point of bound-
ing box is taken as the pole point and the horizontal-right
direction is taken as the polar axis, arbitrary oriented bound-
ing box can be denoted by one polar radius and two polar
angles with the form of (ρ, θ1, θ2). In order to realize the
above detectionmethod, P-RSDet outputs fourmaps of which
one is a heatmap to predict the locations of pole points
in keypoint detection way and the other three are used to
regress polar radius ρ and polar angles θ1, θ2 respectively.
As illustrated in Fig. 3(b), P-RSDet is also and end-to-end
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FIGURE 3. The illustration of the detection pipeline. (a) Previous detectors usually adopts anchor-based mechanism, that is, regressing angle, width,
height, center point position and category probability based on proposals. (b) Our P-RSDet adopts anchor free mechanisam. It realizes pole points
localization and classification simultaneously in the process of pole points extracting, and realizes regression of polar angle and radius in
regression process.

model. It realizes pole points localization and classification
simultaneously in the process of pole points extracting, and
realizes regression of polar angle and radius in regression
process. It combines polar coordinates with anchor free to
realize arbitrary-oriented object detection in a simple way.
In addition, P-RSDet achieves satisfactory results on multiple
remote sensing public datasets, which proves its excellent
performance.

Above all, our innovations and contributions are as follows:
(1). We propose an anchor free detection model based

on polar coordinate system named Polar Remote Sens-
ing Object Detector (P-RSDet). Compared with other deep
learning-based detection methods based on Cartesian coordi-
nates, ourmethod achieves competitive accuracywith simpler
model and less regression parameters.

(2). In order to solve the problem that Smooth-L1 loss
ignores the geometric correlation between points, we propose
an additional novel loss function Polar Ring Area Loss for
more accurate predicted bounding box. The Polar Ring Area
Loss function increases the correlation between polar radius
and polar angle, and avoids the regression inaccuracy caused
by neglecting their geometric correlation.

(3). Considering that the remote sensing objects are numer-
ous, the top K center points extracting technique used in
nature scenes will lead to missing detection. For this problem,
we propose a new technique that extracting extreme points
from heatmap as center points to reduce the rate of missing
detection.

The rest of this article is organized as follows: We briefly
review the representative related works and basic principle
in our method in Section II. The details of P-RSDet are
shown in Section III. The experiment results and analyses are
shown in Section IV. At last, our work is summarized and
concluded in Section V.

II. RELATED WORKS
A. ARBITRARY-ORIENTED OBJECT DETECTION
With the development of deep learning, oriented object detec-
tion has made great process. Many oriented object dete-
tion algorithms are improved based on horizontal detection
algorithms.

Horizontal object detection algorithms can be divided into
two types: anchor-based models [5], [9], [11], [24]–[28]
and anchor-free models [18]–[22] according to whether the
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anchor mechanism is used. Anchor-basedmodels represented
by Faster RCNN [5] need to set up a series of anchor boxes,
which can be regarded as fixed reference regions with dif-
ferent scales and ratios. Anchor free models can be roughly
divided into keypoint based models which are represented
by CornerNet [19] and per-pixel detection models which are
represented by FCOS [22].

For oriented detection models, they can also be divided
into anchor-based models and anchor-free models. In the
filed of text detection, there are some anchor-based oriented
object detection algorithms that are worth learning. RRPN
[12] and R2CNN [13] based on Faster RCNN are two of
them. R2CNN adds two pooled sizes and a branch to regress
inclined box coordinates. RRPN improves RPN in Faster
RCNN by adding rotation anchors with different angles.
In addition, Lyu et al. [29] combine corner points detection
and text region segmentation to realize oriented scene text
detection. In [29], after detecting corner points with default
boxes, candidate bounding boxes are generated by sampling
and grouping these corner points. Finally, position-sensitive
segmentation maps are used to score the candidate bounding
box. In the field of remote sensing, R-DFPN [14] improves
[12] to obtain a precise oriented bounding box to solve
the problem of ship rotation and dense parking. Different
from [12] and [14], Ding et al. [30] propose a Region of
Interest(RoI) Transformer which transforms a horizontal RoI
into rotated RoI to obtain rotated region proposals. However,
these anchor-based oriented detectors not only face the dis-
advantages brought by anchor, but also greatly increase the
computation complexity of the whole network.

Benefited from the simplicity and flexibility, anchor-free
horizontal object detectors have also been improved to realize
oriented object detection. Wei et al. [16] abandons anchor
mechanism to avoid the complexity of the anchor design.
Nevertheless, it needs regressing eight offsets, which leads
to too many degrees of freedom and requires more complex
loss functions to control them. Our P-RSDet, which directly
models objects in the polar coordinate system and only needs
to regress four parameters, pursues detecting oriented objects
in a simple yet efficient way.

B. POLAR COORDINATES
Polar cooridinates are widely used in many fileds [31]–[35].
Gai et al. [31] propose a calibration method based on polar
coordinate. This article shows that the relationship in polar
coordinates image is relatively simple, thus the complexity
of the calibration is simplified. Gergič et al. [33] compare
between SAR data compression in Cartesian and polar coor-
dinates. They prove that the compression of complex SAR
data in polar coordinates has smaller amplitude and phase
errors than in Cartesian coordinates.

In traditional remote sensing object detection algorithms
which are not based on deep learning, polar coordinates are
also used to solve some problems. Wang et al. [34] divide
the geospatial objects with complex shape into several main
parts, and the structure information among parts is described

and regulated in polar coordinates to achieve the rotation
invariance on configuration. Wang et al. [35] use the polar
angle of each pixel to normalize the its gradient direction,
and generate the histograms of oriented gradients according
to the new directions to steer the rotation problem.

It can be seen that polar coordinates have advantages
in rotation and direction related problem. Reasonable use
of polar coordinates can simplify the object modeling and
reduce the complexity of the model.

III. P-RSDet
First, in this section, the framework of the proposed P-RSDet
is briefly introduced. Then, we show how the oriented objects
in remote sensing images are modeled based on polar coordi-
nates. Finally, we elaborate the details of ourmodel, including
the design of specific loss functions and the optimization of
keypoints extraction method.

A. FRAMEWORK
Figure 4 illustrates the overall framework of our P-RSDet.
A modified higher-resolution ResNet-101 [21] with 4 output
stride is selected as the Encoder-Decoder of P-RSDet. Sup-
pose the size of one input image is W × H , P-RSDet will
output four maps withC×W

d ×
H
d size, whereC is the number

of categories and d represents the output stride which is 4 as
aforementioned. In these four output maps, one is in the form
of heatmap to predict the pole points, and the other three are
to regress the corresponding polar radius and the polar angles
of each object. As mentioned above and shown in Fig. 4, our
model is very simple to design.

B. OBJECTS IN POLAR COORDINATES
The four corner points of the oriented bounding box are usu-
ally represented by (x1, y1), (x2, y2), (x3, y3), (x4, y4) in Carte-
sian coordinates. In order to model it in polar coordinates, for
an object, we first make its center point be the pole point of
polar coordinate system, then the horizontal-right direction
and the counterclockwise are taken as the positive direction
of the polar axis and polar angle in radians respectively. In this
coordinate system, the four corners can be represented in
sequence as (ρ1, θ1), (ρ2, θ2), (ρ3, θ3), (ρ4, θ4).According to
the properties of rectangle, we can get the following relations:

ρ1 = ρ2 = ρ3 = ρ4 (1)

θ3 = θ1 + π, θ4 = θ2 + π (2)

Therefore, let ρ = ρ1 = ρ2 = ρ3 = ρ4, only three variables,
ρ, θ1 and θ2 are needed to represent a bounding box of object
in Polar Coordinates.

In the inference phase, due to the process of evaluating
the performance of one detector is only carried in Cartesian
coordinates at present, we need to transform the point in polar
coordinates to a Cartesian one. First, the positions of pole
points (x ip, y

i
p) are extracted from heatmaps, where i denotes

the number of targets. Then according to the pole points, the
polar radius and angles ρi, θ i1 and θ

i
2 are obtained from other
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FIGURE 4. Architecture of P-RSDet. (a) The overview of our P-RSDet. When an image inputs our model, it will output four
maps in parallel. One is the heatmap which used to predict the pole point, and the other three are used to regress ρ, θ1,
θ2 respectively. Therefore, we need to regress four parameters in all, i.e. (p, ρ, θ1, θ2) represents the probability that a
point in the heatmap is the pole point. These 4 maps have c channels which represent c classes. (b) The detailed process
of pole point extracting. (c) The diagram of Polar Ring Area Loss definition.

three output maps. Finally, the final bounding boxes in the
form of [(x i1, y

i
1), (x

i
2, y

i
2), (x

i
3, y

i
3), (x

i
4, y

i
4)] can be obtained

through the transformation calculation formulas as follows:

x in = x ip + ρ
i
· cos(θ in) yin = yip + ρ

i
· sin(θ in) (3)

where n represents 1, 2, 3 and 4.

C. POLE POINT EXTRACTION
Accurate pole point prediction is very important for getting
accurate bounding box. In our model, the detection of pole
points follows CornerNet [19] for its excellent performance
in the detection of keypoints of objects.

Asmentioned in Section III-A, P-RSDet outputs a heatmap
with size of C × W

d ×
H
d for predicting pole points.

The heatmap is actually a confidence map with the value
p ∈ [0, 1]

W
d ×

H
d of each pixel. In the training stage, let h andw

represent the height and width of one bounding box, and the
‘‘ground-truth’’ of each point (x, y) in the heatmap is given

in form of Gauss kernel as e
−

(x−xp)2+(y−yp)2

2(min(h,w)/3)2 , where (xp, yp)
is the equivalent points of the ground truth pole points after
subsampling. A modified Focal Loss [10] follows CornerNet
is used to guide the regression of pole points:

Lpole = −
1
N

∑
cij


(1− pcij)αlog(pcij), p∗cij = 1

(1− p∗cij)
β (pcij)α

log(1− pcij), p∗cij = others

(4)

where N is the number of objects in the input image, α
and β are the hyper-parameters which we set α to 2 and β
to 4 in experiments to control the contribution of positive
and negative points. p∗cij is the ‘‘ground-truth’’ and pcij is the
confidence with which a point at location (i, j) be regarded as
a pole point for class c in the predicted heatmap.

We follow the method of keypoints detection in CornerNet
during training stage. But in the test stage, the method of key-
point extraction in CornerNet is not suitable for us. Different
from the natural images, a remote sensing image may contain
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FIGURE 5. Process Flow Chart of pole point extraction. Figure (a) is the picture to be tested. Figure (b) is the heatmap
generated by pole points detection branch. Figure (c) is the binary image converted from the heatmap. The red rectangles in
Figure (d) represent the connected domains. Figure (e) shows the result of mapping the connected domains back to the
original image. Figure (f) shows the final detection results after combining the other three regression branch results.

hundreds of targets in the same class. CornerNet keeps 100
keypoints with top scores, which may cause missed detection
in remote sensing field.

Therefore, in P-RSDet, we optimize the extraction method.
The overall process of pole point extraction is shown in Fig. 5.
First, a threshold is set to convert the heatmap as shown in
Fig. 5(b) into a binary images as shown in Fig. 5(c). Then,
we find the connected domains in the binary image as shown
in Fig. 5(d). Thirdly, the connected domains are mapped back
to the heatmap and the peaks in these domains are taken as the
predicted pole points.

D. POLAR RING AREA LOSS
P-RSDet needs to regress polar radius ρ and the first two
angles θ1, θ2. For one bounding box, according to the
original annotation (x1, y1), (x2, y2), (x3, y3), (x4, y4), let
(
∑4

i=1 xi/4,
∑4

i=1 yi/4) be the pole point (xp, yp). Due to the
error of mannual annotation, the distance between the four
corners and the pole point are not necessarily equal, so the
mean value of the four radii is taken as the target regression
value of the polar radius. Therefore, the corresponding polar
radius is computed as follows:

ρ =

∑4
i=1[(xi − xp)

2
+ (yi − yp)2]1/2

4
(5)

For θ1 and θ2, we first compute the polar angles of four
corners and turn them between 0 and 2π , then choose the
minimum two in the counterclockwise direction as θ1 and θ2.

The angles are calculated as follows:

θi =



π/2, xi−xp = 0, yi−yp > 0
3π/2, xi−xp = 0, yi−yp < 0

arctan(
yi−yp
xi−xp

), xi−xp > 0, yi−yp ≥ 0

π + arctan(
yi−yp
xi−xp

), xi−xp < 0, yi−yp ≥ 0

π + arctan(
yi−yp
xi−xp

), xi−xp < 0, yi−yp < 0

2π+arctan(
yi−yp
xi−xp

), xi−xp > 0, yi−yp < 0

(6)

So far, we have obtained all the regression targets, polar
radius ρ and the first two polar angles θ1, θ2. Smooth-L1 [36]
Loss is selected to regress these three values in corresponding
three output maps as follows:

L ′reg =
∑

u=ρ,θ1,θ2

SmoothL1(u, u∗) (7)

In addition, considering the deviation between the pre-
dicted first two points with the ground-truth is determined by
the radius error and the angle error together, we design a new
loss named Polar Ring Area Loss for our model to control the
above deviation.

As shown in Fig. 6, let ρ, θ be the prediction results and
ρ∗, θ∗ be the ground-truth. As shown in Fig. 6(a), when the
predicted polar radius and polar angles all deviate from the
ground truth, i.e. |ρ − ρ∗| 6= 0 and |θ − θ∗| 6= 0, the Ring
Area shows the deviation between the prediction results with
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FIGURE 6. Ring Area in Polar Representation. ρ∗ and θ∗ represent the ground truth of polar radius and angles. ρ and θ
represent the predicted polar radius and angles. Figure (a) shows that the predicted polar radius and angles all deviate from
the ground truth. Figure (b) shows that predicted polar angles deviate from the ground truth but predicted polar radius is the
same as the ground truth. Figure (c) shows that only the predicted polar radius deviates from the ground truth but predicted
polar angles are the same as the ground truth.

the ground-truth. In this situation, the area can be calculated
according to the following formula:

S =
1
2
|[ρ2 − (ρ∗)2](θ − θ∗)| (8)

Depends on the area formula above, we define Polar Ring
Area Loss as follows:

Lpr (ρ, θ) =SmoothL1(|[ρ2 − (ρ∗)2](θ − θ∗)|, 0) (9)

The total regression loss of P-RSDet is:

Lreg= λ
∑

θ=θ1,θ2

Lpr (ρ, θ)+
∑

u=ρ,θ1,θ2

SmoothL1(u, u∗) (10)

where λ is the weight of Polar Ring Area Loss and it is set
to 0.01.

It is worth mentioning that when |ρ − ρ∗| = 0 but
|θ − θ∗i | 6= 0(i = 1, 2) as shown in Fig. 6(b) or |θ − θ∗i | =
0(i = 1, 2) but |ρ − ρ∗| 6= 0 as shown in Fig. 6(c), according
formula 8 and 9, the area of the Ring Area and Polar Ring
Area Loss are both 0. In these two situations, Polar Ring Area
Loss does not work and the total regression loss degrades to
formula 7. However, the above two situations hardly appear
in practice.

The model is trained in and end-to-end manner. The
total loss of the model consists of two parts: pole point
loss and regression loss. The total loss of P-RSDet is as
follows:

Loss = Lpole + αLreg (11)

where α is set to 0.1 in all experiments.

IV. EXPERIMENTS
A. DATASETS
In the stage of experiments, we verify the performance of
our model on three popular remote sensing public datasets:

DOTA [37], UCAS-AOD [38] and NWPU VHR-10 [39].
All the experiments are performed on two V100 GPUs with
PyTorch 1.0 [40]. The details of these three datasets are as
follows.

1) DOTA
DOTA consists of 2806 aerial images which includes
15 categories (plane, ship, storage tank etc.) objects annotated
with horizontal and oriented bounding boxes. In this dataset,
the proportions of training, validation and test images are
1/2, 1/6 and 1/3 respectively. Each image is of the size
about 4000 pixels and contains objects with a wide variety of
scales, shapes and orientations. In experiments, we only use
the annotations of oriented bounding boxes and the size of
our crop images are multiple which are 512×512, 800×800
and 1024× 1024 with 0.25 overlap.

2) UCAS-AOD
In UCAS-AOD, there are two catagories: airplane and small
car. It consists of 1000 plane images containing 7482 objects
and 510 car images containing 7114 objects. All objects in
UCAS-AOD are labeled with both oriented and horizontal
bounding boxes. In our experiments, we randomly divide the
training and test set by 8 : 2, and train P-RSDet on both
two type of annotations on UCAS-AOD to verify its excellent
performance.

3) NWPU VHR-10
There are total 800 images in NWPU VHR-10 dataset,
which consists of 650 images containing objects and
150 background images. It includes 10 categories such as
plane, ship, oil tank and baseball field. Similarly, we divide
the training set and test set by 8:2 in experiments. Unlike the
first two datasets, annotations of NWPU VHR-10 has only
horizontal bounding box.
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TABLE 1. Comparisons on DOTA with the form of oriented bounding boxes. The short names are defined as: Pl: Plane, Bd: Baseball diamond, Br: Bridge,
Gft: Ground field track, Sv: Small vehicle, Lv: Large vehicle, Sh:Ship, Tc: Tennis court, Bc: Basketball court, St: Storage tank, Sbf: Soccer-ball field, Ra:
Roundabout, Ha: Harbor, Sp: Swimming pool, and He: Helicopter.

TABLE 2. Comparisons on UCAS-AOD with both oriented and horizontal bounding boxes. We choose the default parameters in PASCAL VOCwith
IoU(Intersection over Union) which is 0.5 during calculating AP.

TABLE 3. Comparisons on NWPU VHR-10 with the form of horizontal bounding boxes. The abbreviations of the names are defined as: ap-airplane,
sh-ship, st-storage tank, bd-baseballdiamond, tc- tennis court, bc-basketball court, gtf-ground track field, hb-harbor, br-bridge and ve-vehicle.

B. TRAINING AND TESTING DETAILS
In the training stage, the input resolution of P-RSDet is set to
512 × 512. In order to prevent the object from deforming in
the process of resizing the input image, we require all training
images to be square. Therefore, we need to crop the training
images of DOTA, UCAS-AOD and NWPU VHR-10.

For DOTA, because of the diversity of object scales,
if we only cut DOTA into 512 × 512 size, some objects
larger than 512 will become imcomplete. Therefore, in the
training stage, according to the size distribution of objects
in DOTA, this dataset is cropped in the sliding window
way into 512× 512, 800× 800 and 1024 × 1024 size with
0.25 overlap. Besides, we use some simple methods to
enhance the data, including random horizontal and vertical
flipping as well as color dithering. Adam [41] is selected
as the optimizer for our model. We train our model from
scratch to 300k iterations with the batch size setting to 32.
The learning rate starts from 0.0025 and 10 times lower for
every third iterations.

For the other two datasets, we crop the training images into
512× 512 size with each object as the center. Therefore, for
UCAS-AOD, we obtain 5781 and 5896 training images for
plane and car respectively; for NWPU VHR-10, we obtain
3159 training images in all. As Compared with DOTA, the
data volume of these two datasets is smaller, so we only
trained 30000 iterations for them. Other settings are the same
as DOTA.

During the testing period, because the images in DOTA are
too large, we read them in the way of sliding window. For

UCAS-AOD and NWPU VHR-10, we keep the input image
in its original resolution to P-RSDet. The threshold value of
transforming the heatmap of pole points into a binary image
is 0.3. For UCAS-AOD and NWPU VHR-10, we choose
the default IoU in PASCAL VOC [42] which is 0.5 during
calculating AP.

C. COMPARISONS WITH STATE-OF-THE-ART DETECTORS
In this section, we first prove the excellent performance of
P-RSDet in the detection of oriented bounding box on DOTA
andUCAS-AOD. Then, in order to verify the generality of our
model, we also do experiments on UCAS-AOD and NWPU
VHR-10 with the annotation form of horizontal bounding
box. Fig. 7 shows the excellent detection performance of
P-RSDet.

1) ORIENTED BOUNDING BOXES
As shown in Table 1 and 2, our P-RSDet achieve satisfactory
72.30% mAP on DOTA, and 90.03% mAP on UCAS-AOD
with the output form of oriented bounding boxes. Compared
with the anchor-based detectors modeled in Cartesian coor-
dinate system, our model is more competitive in the task
of detecting oriented objects for remote sening images with
simpler design and higher accuracy.

2) HORIZONTAL BOUNDING BOXES
In order to verify the excellent general capability of our
model, we do the experiments on UCAS-AOD and NWPU
VHR-10 datasets with the annotations of horizontal bounding
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FIGURE 7. High quality outputs of P-RSDet on (a)DOTA, (b)UCAS-AOD, (c)NWPU VHR-10.

FIGURE 8. The P-R curves in different situations. Red line: With Polar Ring
Area Loss and IOU=0.5. Blue line: Without Polar Ring Area Loss and
IOU=0.5. Green line: With Polar Ring Area Loss and IOU=0.75. Orange
line: Without Polar Ring Area Loss and IOU=0.75.

box. As shown in Table 2 and 3, P-RSDet gets 90.24% mAP
and 90.80% mAP on these two datasets respectively.

Experimental results show that our model has excellent
performance in arbitrary-oriented detection tasks. P-RSDet
successfully realize arbitrary-oriented object detection in the
remote sensing field with simpler model via the combination
of anchor-free and polar coordinates.

D. ABLATION STUDIES
In this section, we show the results of ablation experiments
from three aspects: different encoder-decoder, Polar Ring
Area Loss and different methods of extracting polar points.

1) DIFFERENT ENCODER-DECODER
In P-RSDet, we use a high resolution ResNet-101 modi-
fied in [21] as the Encoder-Decoder. For the sake of testing
the influences of different Encoder-Decoders on our model,
we replace the ResNet-101 with DLA-34 [21], [47] and
104-Hourglass [19], [48]. DLA-34 and 104-Hourglass are
two backbone networks smaller and larger than ResNet-101
respectively. We do the experiments on UCAS-AOD with
oriented bounding box.

As shown in Table 4, our model can still achieve satis-
factory results of 88.1% mAP when using small DLA-34 as
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FIGURE 9. In polar coordinates, P-RSDet can be transplanted to more precise keypoint detection tasks by simply
increasing the number of polar radius ρ and polar angles θ in regression.

TABLE 4. Comparisons of Different Encoder-Decoders.

TABLE 5. Effects of Polar Ring Area Loss.

TABLE 6. Comparisons of Different Polar Points Extraction Methods.

the Encoder-Decoder. It is noteworthy that the performance
of our model can be further improved when we choose the
stronger 104-Hourglass. Experiments show that our model is
effective with different Encoder-Decoders.

2) POLAR RING AREA LOSS
As mentioned in Section III-D, we design a new Polar Ring
Area Loss for our P-RSDet. In order to verify its effective-
ness, we design this comparative experiment on UCAS-AOD
with oriented bounding box.

In the experiment with Polar Ring Area Loss, we set its
weight to 0.01. As shown in Table 5, our model with Polar
Ring Area Loss outperforms the one without Polar Ring
Area Loss by 1.85% mAP. Fig. 8 shows the Precision-Recall
curves in different situations. When Recall remains the same,
higher Precision means better performace. It can be seen
that whether IOU equals 0.5 or 0.75, precision of the model
with Polar Ring Area Loss declines more slowly, so the

performance is better. Therefore, the design of Polar Ring
Area Loss is effective for P-RSDet.

3) DIFFERENT METHOD OF EXTRACTING POLAR POINTS
We optimize the keypoints extraction methods of CornerNet
[19] compare the results of our new method with it. In the
comparative experienment, we pick top 100 points in the
heatmap as the pole points according to the extraction method
in [19]. We also do this experiments on UCAS-AOD with the
detection of oriented objects. As shown in Table 6, themethod
which picks top 100 points as pole points only achieves
85.93% mAP because there are more than 100 targets in
many remote sensing images. In the horizontal bounding box
detection of UCAS-AOD and NWPU-VHR-10 as shown in
Table 2 and Table 3, we also believe that the performance
improvement is partly due to this new extracting method,
because the low missed detection rate will greatly improve
the detection performance.

V. CONCLUSION
A novel object detector named P-RSDet is proposed for
remote sensing images via the combination of polar coor-
dinates and anchor-free. By introducing polar coordinates,
P-RSDet can detect objects with the annotation forms of
both the horizontal and oriented bounding boxes in a simple
and efficient way. By adopting the anchor free model, the
missed detection caused by NMS in the anchor-based model
is avoided, making P-RSDet suitable for detecting densely
arranged remote sensing objects. In order to make the out-
put results more accurate, we also optimize a new method
of extracting pole points and design a special Polar Ring
Area Loss for our model. Experimental results on multiple
datasets show that the detector modeling in polar coordinates
is effective.

In addition, we believe that our model can be more widely
used through simple adjustment. In the field of remote sens-
ing object detection, to get more accurate object information,
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some datasets are labeled in the form of keypoints such as
Aircraft-KP [45] which marks five keypoints of each aircraft.
Our P-RSDet can be migrated to a more accurate keypoints
dataset by simply increasing the number of regression values
in polar coordinates. As shown in Fig.9, our modeling process
on keypoints datasets by regressing five polar radii and five
polar angles.
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