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ABSTRACT The general concept of AC Optimal Power Flow (ACOPF) refers to the economic dispatch
planning under electric network constraints. Moreover, each instance with the entire network must be solved
in real-time (i.e., every five minutes) to ensure cost-effective power system operation while satisfying
power balance equation. As the operation of power systems penetrated with intermittent renewable energy
becomes more complicated, this article proposes Deep Neural Network (DNN) and Levenberg-Marquardt
backpropagation-based Twin Delayed Deep Deterministic Policy Gradient (TD3) approach to improve
computational performance of ACOPF. Specifically, because the ACOPF model shall consider prevailing
constraints of the power system, including power balance equation, we set the appropriate reward vector in
the training process to build our own policy. Furthermore, we add random Gaussian noise to individual
net loads for representing uncertainty characteristics introduced by renewable energy sources. Finally,
the proposedmodel is compared with theMAT-POWER solution on the IEEE 118-bus system to demonstrate
its efficacy and robustness.

INDEX TERMS Deep deterministic policy gradient, deep reinforcement learning, Levenberg Marquardt,
optimal power flow, twin delayed deep deterministic policy gradient.

I. INTRODUCTION
In a deregulated power system, ACOPF is the primary tool
to offer the power system operation solution economically
with high quality, which is a large-scale, multi-dimensional,
non-convex, non-linear, and constrained optimization prob-
lem [1]. It is difficult to determine the generator’s economic
outputs due to the non-linear cost functions of generators and
the rapid changes in load. Especially, as renewable energy
resources are increasingly integrated into the power sys-
tem, the random and intermittent characteristics of renewable
energy induce significant challenges in terms of how to con-
trol and dispatch these resources in real-time [2]. Moreover,
the uncertainty of renewable energy output needs to be con-
sidered in OPF for optimum generator dispatch considering
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ramp-rate, increasing renewable energy integration propor-
tion, where the forecasting error is inevitable even though
advanced prediction techniques are utilized [3].

The Economic Dispatch (ED) addresses these issues to a
certain extent but does not consider the loss, reactive power,
and transmission line congestion [4]. To this end, Optimal
Power Flow (OPF) problems are able to address these eco-
nomic dispatch problems more realistically and reasonably.
Since then, there has been extensive research on OPF algo-
rithms, thanks to the recent development of optimization
techniques and computational technologies [5].

DCOPF has the advantage of computational efficiency, but
it has the disadvantage of not being able to achieve precise
results because of DC approximations. In comparison, AC
OPF allows for the consideration of both active and reac-
tive power flows and terminal voltages of all generators.
Although AC OPF is the most common form of OPF and
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can produce precise results, it has the disadvantage of slow
computation.

As such, it is a challenging task to obtain general real-
time ACOPF solutions from existing algorithms. Therefore,
ACOPF solutions with DNN (Deep Neural Network) and
DRL (Deep Reinforcement Learning) were introduced to
speed up the calculation process [6], [7], [8]. It has been
noted that DNN and DRL approaches can solve the ACOPF
problem of complex, larger dimensions, and continuous state
space. Existing research [7] adopted DRL to solve AC OPF
problem while considering ramp-rate, total cost, and load
changes in large scale systems.

This article aims to determine the economic operations
of generators when loads in the power system present a
random pattern. We test the proposed model on the IEEE
118-bus system and compare the results with MAT-POWER
MIPS (MAT-POWER Interior Point Solver), an OPF problem
solver, to verify effectiveness and efficiency of the proposed
approach. To evaluate the generator’s ramp-rate constraints,
we vary the net load from 0.8 to 1.2 to simulate realistic load
changes. In addition, random Gaussian noise is added to each
load to simulate load uncertainties. Therefore, these tests will
illustrate the computational efficiency and robustness of the
proposed approach against load disturbances.

Power flow calculation intends to find out nodal voltage
profiles of the power system with given nodal power supplies
and demands. Once nodal voltages are calculated, power
flows in transmission lines and generators’ power outputs can
be easily calculated. In addition, it is essential to consider
network loss when power exchanges among buses. In this
case, because the number of equations is less than that of
variables, specifying all the outputs of generators cannot
directly solve this problem. Thus, one generator is usually
defined as the slack generator to take over all system losses
and guarantees the equation’s rank [9]. It means the slack
generator is automatically designated by the power flow cal-
culation to determine outputs (active power) of the rest of the
generators. To this end, we build a machine learning model
to consider total loss and satisfy the power balance equation
effectively.

In Section II, we talk about deep learning and the
ACOPF problem. Section III describes the proposed
approach. Section IV conducts studied case to verify effec-
tiveness of the proposed model as compared to MAT-
POWER. It confirms that the slack generator’s output
from the proposed model is the correct answer considering
the other generator’s output. This article is concluded in
Section V.

II. ACOPF PROBLEM AND DEEP LEARNING
A. ACOPF PROBLEM
The objective function of OPF in Eq. (1) is expressed by min-
imizing the summation of the generator’s production costs,
while satisfying prevailing constraints.
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t
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t−1
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Ng is the total number of generators in the system. The
subscript i represents the bus index, PG represents the gener-
ator’s output, and C represents the generator’s cost function.
V and θ refer to magnitude and angle of voltages in each
bus, and their limitations are described as in Eq. (2) and
(3). Since each generator has output limitation, Eq. (4) and
(5) show maximum and minimum values for the operating
range. The left side of the Eq. (6) represents the power flow
of the jth transmission line F tj , and the right side represents
the maximum capacity Fj max of the line. Eq. (7) means that
the summation of the total apparent power generation S tG
and the total system loss S tloss under the condition of the
energy balance is consistent with the demand S tL . Ramp-rate
constraint (11) considers ramp limitation between the current
step PtG and the previous step Pt−1G .

MAT-POWER provides a function to solve OPF problems.
This function, named MAT-POWER Interior Point Solver
(MIPS), is a MATLAB language M-files package for solving
non-linear programming problems (NLPs), using a primal-
dual interior-point method.

B. DEEP NEURAL NETWORK
A standard neural network (NN) consists of many sim-
ple, connected processors called neurons, each producing a
sequence of real-valued activations. Input neurons get acti-
vated through sensors perceiving the environment; other neu-
rons get activated through weighted connections from previ-
ously active neurons via backpropagation [10].

A backpropagation algorithm with chain rules can be
used to optimally update parameters of the multi-layer feed-
forward neural network. We define the target (loss) function
for solving optimization problems. In general, the squared
(Euclidean) loss can be used as loss function. If we define
the d-dimensional target output as t = [t1, . . . , td] and the
estimated output as x = [x1, . . . , xd], the summation of
squared loss can be defined as shown in Eq. (9):

E =
∑d

i=1
(xi − ti)2 (9)

To optimize the mentioned loss function, DNN (Deep
Neural Network) uses the method of backpropagation, which
includes Gradient descent, Gauss-Newton, and Levenberg
Marquette, and so on. Eq. (10) represent how to update
parameters in different methods.

Gradient descent
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pk+1 = pk − 2λkJTr (pk)r(pk), k ≥ 0

Gauss-Newton

pk+1 = pk−(JTr Jr)
−1JTr r(pk), k ≥ 0 (10)

Levenberg-Marquardt

pk+1 = pk−(JTr Jr + µkdiag(JTr Jr))
−1JTr r(pk), k ≥ 0

where,

Jr (p) =


∂r1 (p)
∂p1

· · ·
∂r1 (p)
∂pm

...
. . .

...
∂rn (p)
∂p1

· · ·
∂rn (p)
∂pm



r(p) =


r1(p)
r2(p)
...

rn(p)

 =

y1−f(x1, p)
y2−f(x2, p)

...

yn−f(xn, p)


The parameters of themodel are pk , the updated parameters

in next step are pk+1, errors(residual) between observed value
and actual value are r(p), and Jr is briefly expressed in the
Jacobian matrix Jr (pk ) of vector r(p) in the k

th step.
The Gradient Descent is a method to find the smallest point

that minimizes the error function, by moving the gradient in
the opposite direction via step size proportional to the size
of the gradient [11]. On the other hand, Gauss-Newton is
a method to find the solution by considering the gradient
and curvature of the function together. Thus, the Gauss-
Newton method has the advantage of finding the solution
much more accurately and quickly than the gradient descent
method. However, the expression requires the calculation of
the inverse of the curvature JTr Jr, which represents the approx-
imation matrix of Hessian [12]. If this matrix is close to the
singular matrix, the calculated inverse matrix is numerically
unstable, leading to the divergence.

In comparison, the Levenberg-Marquardt is a way to miti-
gate the risk of divergence and to find more stable roots by
adding µ× diag(JTr Jr) to JTr Jr [13]. The diagonal elements
of JTr Jr, an approximate matrix for Hessian, represents cur-
vature for each parameter component p. In other words, the
Levenberg-Marquardt method enables the computation by
avoiding the singular matrix issue of Gauss-Newton, while
also effectively reflecting the curvature even when µ is large
so that the model can identify the global maxima effectively
[13].

C. DDPG
RL (Reinforcement learning) is a value-based algorithm, and
it learns by estimating the Q-value that the model will take in
the given circumstance [14]. When estimations of this value
become somewhat possible, actions (i.e., a policy) are chosen
based on this value. Furthermore, Q-Learning has an e-greedy
policy which estimates the value for all actions and then

selects the action that corresponds to the largest number of
those values. However, learning is not an easy task if there
are many behaviors in the continuous action space [15].

DDPG (Deep Deterministic Policy Gradient) is a model-
free off-policy actor-critic algorithm that combines DQN
(Deep QNetwork) with DPG (Deterministic Policy Gradient)
[16], [17]. In the case of DQN, it reduces learning instability
using the ’experience replay’ and the ’frozen target network.’
Typical Q learning obtains the data by the agent moving actu-
ally. Thus, naturally, there is a significant correlation between
the data [18]. Therefore, the experience replay method is used
to reduce the correlation between input data, significantly
reducing the relationship among them. It also enables repeti-
tive learning of past experiences [19].

The mathematical and numerical approaches based power
system analysis require interpretation in continuous space,
because changes in loads and generators’ outputs are contin-
uous instead of discrete. To this end, DDPG is a model that
has the advantage of DQN, and can be extended to continuous
space using the actor & critic framework. The critic frame-
work is used to estimate the value using the Bellman equation.
The actor framework is used to generate action according
to the distribution of action space by the chain rule [20]. In
addition, the DDPG normalizes the various unparticular units
by normalizing the observation and uses batch normalization
to put the samples into a single minibatch and normalize
all the dimensions for better learning [19], [21]. The full
algorithm, called DDPG, is presented in [20].

D. TD3
Q-learning algorithm is known to be affected by performance
due to overestimation on the value function [22]. If the
overestimation continues to occur during training, the policy
update will be negatively affected. These features have led
to the emergence of techniques called Double Q-Learning
and Double DQN, which use two value networks to separate
action selection updates andQ-value updates [23]. TD3 (Twin
Delayed Deep Deterministic Policy Gradient) is an algorithm
that applies several techniques to the DDPG for preventing
overestimation on the value function.

The first technique is Clipped Double-Q Learning.
TD3 learns two Q-functions instead of one (hence ‘‘twin’’).
Specifically, it means there are two actor networks, two critic
networks, and two Bellman equations. The second technique
is Delayed Policy Updates. TD3 updates the policy (and
target networks) less frequently than the Q-function. That is,
the model does not update policy unless the model’s value
function is updated sufficiently. These less frequent policy
updates will have value estimate with lower variance and
therefore should result in a better policy. This allows the value
network to become more stable and reduce errors before it is
used to update the policy network.

The third technique is Target Policy Smoothing. If the
agent were to explore on-policy, it would probably not try a
wide enough variety of action exploration to useful learning
process. Unless there is an efficient noise in the environment,
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it is tough to ensure sufficient exploration to avoid the policy’s
determinacy. TD3 trains a deterministic policy in an off-
policy way. By adding noise to the policy and learn with
a non-deterministic policy, it can learn like off-policy [20].
TD3 adds noise (clipped random noise) to the target action
and averaging over minibatches, as shown in Eq. (11): where
r is a reward what we designate, and γ is a discount factor,
which essentially determines how much the reward vector
affect the reinforcement learning agents in the distant future
relative to those in the immediate future, ranged from 0 to 1
[24]. Adding noise makes it harder for the policy to exploit
Q-function errors by smoothing out Q along with changes in
action.

y = r+γQw
(
s′, µθ

(
s′
)
+ε
)

ε ∼ clip (N (0, σ ) ,−c, c) (11)

The TD3 algorithm is an extended DDPG algorithm,
and its computation is similar to the DDPG algorithm.
Since TD3 has two critic models that induce loss func-
tion, critic loss is defined as MSE Loss(Q1(s, a′),Qt +

MSE LossQ2(s, a′),Qt), where s is state and a′ is actor net-
work’s target value including the random noise.

To determine the parameters of TD3, firstly backpropa-
gating the critic loss, we update the parameters θiof the two
critic models. And in every two iterations, we update the actor
model’s parameter ϕ by performing gradient ascent on the
output θ1 of the first critic model as in Eq. (12):

θi ← minθiN
−1

N∑
i=1

(y− Qθi (s, a))
2

∇ϕJ(ϕ) = N−1
∑
∇aQθ1(s, a)|a=πϕ (s))∇ϕπϕ(s) (12)

where N is [st , at , rt ,st+1] from replay buffer. After that,
we update ϕi, where ϕ and θ1 are the weights of the parameter
actor and the critic, respectively. Finally, we update the target
networks as in Eq. (13), where θ is critic target, and ϕ is actor
target, similar as the DDPG work by Polyak Averaging [25].

θ ′i← τθi + (1− τ) θ ′i
ϕ′i← τϕi + (1− τ) ϕ′i (13)

III. PROPOSED MODEL
A. DRL TD3 USING DNN LEVENBERG MARQUARDT
The TD3 agent receives the state input and decides a cor-
responding action vector according to the e greedy method
by the reward vector. The TD3 algorithm uses two value
networks to separate action selection update and Q-value
update. Thus, we build two neural networks for the critic
models and two for the critic targets. And we use a delayed
update of the actor network, only updating it every 2-time
steps instead of after each time steps, it can make more stable
and efficient training.

To consider ramp-rate constraints in this article, we add a
limiter as a comparator to restrict output difference between
previous time step value Pt−1G and current time step value

FIGURE 1. Workflow of the proposed approach.

P̈tG. It is possible to take into account since the TD3 model
is used for environment with continuous action spaces. One
episode consists of a number of steps (user defined), and for
each step, the action and state according to action is stored
in the episode storage. The information from the (t-1)-th
step, which is already stored in the episode storage, can be
called up (state, action, and so on), and it is possibly used to
manage the current step. We can call up PG of the (t-1)-th
step, and thus we can set the limiter value at the t-th step of
PG in consideration of ramp rate. At this time, comparator
compares Pt−1G with PtG. If P

t
G meet the ramping constraints,

the output should be the action that is precalculated in the
proposed model as estimate. Otherwise, we change the cur-
rent step’s action to (Pt−1G ± ramp-rate). It defines, when P̈tG
does not meet ramping constraints, PtG is updated as (Pt−1G ±

ramp-rate) instead of P̈tG. Moreover, considering inequality
constraints on generation outputs, if PtG is greater than the
PtGi

max, PtG will be set to PtGi
max. The proposed algorithm is

shown in Figure 1:
To operate reinforcement learning, users must properly

define action, state, reward, and environment. In the proposed
model, the state includes amplitudes of the voltage and power
data for all buses, which is formed as follows:

st =
[
PtL ,Q

t
L ,V

t
i ,P

t
G,P

t−1
G ,c,F

]
(14)

wherePtL means the active power load vector,QL means reac-
tive power load vector,V t

i is the bus voltagemagnitude vector,
F means power flow in each line, c is total cost according to
load conditions of buses, PtG and Pt−1G are generator’s out-
puts in the current and previous steps for considering ramp-
rate limits. Since TD3, which policy gradient methods used,
is well known as a model to avoid the curse of dimensionality,
although their units are not the same, TD3 algorithm does not
need a procedure of state discretization like DDPG [6].

The load changes would potentially lead to changes on
terminal voltages of the generator side. Thus, the constant
terminal voltage of the generation side is preferred to ensure
reliability of the system. To this end, action of the proposed
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approach is defined as active power outputs of generators.
To decide the initial values of the action, we follow DNN’s
output PtG as TD3 agent’s initial values when DNNwith input
[PtL ,Q

t
L] is trained based on Levenberg-Marquardt backprop-

agation. In other words, we set the DNNmodel’s output as the
initial value of the action with respect to certain load status
so that the TD3 algorithm reaches the global optimum. After
that, to make TD3 policies explore better, we add noise to the
action vector (sum of actor network output and DNN output)
when we train the model, uncorrelated mean-zero gaussian
noise, and we reduce the scale of the noise throughout the
training.

B. MULTI-OBJECT REWARD
ACOPF deals with several objectives, and the corresponding
reward strategy is crucial. The major advantage of using
reinforcement learning instead of DNN only in the proposed
model is that generator’s constraints such as PmaxG , PminG , and
ramp-rate limits can be included in the learning process.
Suppose PtG (i.e., action) of the next step exceeds the ramping
constraint compared to the current step, the size of the action
of the next step can be adjusted to satisfy constraints, and the
output constraints of each generator can also be resolved by
specifying a range in themodel’s action. Because it is possible
to setup this environment in the programming work (i.e., user
define), we do not need to set these constraints as reward.

As reward impacts TD3 algorithm’s two Bellman equation
(y1, y2), organizing a proper reward strategy is crucial to
achieve better performance. However, if the policy changes
slowly, the two networks in the TD3 algorithm become too
similar to make independent decisions. To overcome this
issue, TD3 algorithm uses the smaller of the two Q-values to
form the targets in the Bellman error loss functions, as shown
in Eq. (15). And γ (discount factor) applies equally to both
critic networks.

y1 = r+γmini=1,2Qw2(s′,µθ i(s′))

y2 = r+γmini=1,2Qw1(s′,µθ i(s′)) (15)

We offer amulti-object reward system, and form the reward
vector as a sum of 4 components:

r = Reward1− Reward2− Reward3− Reward4 (16)

The main objectives in ACOPF problem are to minimize
the total generation costs as ’the smaller, the better’ prob-
lem. If we already know the cost function of generators,
we easily calculate the total cost through the action vector
(PtG). Reward1 takes into account the difference when the
total cost becomes smaller according to the action. It makes a
proposed model’s policy that allows action to incur as little
cost as possible under constraints. Also, the ACOPF shall
consider the power system transmission congestion, since
transmission lines have rated capacities and exceeding these
capacities could lead to insecure operations. So, Reward2
expresses penalty as max(Fe, 0), where Fe is the value of the
difference between F and designated line capacities.

FIGURE 2. Take action by circumventing the penalty.

Slack generator’s output is derived through the Newton-
Raphson power flow calculation once outputs of the remain-
ing generators are determined. So, we need to calculate power
flow in every moment for power balance equation. However,
real-timeOPF shall be very fast in computation. If power flow
calculation is needed per step, even testing under new load
conditions, this is very inefficient in terms of computational
time.
Reward3 is inversely proportional to absolute value of

(actual PG of Slack bus−Action of Slack bus).We use power
flow calculation when we train the model; but when testing
the model, we neglect power flow calculation. When we
examine the model in various load conditions, it is possible to
ignore power flow calculation if the error of slack generator’s
output is smaller than the designated tolerance. If the model
were well made, this error would be a small value because we
set the Reward3 as a penalty to meet power balance equation.
Also, Reward4 is a penalty proportional to the number of
violations when nodal voltage magnitudes are not satisfied
with voltage constraints in accordance with action vector.

Figure 2 contains the solution that the proposed model
complements these mentioned matters of electrical con-
straints by taking proper reward as penalty. In Figure 2,
we assume that there are m generators and nth generator is
Slack generator. We have also adjusted reward vectors related
to the constraints equally by normalization since they are
measured in different units.

IV. PERFORMANCE ANALYSIS
A. OBJECTIVE AND DATASET
We use the IEEE 118-bus with 19 generators, 35 condensers,
and 99 load buses for an experiment. Data on line impedance
and system information, including cost function parameters,
are referenced in IEEE 118-bus. Our goal is to ensure that the
proposed approach meets constraints and produces optimal
costs under various load conditions. The dynamic load profile
shown in Figure 3 is used to evaluate that the ramp-rate limits
are met.

Varying load changes can prove that the proposed model
is robust against disturbance. This article’s proposed model
assumes that net load (both active power and reactive power)
changes between 0.8 and 1.2, assumed the loads presented
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FIGURE 3. Load profile - 99 loads profile and net load (sum total).

FIGURE 4. Data set organized.

in IEEE 118-bus Data Sheet as 1 p.u. In addition, to repre-
sent uncertainties of intermittent renewable energy sources
in individual buses, we assume that each of the 99 loads has
a random pattern that follows Gaussian noise.

We use the assumed Net Load curve to create a random
load curve. As we will consider a 1/4 ramp-rate, we can
see in Figure 4 that there are 960 samples for 10 days.
960 dispatch intervals of these data are set as the training
set. Also, we made 10 test sets (960× 10) dispatch intervals
more, in the same way, to test the proposed approach with
different load conditions. These results are compared with
MAT-POWERMIPS to illustrate performance and robustness
of the proposed model under various load conditions.

B. SYSTEM INFORMATION
At each step, we first set the power load according to our load
design function. As described in Section IV.A, the perfor-
mance of the proposed model is tested when the normalized
Net Load fluctuates from 0.8 to 1.2, both active power and

FIGURE 5. Branch Power flow not considered constraints.

FIGURE 6. Branch power flow with transmission constraints.

reactive power. The branch flow limits to 460 MVA, and
generator ramping rates are set to 20 MVA.

Figure 5 shows the power flows of 186 branches while
ignoring transmission constraints in the IEEE 118-bus sys-
tem. In Figure 5, 460 MVA flows in one of the branches,
when the normalized net load is 1. It means it might lead to
transmission congestion if net load is greater than 1. There-
fore, as we set the transmission constraints to 460MVA in the
test simulation, to check if the proposed model can properly
handle both cases, transmission congestion happened and not.

C. TEST RESULTS
After the training is done, we use a new load pattern to
demonstrate advantages of the proposed method by compar-
ing it with two other methods: AC OPF (MIPS) and DC
OPF (MIPS). AC OPF and DC OPF are realized using MAT-
POWER [26]. The branch flow considering constraints are
shown in Figure 6.

Figure 7 compares the outputs with and without consid-
ering ramp-rate constraints. Down ramp-rate constraint [-
20 MVA] and each generator’s ramp-rate of intervals from
670 to 674 are illustrated. Among the 960 time intervals,
the 672nd step’s ramp-rate is one of the examples to confirm
that the proposed model can satisfy constraints. The left side
of Figure 7 is the result of MAT-POWER ACOPF without
considering any electrical constraints, and the right side of
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FIGURE 7. One example: ramp-rate of 19 Generators among the 960 intervals under Down ramp-rate constraint. [y-axis: ramp-rate.]

TABLE 1. Result comparison with MAT-POWER MIPS.

Figure 7 is the result of the proposed model considering
ramp-rate constraints under the load profile (Section IV.A).
As mentioned in Section III.A, the 672nd step’s ramp-rate
is contingent on the observed output of 671st step, P671G (the
previous action). If the generators do not meet the ramp-rate
constraints,P672G are determined from themodified ramp-rate.
It shows that generators can meet ramp-rate constraints with
the measure (limiter) in the proposed model.

Table 1 shows the detailed numeric comparison results,
which compares the average value of the total generation cost
of 960 real-time OPF intervals, the average absolute errors
of the active power of generator between optimal solutions
from different methods. Specifically, we calculate the exact
slack PG from power flow calculation using the remaining 18
PG from the solution of the proposed model and check if the
results are the same.

In our experiment, on average to compute the OPF problem
with a given load profile, it takes 0.3017s [ACOPF-MIPS],

0.0452s [DCOPF-MIPS], and 0.0118s [Proposed Approach],
respectively. And this computation has executed on a laptop
with a 2.6-GHz Intel core i7-6700. This outcome explains
that the proposed model is faster than DC OPF in terms of
computing speed, and is capable of conducting economic
dispatch planning under electrical constraints despite various
arbitrary load profiles.

V. CONCLUSION
Using TD3 algorithm, this article carries out the OPF to
minimize total cost under various constraints and illustrates
robustness of the proposed model against disturbances(load
fluctuations), where both active power and reactive power
loads are assumed to vary between 0.8 and 1.2 p.u. We apply
Gaussian noise to each net load for representing uncertainties
of renewable energy sources. This training continues thor-
oughly under the off policy so that the result may be slightly
different from MAT-POWER. But still, it matches almost
100% even if the load variation is severe compared to other
methods in [6], [7].

Considering that the power system is more complicated
these days, the computational performance of OPF also has to
be fast enough for tracing load changes. In the future, we plan
to develop the machine learning model that considers all
various constraints and unit-commitment planning together.
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