
Received November 10, 2020, accepted November 24, 2020, date of publication November 27, 2020,
date of current version December 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3041177

FPGA Based Real Time Simulations of the
Face Milling Process
MICHAŁ R. MAZUR , MAREK A. GALEWSKI , AND KRZYSZTOF J. KALIŃSKI
Faculty of Mechanical Engineering, Gdańsk University of Technology, 80-233 Gdańsk, Poland

Corresponding author: Michał R. Mazur (micmazur@pg.edu.pl)

This work was supported in part by the Polish National Center for Research and Development (Application of selected mechatronic
solutions to supervise the cutting process of large-size workpieces on multi-axis machining centers) under Grant
TANGO1/266350/NCBR/2015.

ABSTRACT The article presents a successful implementation of the milling process simulation at the
Field-Programmable Gate Array (FPGA). By using FPGA, very rigorous Real-Time (RT) simulation
requirements can be met. The response time of the FPGA simulations is significantly reduced, and the time
synchronization is better than in a typical RT system implemented in software. The FPGA-based approach is
characterized by enormous flexibility when it comes to input and output operations that can be implemented
deterministically in RT. Complex simulation software has been implemented using the High Level Synthesis
technique, which is a relatively easy and fast approach for FPGA programming without using complex
Hardware Description Languages. The hardware functions are based on procedures written in high-level
C programming language. The mathematical descriptions of simulations, results of computer simulations,
Hardware-in-the-Loop Simulation experiments, and real experiments are presented. The approach presented
in this paper can be used to simulate the dynamics of various mechatronic systems.

INDEX TERMS Field programmable gate arrays, high level synthesis, systems simulation.

I. INTRODUCTION
The paper concerns the simulation of the milling process
with simulation procedures implemented in the FPGA (Field-
Programmable Gate Array) system using the High Level
Synthesis (HLS) technique [1]–[3]. This is an example of
Real Time (RT), hardware simulations [4] of complex system
dynamics that are able to meet very narrow time limits (at the
level of several microseconds) with very low uncertainty
(at the level of several nanoseconds) while maintaining accu-
rate simulation uniformity and physical time. Thanks to the
use of HLS and FPGA, it is possible to meet such time limits
for various types of simulations of different mechatronic sys-
tems [5], [6]. The main advantage of the proposed approach
to FPGA-based simulations is the possibility to obtain very
accurate time and short delayed responses. Input and output
signals can be processed in an individual integration time
step, greatly expanding the application of Hardware-in-the-
Loop Simulation (HiLS) techniques.

The HiLS technique is used to emulate at least a part of
a controlled mechanical structure or process [7], [8]. It is

The associate editor coordinating the review of this manuscript and

approving it for publication was Prakasam Periasamy .

possible to simulate or emulate some system components in
such a way that they look and behave like they were real for
other parts of the systems. Thanks to this, it is possible, for
example, to simulate an object for the purposes of building
a control system without the need to connect it with a real
object. It also increases the security of the development pro-
cess as there is no risk of damaging the object while test-
ing an unfinished control system. As modern machines and
their control systems are increasingly complex, the number
of potential errors increases. Detecting and isolating such
errors in a complex system can be very difficult. With HiLS
it is possible to speed up the process of creating a control
system and software. It also allows for quick verification of
the impact of parameters’ values changes on the examined
system. Additionally, it is also a cost-effective approach as the
need for experiments in the target environment can be greatly
reduced.

The combination of HiLS techniques with the advantages
of real-time FPGA simulation enables the construction of a
HiLS system taking into account very tight time constraints.
For example, instead of building a complete prototype of a
complex structure for vibration or fatigue analysis, a part of
the structure can be simulated and its dynamics can influence

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 215987

https://orcid.org/0000-0003-1405-909X
https://orcid.org/0000-0003-3703-4012
https://orcid.org/0000-0003-1658-4605
https://orcid.org/0000-0002-2471-6375


M. R. Mazur et al.: FPGA-Based Real-Time Simulations of the Face Milling Process

and interact with the dynamics of a physical part of the
system. In a large number of HiLS applications, the simulated
part responses are limited by time constraints, which can
often be difficult to meet [9]. Therefore, special techniques
are used to obtain the response time accuracy and reduce its
uncertainty (jitter) [10]. Depending on the application, the RT
system of the software may serve as the target development
platform for HiLS. Such a system can be defined as hard RT
or soft RT which describes its ability to always, or not always
meet exact time constraints. However, the exact definitions
of the RT system and how to classify such systems differ
depending on the literature and on the application [11]–[13].
The problem of jitter occurs in every modern RT system [14].
This problem should be limited, as the changing delay in
the control loop can have a large impact on the properties
of the controlled system [15]. In some cases, a controlled or
simulated system may become unstable due to high jitter val-
ues, even when a limited fixed time delay can be effectively
compensated [16]. FPGA based RT systems have very short
response times and low jitter values that can be limited to a
few nanoseconds.

When using an RT system for HiLS, the exact time
constraints (requirements) for the simulation loop must be
specified. Unfortunately, a common misconception is the
expectation that the RT system will compute (simulate) faster
than a typical computer system. Even though typical (non-
RT) computer systems can be efficiently used to perform
complex computational tasks, this does not mean that they
can switch between such tasks fast enough, synchronize them
accurately, and respond quickly to input signals. Critical RT
tasks may require special hardware to reduce response time
and increase system reliability so that computation time can
be adjusted to real time. In typical software executed RT
applications response time are measured in milliseconds and
uncertainty can be achieved at the level of microseconds.
However, many simulations of the dynamics of mechatronic
systems may require the solution of Ordinary Differential
Equations (ODE) [17] with an integration step measured in
microseconds and floating point double precision is needed
as well [18], [19]. To achieve the desired RT requirements,
the selection of appropriate algorithms and their further mod-
ifications should be considered [10]. Meeting the required
time constraints can be difficult for typical processors, even
those designed for RT applications. Hence, hardware solu-
tions (especially FPGA based ones) may be required to
achieve better response time and better system reliability and
repeatability.

In some solutions, mechanical systems are simulated with
the use of analog electronic systems [20], [21]. Analog sys-
tems can achieve very good response times, but they can be
susceptible to various and difficult to eliminate errors (e.g.,
presence of analog noise). Additionally, making changes
to the simulated system may be restricted to a limited
range of parameters only because major changes may even
require redesigning the analog subsystem or replacing its
components.

To solve this problem, the hardware implementation of
the computational simulation algorithm can be realized using
CPLDs (Complex Programmable Logic Devices) or FPGAs.
When operating FPGAs with a relatively low frequency (e.g.
100 MHz), it is possible to obtain response time (excluding
the time needed to propagate signals in additional input and
output circuits) at the microsecond level and with jitter lim-
ited to a few nanoseconds. In this way, FPGA-based simula-
tion systems provide a response time that can be compared
with analog systems, while maintaining the reliability of
digital systems.

The list of possible applications of FPGAs is long and con-
stantly growing [22]. They are mainly used as control units,
for signal processing, as computing accelerators and for pro-
totyping Application-Specific Integrated Circuits (ASICs).
Currently, FPGAs are used for more complex tasks for two
reasons. First, the top-of-the-line FPGAs on the market con-
tain a large number of computationally efficient Digital Sig-
nal Processing (DSP) blocks that are important in floating
point computations. The computing power of modern FPGAs
reaches the levels of Tera Floating Point Operations Per Sec-
ond (TFLOPS), which makes them competitive for parallel
computing compared to typical processors and even Graph-
ical Processing Units (Graphical Processing Units). More-
over, unlike the GPU, FPGA is able to efficiently perform
many different tasks simultaneously. The second reason is the
growing availability and reliability of HLS tools that allow
engineers to effectively implement code written in high-level
languages such as C, C++, OpenCL or SystemC on FPGA
hardwarewithout having to use rather cumbersome languages
such as VHDL or Verilog.

The hardware simulation of the milling process pre-
sented in this paper can be used, for example, to develop a
device that detects chatter vibrations [23]–[25]. Self-excited
chatter vibration is a phenomenon observed, for example,
during milling operations. The chatter phenomenon should
be avoided, because it leads to a reduction in the quality
of the milled surface, increased tool wear, and even to the
destruction of the processed part or tool [26], [27]. Thanks
to the methods used and their implementation, this risk can
be minimized. This may be advantageous, for example, when
developing a vibration detecting device, as parts of the sys-
tems that may be damaged can be simulated in real time,
which is an example of HiLS. Due to the use of HLS, various
control procedures can be implemented relatively quickly
on FPGA [28], therefore the knowledge presented in this
document may be applicable not only to the simulation of the
milling process, but also to other HiLS applications or control
problems in general [29].

II. MILLING SIMULATIONS
In order to simulate the dynamics of the milling process,
an appropriate model of the workpiece, tool and cutting
process should be derived and implemented on the FPGA.
However, synthesis and implementation times can be very
long (usually up to several hours), which has a significant

215988 VOLUME 8, 2020



M. R. Mazur et al.: FPGA-Based Real-Time Simulations of the Face Milling Process

impact on the overall uptime, especially when a signifi-
cant amount of debugging is required or many consecutive
iterations of the algorithm are being developed. This is in
contradiction to compile time, as for the classic CPU it is
usually much shorter (usually a few to tens of seconds). For
this reason, in order to shorten the total development time,
a software version had to be developed and tested before
the hardware implementation of the simulation algorithm on
the FPGA. Additionally, debugging is a much easier task
when the algorithm is implemented as a classic program.
The results from the software version of the algorithm can
later be used as a reference when implementing a similar
algorithm in FPGA. The software version can be profiled,
divided into parts and then parts intended to be implemented
in ‘‘hard’’ RT can be selected. By analyzing the results and
performance of software simulations, time constraints for
RT can be defined and investigated. Later, simplifications
of the model can be introduced to the code and analyzed.
Choosing different algorithms for solving specific tasks can
be considered when developing a software version. Some
algorithms may be more suitable for high-frequency CPU,
but at the same time they are not as effective when used in
GPU or FPGA implementations.

Making further changes is also easier and faster for the soft-
ware version than for the hardware version, so there is a need
to carefully analyze the software version before developing
the hardware one.

In the presented work, the software version was based
on the Amikro4 program, which was previously developed
to simulate the dynamics of the face milling process. This
programwas originally written in the FORTRAN77 program-
ming language and performs the calculations described in the
following chapters [30].

A. DESCRIPTION OF THE CUTTING PROCESS DYNAMICS
For the purposes of simulating the dynamics of the
face milling process, the following assumptions were
made [31], [32].

– The spindle and workpiece are separated from the
machine structure. The rest of the milling machine is
neglected [33]–[35].

– The flexibility of the tool and the workpiece was taken
into account [36].

– Coupling elements (CEs) were used to model the
dynamics of the cutting process.

– The effect of the first pass of the edge along the cut-
ting layer causes proportional feedback, and the effect
of multiple passes additionally the delayed feedback
(these two feedback are considered the main cause of
chatter vibration [33], [27]).

For the instantaneous point of contact between the selected
edge of the tool and the workpiece (idealized by CE no. 1),
a proportional model of cutting dynamics was taken into
account [30], [31]. Based on this model, the cutting forces
depend proportionally on the instant thickness of the cutting
layer hl(t), as well as on the instant width of the cutting

FIGURE 1. Scheme of a face milling of a flexible workpiece.

layer bl(t). According to the direction of action, the cutting
force component Fyl1 acting along the nominal cutting speed,
the cutting force component Fyl2 acting along the thickness
of the cutting layer, and additionally the cutting force com-
ponent Fyl3 acting along the width of the cutting layer are
separated (Fig. 1).

Fyl1 (t) =

{
kdlbl (t) hl (t) , hl (t) > 0 ∧ bl (t) > 0,
0, hl (t) ≤ 0 ∨ bl (t) ≤ 0,

(1)

Fyl2 (t) =

{
µl2kdlbl (t) hl (t) , hl (t) > 0 ∧ bl (t) > 0,
0, hl (t) ≤ 0 ∨ bl (t) ≤ 0,

(2)

Fyl3 (t) =

{
µl3kdlbl (t) hl (t) , hl (t) > 0 ∧ bl (t) > 0,
0, hl (t) ≤ 0 ∨ bl (t) ≤ 0,

(3)

where:

bl (t) = bD (t)−1bl (t) ,

hl (t) = hDl (t)−1hl (t)+1hl (t − τi) ,

bD(t) – desired cutting layer width; bD(t) = ap(t)/sin(κr ),
1bl(t) – dynamic change in cutting layer width for CE no. l,

VOLUME 8, 2020 215989



M. R. Mazur et al.: FPGA-Based Real-Time Simulations of the Face Milling Process

hDl(t) – desired cutting layer thickness for CE no. l; hDl
(t) ∼= fz sin(κr ) cosϕl(t),

1hl – dynamic change in cutting layer thickness for CE
no. l,

kdl – average dynamic specific cutting pressure for CE
no. l,

µl2, µl3 – cutting force ratios for CE no. l, as quotients of
forces Fyl2 and Fyl1, and forces Fyl3 and Fyl1,

τl – time-delay between the same position of CE no. l
and of CE no. l–1,

ap(t) – desired depth of cutting,
κr – edge angle,
fz – feed per edge,

ϕl(t) – angular position of CE no. l [31].
Relationships (1) – (3), which describe cutting forces for

CE no. l in case of 3-dimensional proportional model, may be
presented with the use of matrix notation (4), as shown at the
bottom of the next page, or using the abbreviated notation (5),
as shown at the bottom of the next page, where:

F̆l (t) – vector of cutting forces of CE no. l,
F̆0
l (t) – vector of cutting forces of CE no. l, resulted from

a desired cutting geometry and kinematics,
D̆(l)Pl (t) – matrix of linear proportional feedback

interactions,
D̆(n)Pl (t) – matrix of nonlinear proportional feedback

interactions,
D̆(n)Ol (t) – matrix of linear time-delayed feedback

interactions,
D̆(n)Ol (t) – matrix of nonlinear time-delayed feedback

interactions,
1w̆l (t) – vector of deflections of CE no. l at instant of

time t ,
1w̆l (t − τl) – vector of deflections of CE no. l at instant of

time t – τl ,
qzl (t) – relative displacement of edge and workpiece

along direction yl1 at instant of time t ,
qzl (t − τl) – relative displacement of edge and workpiece

along direction yl1 at instant of time t – τl .
Vector (5) can also be described in six-dimensional space,
(6), as shown at the bottom of the next page, where:

Fl (t) = col
(
F̆l (t) , 03×1

)
, (7)

1wl (t) = col
(
1w̆l (t) , 03×1

)
, (8)

F0
l (t) = col

(
F̆0
l (t) , 03×1

)
, (9)

D(l)Pl (t) =
[
D̆(l)Pl (t) 0

0 0

]
6×6

, (10)

D(n)Pl (t) =
[
D̆(n)Pl (t) 0

0 0

]
6×6

, (11)

D(l)Ol (t) =
[
D̆(l)Ol (t) 0

0 0

]
6×6

, (12)

D(n)Ol (t) =
[
D̆(n)Ol (t) 0

0 0

]
6×6

. (13)

In order to simplify further notation, relationship (6) takes
the form:

Fl (t) = F0
l (t)− DPl (t)1wl (t)+ DOl (t)1wl (t − τl) ,

(14)

where:

DPl (t) = D(l)Pl (t)− D(n)Pl (t) , (15)

DOl (t) = D(l)Ol (t)− D(n)Ol (t) . (16)

As a result of modeling the milling process, a hybrid
system is obtained, which consists of separate subsystems
(Fig. 1). These subsystems are:

– modal subsystem, i.e. a stationary model using the
Finite Element Method (FEM) of a flexible workpiece
supported by Elastic-Damping Elements (EDE), which
moves at a given feed rate vf . Initially, the subsystem is
idealized as a set of tetragonal 10-node finite elements
(FE) [30] and has a large number of degrees of freedom.
However, after the modal transformation [31], [34],
the behavior of this subsystem is described by the
vector of its modal coordinates a, the number of
which is in practice much smaller than the corre-
sponding number of degrees of freedom. Therefore,
when we consider the finite number of normal modes
of the subsystem, we define its dynamic properties
with:
� = diag(ω0i) – matrix of angular natural frequen-

cies of the modal subsystem; i = 1,
. . . , mod. This is also called the stiff-
ness modal matrix;

9 = [91 . . .9mod ] – matrix of the considered mass nor-
malised normal modes of the modal
subsystem; i = 1, . . . , mod;

Z = diag (ζi) – matrix of dimensionless damp-
ing coefficients (also called, modal
damping) of the modal subsystem;
i = 1, . . . , mod;

– structural subsystem, i.e. a non-stationary discrete
model of a rotating spindle (with a given spindle
speed n) of a facemilling cutter (i.e. a flexible finite ele-
ment like Euler-Bernoulli Bar (E-BB) no. e [31], [34],
having the xe1, xe2, xe3 coordinate system) and a cutting
process (i.e. Coupling Element (CE) no l [31], [32]
placed at the instantaneous position of the ‘‘active’’
cutting edge [31]). The edges are ‘‘active’’ when they
are in contact with the workpiece, the others are called
‘‘inactive’’. The behavior of a subsystem is described
by the vector of its generalized coordinates q. The
dynamic properties of the decoupled structural sub-
system (i.e. E-BB modeling the tool itself) are deter-
mined by the matrices of inertia M, damping L and
stiffness K;

– abstract connecting subsystem as a conventional S con-
tact point between tool and workpiece. Its generalized

215990 VOLUME 8, 2020



M. R. Mazur et al.: FPGA-Based Real-Time Simulations of the Face Milling Process

coordinates are related to the remaining equations with
time-dependent constraints [31], [37]. The latter allows
to eliminate these generalized coordinates from the
description of the behavior of the hybrid system.

B. DESCRIPTION OF THE DYNAMICS OF FLEXIBLE DETAIL
IN HYBRID SYSTEM COORDINATES
Vector of deflections of CE no. l is expressed as a function
of vector of generalised coordinates q and vector of modal
coordinates a. Hence, the relationship (17), as shown at the
bottom of the next page, is obtained [31], [34], where:

ξ =

{
q
a

}
− vector of hybrid coordinates of the hybrid

system,
Tl(t) – transformation matrix of displacements’ vector q

from coordinate system xe1, xe2, xe3 of E-BB no. e, to coor-
dinate system yl1, yl2, yl3 of CE no. l [30]–[32],
Wl(t) – matrix of constraints between displacements’ vec-

tor in modal coordinates a, and displacements in coordinate
system yl1, yl2, yl3 of CE no. l [30], [31].
After transformation of the vector of force interaction of

CE no. l (14) to hybrid coordinates, (18), as shown at the
bottom of the next page, is obtained:

As the result of the hybrid system’s consideration,
the matrix equation of dynamics of non-stationary model
of the milling process in hybrid coordinates will have the
form (19), as shown at the bottom of the next page, [31],
[34], [37] where:
il – number of ‘‘active’’ coupling elements [31], [34].

In order to identify modal model of the flexible workpiece
(which is a part of Eq. (19)), the matrix of normal modes 9
and matrix of corresponding angular natural frequencies �
of the modal subsystem must be determined. Separating the
modal subsystem from the whole non-stationary structure
makes it possible to reduce the finite element model to a
few modes only. Its number depends on the importance and
necessity of choosing the modes for further analysis. As the
result, the size of the model is significantly reduced.

FIGURE 2. Development stages of hardware (FPGA) Real Time
simulations of a mechatronic system.

III. IMPLEMENTATION
The entire process of computer hardware development car-
ried out in the simulation of the mechatronic system is pre-
sented in general in Fig. 2. Each stage of this process is
described in detail in the following chapters of thie paper.

Fyl1
Fyl2
Fyl3

︸ ︷︷ ︸
F̆l (t)

=

 kdlbD (t) hDl (t)
µl2kdlbD (t) hDl (t)
µl3kdlbD (t) hDl (t)


︸ ︷︷ ︸

F̆0l (t)

−



 0 kdlbD (t) kdlhDl (t)
0 µl2kdlbD (t) µl2kdlhDl (t)
0 µl3kdlbD (t) µl3kdlhDl (t)


︸ ︷︷ ︸

D̆(l)Pl (t)

−

 0 kdl1bl (t) 0
0 µl2kdl1bl (t) 0
0 µl3kdl1bl (t) 0


︸ ︷︷ ︸

D̆(n)Pl (t)


·

 qzl (t)
1hl (t)
1bl (t)

︸ ︷︷ ︸
1w̆l (t)

+



 0 kdlbD (t) 0
0 µl2kdlbD (t) 0
0 µl3kdlbD (t) 0


︸ ︷︷ ︸

D̆(l)Ol (t)

−

 0 kdl1bl (t) 0
0 µl2kdl1bl (t) 0
0 µl3kdl1bl (t) 0


︸ ︷︷ ︸

D̆(n)Ol (t)


·

 qzl (t − τl)
1hl (t − τl)
1bl (t − τl)

︸ ︷︷ ︸
1w̆l (t−τl )

(4)

F̆l (t) = F̆0
l (t)−

(
D̆Pl (t)− D̆(n)Pl (t)

)
1w̆l (t)+

(
D̆Ol (t)− D̆(n)Ol (t)

)
1w̆l (t − τl) (5)

Fl (t) = F0
l (t)−

(
D(l)Pl (t)− D(n)Pl (t)

)
1wl (t)+

(
D(l)Ol (t)− D(n)Ol (t)

)
1wl (t − τl) (6)

VOLUME 8, 2020 215991



M. R. Mazur et al.: FPGA-Based Real-Time Simulations of the Face Milling Process

A. DEVELOPMENT OF THE SOFTWARE VERSION
The Amikro4 software version was developed in the FOR-
TRAN77 language and was based on (19). This simulation
software uses the Newmark-Beta algorithm (ODE solving),
a Gaussian elimination algorithm and several linear matrix
operations. In order to develop the hardware version of
Amikro4, the software version has been used as reference.

When using ODE resolution procedures, it is important to
select the appropriate time step. Shorter time steps require
more computation and lead to longer simulation times, while
longer time steps usually lead to less accurate results but
acquired in a shorter time. For the Amikro4 simulation soft-
ware, the fixed time step 1t was set to 42 µs. After each
time step 1t , the input and output signals are synchronized.
It is then assumed that the input and output signals may not
change during this time step. However, input signals may
appear during the1t time step. Thus, the time step1t defines
the maximum time delay of the RT version of the Amikro4
simulation software. Signal propagation times and timing
uncertainties are generally small, i.e., a few nanoseconds, and
are thus ignored.

The optimized version of the Amikro4 software was
compiled and run on the computer system of the Zynq
UltraScale+MPSoCZCU102 development board, which was
running under the control of Ubuntu Linux 16.04. This ver-
sion worked correctly in terms of numerical results, but it
was not possible to achieve even soft RT expectations on the
CortexA53 CPU at the standard frequency of 1.2 GHz. The
total execution time (350.712 s) was almost 3 times as long
as the simulated process time (120 s). Thanks to the program
profiling (using the gprof tool), it was possible to assess the
time needed for each of the Amikro4 program functions, and
then decide whether it is possible to accelerate it (Table 1).

The most time-consuming function is rozw, which solves
linear equations by Gaussian elimination. To simulate the
milling process, which lasted 120 s, approximately 184.62 s

TABLE 1. Profile analysis of the five most time-consuming functions of
the Amikro4 software version (CortexA53 Linux).

with the CortexA53 (1.2 GHz) was only required for the
calculation of the rozw function.

B. FPGA SELECTION
The software version of the Amikro4 did not meet the RT
requirements for CortexA53 (1.2 GHz), because the compu-
tational time tc (Fig. 3) was greater than the minimum time
step 1t . For comparison, on a PC with an Intel i7-6700 pro-
cessor, the total computation time was about 7.75 seconds for
120 seconds of simulated process time, however, it is very
difficult to synchronize the input and output operations with
the RT capabilities of the PC.

The decision on the final selection of a specific FPGA
chip can be confirmed after a successful computer simulation
of the tested algorithm operating on this part of the FPGA
(Fig. 2). Thanks to the use of IDE (Integrated Development
Environment), such as Xilinx SDSoC (Software-Defined
System-On-Chip), software development and integration of
hardware acceleration functions (performed in the FPGA
Programmable Logic) is very simplified and automated. Usu-
ally, there is no need to supervise the entire synthesis and
implementation process of the automatically generated HDL

3wi(t) = Tl(t)q−Wi(t)a = [Tl(t)−Wi(t)]
{
q
a

}
= [Tl(t)−Wl(t)] ξ (17)[

TTl (t)
−WT

l (t)

]
Fl(t) =

[
TTl (t)
−WT

l (t)

]
F0
l (t)+

[
TTl (t)Dpl(t)Tl(t) −TTl (t)Dpl(t)Wl(t)
−WT

l Dpl(t)Tl(t) WT
l (t)Dpl(t)Wl(t)

]{
qs
am

}
+

[
TTl (t)Dol(t)
−WT

l (t)Dol(t)

]
1wl (t − τl) (18)

[
M 0
0 I

]
ξ̈ +

[
L 0
0 2Z�

]
ξ̇ +


K+

ii∑
l=1

TTl (t)Dpl(t)Tl(t) −

ii∑
l=1

TTl (t)Dpl(t)Wl(t)

−

ii∑
l=1

WT
l (t)Dpl(t)Tl(t) �2

+

ii∑
l=1

WT
l (t)Dpl(t)Wl(t)

 ξ

=


ii∑
l=1

TTl (t)F
0
l (t)+ TTl (t)Dol(t)1w (t − τl)

−

ii∑
l=1

WT
l (t)F

0
l (t)+WT

l (t)Dol(t)1w (t − τl)

 (19)

215992 VOLUME 8, 2020



M. R. Mazur et al.: FPGA-Based Real-Time Simulations of the Face Milling Process

FIGURE 3. Simplified software-only algorithm for Real Time simulation of
a mechatronic system.

code. However, the function selected for hardware accel-
eration must match the physical limits of the FPGA. If it
requires more resources (i.e., logical cells or DSP blocks)
than the actual selected FPGA provides, the automatic inte-
gration process will fail. Therefore, it is recommended to start
the implementation with the appropriate software, including
a simulator of various parts of the FPGA, which helps in
choosing the right target FPGA. Knowing the computational
complexity of the implemented algorithm, one can try to
predict how the requirements for FPGA resources will change
depending on the size of the task, but in general it is very
difficult to assess exact needs.

Note that it is not recommended to select the largest
FPGA available. Such FPGAs will not only be expensive and
require more energy to operate, but the synthesis of larger
FPGAs is also very time consuming. If the FPGA chip is
already selected (for different reasons, for example), it may
be advantageous to perform the initial layout using a smaller
chip (preferably from the same family) at an early stage of
development, and then switch to a larger layout when needed
or at the final stage of development. This approach saves a lot
of work time.

Currently, there are various FPGAs available on the market
from different vendors (e.g. Altera, Xilinx). Each retailer
offers different families of chips and they are designed for
different purposes. Unfortunately, probably none of the chips
currently available are dedicated to RT simulation of mecha-
tronic systems. The most similar applications seem to be
RT control and signal processing, and the use of FPGAs as
accelerators. However, the amount of resources of a particular
FPGA is much more important than the actual target. FPGAs
are generally very flexible when it comes to their configura-
bility. The number of I/O ports is usually not as important for

a mechatronic system RT simulation as the number and types
of integrated DSP blocks.

In general, the largest FPGAs are the richest in terms of
available resources, which makes them better suited as a
basis for implementing a complex simulation algorithm. It is
tempting to choose a larger and faster FPGA chip, because
they require less work during implementation. Unfortunately,
the synthesis times of larger FPGAs are much longer. Such
chips are usually available as standalone units or as part
of a PCIe card installed in a personal computer to act as
an accelerator. For standalone units, it may be required to
implement all additional components in the hardware (e.g.,
a serial port used for communication between FPGA and
PC) or to deploy some FPGA resources for a programmable
processor that can be used for input/output operations, initial-
ization, or performance of various tasks that are not carried
out directly by the equipment. In the case of a PCIe card, some
FPGA resources can be used tomanage the PCIe interface and
provide a base (hardware platform) for the reconfigurable part
that can be used for code created with the OpenCL toolkit.
Dedicated software tools are needed for this. In this case, it is
a matter of design whether OpenCL is only used to initiate
and control the simulation, but all logic is implemented as a
defined hardware platform or the simulation is directly imple-
mented by OpenCL which is based on a C-like programming
language. Accelerator seems to be a simple and attractive
solution, but the problem is the delay inmaking OpenCL calls
to the card from the host CPU. When an FPGA or GPU is
used as an accelerator, the number of such calls should be
limited to achieve the desired performance [38]. In the case of
RT simulations, this usually means that the entire simulation
algorithm must be implemented in hardware, as the time
needed for synchronization and data transfer between the
CPU and the accelerator may be too long. The medium-
sized FPGA chips also appear as System on Chip (SoC)
units that are equipped with real hardware processors and
other required resources to form the basis of an independent
computer system. In general, such systems have much lower
latency in communication between the CPU and the functions
performed on the FPGA, however, this latency may be still
too high for some RT requirements. SoC-based FPGAs are
much more common and therefore it may be easier and more
reliable to use them to implement a simulation code.

Xilinx Zynq UltraScale + MPSoC ZCU102 Evaluation
Kit [39] was selected for the purposes of the presented work.
It is based on the Xilinx XCZU9EG-2FFVB1156I SoC [40]
chip, which includes four 64-bit processors with the Cortex
A53 core (maximum clock frequency 1.5 GHz) and two
32-bit Cortex R5 cores (maximum clock frequency 600MHz)
designed for RT applications. The integrated FPGA chip has
599550 logical cells and 2520 DSP48 slices, so at the time
of project development (year 2018/2019) it was classified
as a mid-range product. The ZCU102 system ran software
from an SD memory card. Linux-based Ubuntu 16.04 Base
(AArch64 OS architecture) was used as the Operating Sys-
tem (OS) for the ZCU102. A similar OS worked on the

VOLUME 8, 2020 215993



M. R. Mazur et al.: FPGA-Based Real-Time Simulations of the Face Milling Process

DELL Precision 3620 Workstation (x86_64 system architec-
ture), which was used to develop software for this project.
Various free and commercial software tools were used dur-
ing the development process. Xilinx products were used in
the FPGA software to configure and implement simulation
algorithms. It was: Vivado HLx 2017.4 – software package
for the synthesis and analysis of Hardware Description Lan-
guages (HDL) and HLS projects, PetaLinux 2017.4 – tools
for customizing, building and implementing a Linux-based
operating system in the embedded system, SDK 2017.4 –
Software Development Kit and Integrated Design Environ-
ment (IDE) for creating embedded applications and SDSoC
2017.4 – dedicated IDE software in High Level Languages
(C, C ++, SystemC or OpenCL) with hardware accelerated
functions (using Programmable Logic). SDSoC is designed to
simplify and automate software development with hardware
accelerated functions, and its functionality relies on Vivado
HLx, PetaLinux and SDK. In this way, similar effects could
be achieved using only these three tools. Additionally, some
functions can only be implemented using one of these three
tools, such as defining the I/O interfaces for part of the
FPGA system. However, SDSoC automates the integration of
hardware-implemented functions (Vivado’s block design pro-
cess) and provides drivers and runtimes for various runtime
environments: Linux, FreeRTOS, and Baremetal (libmetal).

C. DEVELOPMENT OF THE HARDWARE VERSION
Based on the software version of the implemented algorithm,
a preliminary decision can be made before implementation.
The first one is the choice of whether the entire algorithm
is to be implemented on hardware (FPGA) or whether some
procedures can be implemented by software running on the
CPU (Fig. 4). It must also be decided how the data should
be managed and whether the code can work simultaneously
on different processor cores and the FPGA accelerator, or it
must be implemented only by the hardware (Fig. 5). The
required amount of FPGA resources, latency in communi-
cation between the processor and the implemented hardware
functions must be analyzed as well.

In the presented example, using Xilinx SDSoC, two func-
tions newmar and rozw (see Table 1) were integrated into one
and implemented as a function of hardware acceleration on
FPGA (as in Fig. 4). The optimized FPGA implementation of
this function worked fine, and it only took 345 FPGA cycles
to complete it. FPGA worked at 100 MHz.

Given the number of 2993342 calls to this function,
the total calculation time for rozw and newmar functions was
estimated at 10.33 s, which is 21.6 times faster than the ver-
sion of the software running on CortexA53. Standard Ubuntu
16.04 gcc compiler was used and all relevant optimization
options were enabled. However, the number of calls to the
rozw and newmar functions of 2993342 is very high for the
simulation of 120 s of the milling process. In this case, calling
the hardware function takes more time than its performance
and therefore the complete execution of the Amikro4 program
with hardware accelerated rozw and newmar functions took

FIGURE 4. Simplified algorithm of mixed hardware and software
implementation of mechatronic system simulation in Real Time –
acceleration approach.

FIGURE 5. Simplified hardware algorithm implementation of mechatronic
system in Real Time.

several minutes longer than the software version. The rea-
son is that each hardware function call requires many time-
consuming operations. This problem is further investigated in
Appendix A.

The number of calls for functions that require acceleration
is very large. The amount of data that needs to be copied from,

215994 VOLUME 8, 2020



M. R. Mazur et al.: FPGA-Based Real-Time Simulations of the Face Milling Process

and to the FPGA is also too large for the specified time inter-
val. Even twenty times faster execution of individual func-
tions would not be enough to obtain the execution of the code
in defined RT expectations. Therefore, it was decided that
all program initialization will be performed in the program
part operating in the Linux environment, however, the entire
main loop with all necessary functions must be transferred
to FPGA (Fig. 5). Since the original version of Amikro4
was written in FORTRAN77, all these functions were rewrit-
ten in the C programming language to enable their further
processing using HLS tools. The hardware-accelerated main
loop of the program was exported as a dynamically linked
library by the Xilinx SDSoC tool, and then connected to
the remaining non-hardware-accelerated part of the program
written in FORTRAN77.

Using the HLS technique, it is relatively easy to transfer
the implementation of selected functions to the FPGA. The
problem is to match the hardware implemented functions
to the physical limitations of the selected FPGA and at the
same time to meet the required time limits. The program
code requires appropriate modification so that its perfor-
mance is time-deterministic. This means that some parts of
the algorithmmust be corrected and rewritten. Due to the lim-
ited resources of FPGAs, wherever possible, single-precision
floating-point or even fixed-point should be used instead
of double-precision floating-point variables. For example,
loops should have a maximum number of iterations defined
as constants instead of variables, and conditional execution
based on nondeterministic input values should be avoided.
For example, if a computational exception (such as division
by zero) is selected, computations should continue even if
there is Not a Number (NaN) or Infinity (Inf) result. It is pos-
sible to return a certain Boolean control value if an exception
occurs instead of the abort. Such changes and analysis of the
complex simulation algorithm needed an in-depth knowledge
and understanding of how the algorithm works. For example,
an analysis of the required FPGA cycles to perform a specific
function may show that it would not meet the predefined RT
limits if it had to calculate cutting forces for all cutting edges
of amilling tool, but during simulation it is known that this sit-
uation will not occur at all (one or more edges have no contact
with the workpiece, at every stage of the simulation). More-
over, some changes can be effectively introduced with this
knowledge, for example the task dimension (modal model
dimension) can be reduced based on the concept of effective
mass. Finally, it is worth analyzing which of the variable
parameters can be defined as software constants for hardware
implementation. Constant parameters are optimized during
the implementation of FPGA, and thus effectively reduces the
consumption of its resources, so considering different FPGA
implementations for different values of a particular parameter
is advised.

D. DEFINITION OF THE HARDWARE VERSION
Several optimization techniques can be used in HLS
tools [41]. The entire task that must be performed on the

hardware can be divided into modules and data can be
transferred between modules using First-In-First-Out (FIFO)
queues. Each module performs a specific task at a different
time. However, it is worth noting that FPGAs have limited
on-line reconfiguration possibilities, and dedicating FPGA
resources to a specific task will make them unavailable for
other tasks. Program functions and loops can be pipelined
or unrolled. The internal FPGA memory should be properly
partitioned and distributed to enable efficient parallel execu-
tion of individual functions. Further changes to the software
code can be made, for example by adding additional variables
that will enable the pipeline of the selected loop. Loops can
be divided into blocks that will be processed in parallel.
Different operating frequencies can be selected for certain
functions. Typically, when using one optimization technique,
it is difficult to predict its impact on code execution speed
and resource consumption. It is more or less a trial and
errormethod, however, understanding the fundamental differ-
ences between executing software code on the processor and
hardware implementation with FPGA is very helpful. In the
case of a complex program with numerous small-size tasks,
choosing the right optimization strategy is not easy. Current
versions of tools like Xilinx Vivado HLS and Xilinx SDSoC
are dedicated to transferring small (uncomplicated) functions
to hardware and have limited ability to deal with problems
that arise when working with more complex algorithms. Due
to these limitations, a top-down approach to optimizing a
complex program on an FPGA is not recommended.

By using Xilinx SDSoC, it was possible to match the
main simulation loop to the limited resources of the selected
FPGA and achieve a run time of each step of this loop
shorter than the actual simulation time step. The working
implementation used only 49.25% of the available DSP48
blocks and 58.74% of the available Lookup Tables (LUTs),
so in theory, only about half of the key FPGA resources
were used. However, the real limiting factor was found during
deeper analysis of the Xilinx SDSoC logs. It was the use of
Configurable Logical Blocks (CLBs) that reached 85.98%
in the final working implementation. Initial designs suffered
from too much condensation: the logic distribution during the
FPGA resource deployment process was limited by routing
capabilities.

E. DEFINITION OF THE HARDWARE PLATFORM WITH
RT CAPABILITIES
The Xilinx SDSoC tool is not intended for building RT appli-
cations and therefore it was necessary to add some modifi-
cations to the software and directly on the hardware. Custom
hardware platform (initial SoC configuration, mainly FPGA
part) was defined with Xilinx Vivado tool (Fig. 6) for later
use with Xilinx SDSoC.

These modifications included a 64-bit clock counter and
corresponding register used to synchronize the RT process,
a discrete input register and an output register with hardware
DAC support to generate simulation results as an analog out-
put signal. The definition of the clock and the discrete input

VOLUME 8, 2020 215995



M. R. Mazur et al.: FPGA-Based Real-Time Simulations of the Face Milling Process

FIGURE 6. Block diagram of the Xilinx Vivado hardware platform for HiLS applications.

register was quite simple and was made directly in the block
structure (Fig. 6), however, the hardware Digital-to-Analog
(DAC) converter (Digilent Pmod DA3 with 16 bit Analog
Devices AD5541A) was implemented using the VHDL lan-
guage, and thus was more complicated. The defined registers
were connected to the part described in the software language
C by defining the appropriate system port (sys_port) in Xilinx
SDSoC and the hardware acceleration function was inte-
grated (Fig. 7). Appropriate pragmas have been defined [41]
to limit the use and length of the default very long FIFOs
used for the I/O registers byXilinx SDSoC during integration.
Simple functions for emptying FIFO queries and real-time
synchronization were written in the C language and using the
HLS technique (Xilinx SDSoC) were integrated with the final
hardware version of the Amikro4 simulation program.

IV. SIMULATION AND EXPERIMENTAL RESULTS
This chapter presents software and hardware simulations and
experimental results of the face milling process of the sample
workpiece.

A. MACHINED WORKPIECE
The algorithm implemented in FPGA simulated the milling
process of the real workpiece, which was made of EN-GJS-
400-15 cast iron (Fig. 8b) and clamped on the table of the

MIKROMAT 20V portal milling center. The FEM model
(Fig. 8a) of the workpiece was properly tuned to obtain a good
correlation with the experimentally obtained modal model.
The milled surface is marked in Fig. 8b. The first five modal
modes were examined during the simulation.

B. MODEL IDENTIFICATION
Modal tests were carried out for the workpiece shown
in Fig. 8. The 6 vibration modes were identified by the
pLSCF-D method [42]. The FEM model presented in Fig. 8a
was appropriately fixed (to represent the holder used during
actual milling operations on the milling center) with twelve
finite elements representing springs (each with six degrees
of freedom) to obtain satisfactory correlation of natural fre-
quencies and modes. The values of the Modal Assurance
Criterion (MAC) [43] are presented in Table 2. In further
simulations the modal model, reduced to five forms with the
lowest frequencies, was used.

C. MILLING PARAMETERS
A SECO face milling cutter with a diameter of 63 mm
and 6 edges was used. The standard (same as for real pro-
cess) parameters used to simulate the milling process were:
n = 1112 rev/min, vf = 1112 mm/min, ap = 1 mm.

215996 VOLUME 8, 2020



M. R. Mazur et al.: FPGA-Based Real-Time Simulations of the Face Milling Process

FIGURE 7. Scheme of integration with Xilinx SDSoC hardware to simulate the milling process.

FIGURE 8. Tested workpiece: a) FEM model of the real workpiece, b)
schematics of the workpiece with marked sensor mounting points.

Additionally, artificially modified parameters of the
milling process were also tested, i.e. n = 1212 rev/min,
vf = 1512 mm/min and ap = 1 mm.

TABLE 2. Modal Assurance Criterion (MAC) values between FEM model
modes and modal test modes.

D. SOFTWARE SIMULATION RESULTS
The results of software simulations (i.e. performed on a PC)
of the displacements of the workpiece surface in the direction
of the x3 axis (Fig. 1), for the standard parameters of the
milling process, are shown in Fig. 9a, and for the modified
parameters in Fig. 9b.

E. HARDWARE SIMULATION RESULTS
The same simulation program compiled with different com-
piler optimization options may produce slightly different
results (up to 5 × 10−6 mm) due to underflow and rounding

VOLUME 8, 2020 215997



M. R. Mazur et al.: FPGA-Based Real-Time Simulations of the Face Milling Process

FIGURE 9. Reference – results of software simulations – displacements
along the x3 axis: a) standard parameters, b) modified parameters.

errors when calculating using floating point variables. Such
insignificant (compared to the values presented in Fig. 9a)
differences were observed between software and hardware
(FPGA) implementations of theAmikro4 simulation program.
This version of the hardware implemented in the Amikro4
simulations performed the calculations in RT in all tests,
however the number of theoretically required FPGA cycles
was slightly higher than the RT requirements. If all cutting
edges of a milling tool are cutting simultaneously in the same
time step, the calculation will take slightly longer than the
minimum time step 1t (42 µs) because FPGA operated at
a relatively low frequency (100 MHz) compared to modern
CPUs. In this case, a problem was identified with the mawie
function algorithm that finds the active node in the FEM
model (Table 1). The optimized version of this algorithm
required 593 FPGA cycles. In order to be sure that the
computation would be performed at RT in every possible
state, the mawie function had to be rewritten to reduce the
required number of cycles to compute it. Instead of finding
(in each simulation step) which node is closest to the tool,
the hardware implementation of the mavie function used a
pre-computed map (which only requires a few FPGA cycles).
Both functions give slightly different results at the corners of
the map cells. The differences in the results of Amikro4 with
themawie function mapped version are shown in Fig. 10. It is
still possible to improve the results by introducing a map with
a higher density in the mawie function, but for HiLS both

FIGURE 10. The difference between the results of software and hardware
simulations – displacements along the x3 axis.

FIGURE 11. Experimental results - displacements of the workpiece
surface along the x3 axis at measuring points from 4 to 1 (see Fig 8).

the quality (stability) and the quantity (the differences are
still small compared to simulation results) of the presented
solution was considered satisfactory.

F. EXPERIMENTAL RESULTS FOR THE REAL MILLING
PROCESS
The results (measured with accelerometers from 4 to 1 in
Fig. 8b) of the real milling process of a workpiece with stan-
dard parameters (chapter IV.C) are shown in Fig. 11. It should
be noted that the figure shows the displacements observed
at the closest measurement points, fixed to the workpiece
surface (i.e. the workpiece-tool contact point moves near
and over a given sensor). Meanwhile, the simulation results
presented in Fig. 9 show displacements at the point of contact
between the tool and the workpiece (i.e. measurement point
moves with the tool). For example, the time interval from 5 to
16 seconds was calculated over the period from the start of the
milling operation (excluding the time while the tool entered
the material) to the time while the tool was in the center posi-
tion between sensors 4 and 3 (see Fig. 8 for sensor positions).
The comparison of the real simulation results with the results
of the Amikro4 FPGART simulation in the frequency domain
is shown in Fig. 12. The different amplitudes are mainly the
result of different assumed parameters in equations (1)-(3)

215998 VOLUME 8, 2020



M. R. Mazur et al.: FPGA-Based Real-Time Simulations of the Face Milling Process

FIGURE 12. The comparison of the real simulations results (point 2) and
the Amikro4 FPGA RT simulations results in frequency domain –
displacements along x3 axis.

and the introduction of a reduced model (only five modal
workpiece modes were used). The two main harmonics are
present in the simulation results (Fig. 12), but many other
harmonics are missing. During the simulation, a simplified
model of the tool was assumed (all cutting edges are exactly
the same), and some effects (appearing in the experiment)
were ignored (for example, the effects of balancing and tool
bending [44]).

It should be emphasized that both the most important
components of the vibration spectrum, as well as the general
outline of the displacement and the evolution of vibrations
obtained from RT simulations made on FPGA are consistent
with the experimental results.

G. RT EXPERIMENTAL VALIDATION
It was assumed that the hardware implementation of the RT
milling process simulation would be part of the HiLS system
designed to develop a tool for detecting self-excited chatter
vibrations. This is only an example application, hence a sim-
plification of the HiLS system - the relative tool-workpiece
vibrations (displacements) are ‘‘published’’ from the RT as
an analog signal generated by a 16-bit D/A converter. It is
possible to generate various signals resulting from RT simu-
lation, such as tool vibrations (not relative), but to simplify
the comparisons, the original form of the results from the
Amikro4 program has not beenmodified. The FPGAmonitors
one digital input signal which is a command (high signal
level) to stop the milling process. In addition, simulation
results are saved in FPGA memory and then copied to CPU
memory after simulation is complete, where they are finally
saved as text files for further, off-line, non-RT analysis.

The chatter detection tool has been simplified (and it
is not the topic of this article). Appropriate software was
implemented in LabView Real Time at the NI PXI-8106 RT
controller system with a 16-bit DAQ PXI 6221 card. The
system monitors the vibration level, i.e. the signal generated
on-line by the FPGA chip performing RT simulations. This
signal mocks the signal that can be obtained from some
vibration sensor, for example an accelerometer or a proximity

FIGURE 13. Example HiLS application with hardware RT (FPGA).

FIGURE 14. Hardware simulations results with standard parameters –
displacements along the x3 axis: a) uninterrupted, b) interrupted – a stop
signal is generated.

probe.When themonitored signal exceeds any selected value,
the PXI generates a stop signal. The milling process is then
stopped (the feed rate in the simulated process is set to
vf = 0m/s). A schematic description of the stand is presented
in Fig. 13. For the conversion of input and output signals of
the FPGA (level 0 - 3.3 V) to a voltage level (-10 – 10 V),
voltage converters with low propagation time (1 us) were used
between the FPGA and the PXI system.

The results of the hardware simulations were appropriately
scaled and shown in Fig. 14 for the simulation performed
with standard milling parameters and with modified milling
parameters in Fig. 15. The observed analog signals that were

VOLUME 8, 2020 215999



M. R. Mazur et al.: FPGA-Based Real-Time Simulations of the Face Milling Process

FIGURE 15. Hardware simulations results with modified parameters –
displacements along the x3 axis: a) uninterrupted, b) interrupted (low
trigger value) – stop signal generated, c) interrupted (high trigger value) –
stop signal generated.

generated in RT are similar to the results obtained with the
software, off-line version simulation: Fig.14a is similar to
Fig.9a and Fig.15a is similar to Fig.9b, but the last two
have a limited range because the analog signals are limited
(maximum displacement is ± 0.01 mm) and thus observed
signals are saturated. The result of the hardware simulation
presented in Fig. 15a is unstable, so some aliasing effects are
observed (even though the sampling time of the LabView-
based acquisition system is relatively small (0.000025 s)),
because the maximum values of the generated signals are not
synchronized in time with the sampling period.

The trigger values for the STOP signal have been set
arbitrarily to the maximum allowed value of the observed
displacement in a LabView based RT system. The STOP
signals were generated with a delay of one sampling period,

i.e. 25 us. The STOP signal effects could be observed
in Figs. 14b, 15b and 15c. The hardware simulated system
reacted in real time to the given STOP signals during the time
integration step, i.e. 42 µs. To make the simulations more
realistic, the response time can be increased in this case.

In real applications, much more sophisticated techniques
and algorithms for chatter detection can be used [45]–[48].
The example in the paper only confirms the validity of the
FPGA-based RT simulation application concept.

V. SUMMARY AND CONCLUSION
The presented RT hardware simulation results allow for the
conclusion that it is possible to create RT simulations of a
complex process, e.g. dynamic milling systems using FPGA
and HLS techniques. The possibility of very sophisticated
time synchronization along with very short response delays
and very little jitter make hardware simulations better than the
typical software RT approach. It is also possible to implement
more complex control tasks that run in parallel, especially
when executing HiLS. The FPGA-based approach is charac-
terized by higher computing power and enormous flexibility
when it comes to input and output operations that can be
implemented deterministically in RT. In this example project,
you could define various input and output signals, which can
be analog or digital. Thus, it is possible, for example, to study
the simulations of the influence of active damping systems
on the simulated milling process. The hardware functions are
based on procedures written in high-level C programming
language, which makes it easy to introduce changes to the
presented algorithm. The approach presented in this paper
can be used to simulate the dynamics of various mechatronic
systems.

APENDIX
Data must be copied to and from the accelerator, and accel-
erator operations must be synchronized. The Xilinx SDSoC
software tries to estimate this time, but to investigate this
problem further, a simple test function add was written in the
C language. The add function returns the sum of two input
floating point numbers:
float add(float a, float b)
{
return a+b;

}
The add function has been called from a simple test pro-

gram loop one million times:
float a = 1.f, b = 1.f;
for(;a<1000000.f;)
{
a = add(a,b);

}
The program containing this loop was compiled with the

Xilinx SDSoC utility. The standard optimization options that
are used by the Xilinx SDSoC compilers (clang and gcc) are
enabled. The test program execution time is shown in Table 3.
It did not matter whether the operating system (Linux) was

216000 VOLUME 8, 2020



M. R. Mazur et al.: FPGA-Based Real-Time Simulations of the Face Milling Process

TABLE 3. Simple test program execution time.

used or not (Baremetal), the execution time was always sig-
nificantly shorter compared to the version with the hardware
accelerated add function.
Based on the results presented in Tables 1 and 3, the final

design decisions weremade for the RT version of theAmikro4
simulation program.

The execution time for the Linux version of Amikro4 was
only slightly longer than for the Baremetal version, which is
a much less convenient development environment. All input,
output, and network operations would probably run faster and
more reliably on Linux. Xilinx SDSoC provides three major
software platforms: Linux, FreeRTOS, and Baremetal. The
standard version of Linux, unlike FreeRTOS and Baremetal,
could not serve as the basis for the RT program, but could
be a very good platform for performing all the necessary
operations, which does not have to meet RT expectations.

REFERENCES
[1] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,

‘‘High-level synthesis for FPGAs: From prototyping to deployment,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 4,
pp. 473–491, Apr. 2011.

[2] G. Martin and G. Smith, ‘‘High-level synthesis: Past, present, and future,’’
IEEE Des. Test. Comput., vol. 26, no. 4, pp. 18–25, Jul. 2009.

[3] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,
H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, ‘‘A survey
and evaluation of FPGA high-level synthesis tools,’’ IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 35, no. 10, pp. 1591–1604,
Oct. 2016.

[4] C. Dufour, S. Abourida, and J. Belanger, ‘‘Real-time simulation of per-
manent magnet motor drive on FPGA chip for high-bandwidth controller
tests and validation,’’ in Proc. IEEE Int. Symp. Ind. Electron., Jul. 2006,
pp. 4581–4586.

[5] S. Usenmez, R. A. Dilan,M. Dolen, and A. B. Koku, ‘‘Real-time hardware-
in-the-loop simulation of electrical machine systems using FPGAs,’’ in
Proc. Int. Conf. Electr. Mach. Syst., Tokyo, Japan, 2009, pp. 1–6.

[6] E. Duman, H. Can, and E. Akin, ‘‘FPGA based Hardware-in-the-Loop
(HIL) simulation of induction machine model,’’ in Proc. 16th Int. Power
Electron. Motion Control Conf. Expo., Sep. 2014, pp. 616–621.

[7] K. J. Kaliński and C. Buchholz, ‘‘Mechatronic design of strongly nonlinear
systems on a basis of three wheeled mobile platform,’’ Mech. Syst. Signal
Process., vols. 52–53, pp. 700–721, Feb. 2015.

[8] K. J. Kaliński and M. A. Galewski, ‘‘Vibration surveillance supported by
Hardware-In-the-Loop simulation in milling flexible workpieces,’’Mecha-
tronics, vol. 24, no. 8, pp. 1071–1082, Dec. 2014.

[9] F. Naets, T. Tamarozzi, G. H. K. Heirman, andW.Desmet, ‘‘Real-time flex-
ible multibody simulation with global modal parameterization,’’Multibody
Syst. Dyn., vol. 27, no. 3, pp. 267–284, Mar. 2012.

[10] J. Garcia de Jalon, E. Bayo, Kinematic and Dynamic Simulation of
Multibody Systems the Real-Time Challenge. New York, NY, USA:
Springer-Verlag, 1994.

[11] J. H. Lala and R. E. Harper, ‘‘Architectural principles for safety-critical
real-time applications,’’ Proc. IEEE, vol. 82, no. 1, pp. 25–40, Dec. 1994.

[12] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson, ‘‘Dynamic integrated
scheduling of hard real-time, soft real-time, and non-real-time processes,’’
in Proc. 24th IEEE Real-Time Syst. Symp., Cancun, MN, USA, 2003,
pp. 396–407.

[13] R. Cortesao, Jaehe, and O. Khatib, ‘‘Real-time adaptive control for haptic
telemanipulation with Kalman active observers,’’ IEEE Trans. Robot.,
vol. 22, no. 5, pp. 987–999, Oct. 2006.

[14] B. Wittenmark, J. Nilsson, and M. Torngren, ‘‘Timing problems in real-
time control systems,’’ in Proc. ACC, Seattle, WA, USA, vol. 3, 1995,
pp. 2000–2004.

[15] A. Cervin, B. Lincoln, J. Eker, K-E. Årzén, G. Buttazzo, ‘‘The jitter margin
and its application in the design of real-time control systems,’’ inProc. 10th
Int. Conf. Real-Time Embedded Comput. Syst. Appl., 2004, pp. 1–10.

[16] P. Marti, J. M. Fuertes, G. Fohler, and K. Ramamritham, ‘‘Jitter compen-
sation for real-time control systems,’’ in Proc. 22nd IEEE Real-Time Syst.
Symp. (RTSS), London, U.K., 2001, pp. 39–48.

[17] A. Schmitt and R. Seifried, ‘‘Comparison of variousmodels and integration
method for real-time simulation of complex vehicle models with structural
flexibility,’’ in Proc. Int. Conf. Noise Vib. Eng., P. Sas, D. Moens, and
A. van de Walle, Eds., 2016, pp. 1–5.

[18] D. H. Bailey, R. Barrio, and J. M. Borwein, ‘‘High-precision computation:
Mathematical physics and dynamics,’’ Appl. Math. Comput., vol. 218,
no. 20, pp. 10106–10121, Jun. 2012.

[19] R. W. Robey, J. M. Robey, and R. Aulwes, ‘‘In search of numerical
consistency in parallel programming,’’ Parallel Comput., vol. 37, nos. 4–5,
pp. 217–229, Apr. 2011.

[20] G. Cockerham and M. Cole, ‘‘Stick-slip stability by analogue simulation,’’
Wear, vol. 36, no. 2, pp. 189–198, Feb. 1976.

[21] R. S. Fayose, ‘‘Development of analogue computer for the simulation of
linear circuits and systems,’’ Int. J. Res. Appl. Sci. Eng. Tech., vol. 3,
pp. 97–106, Dec. 2015.

[22] J. J. Rodríguez-Andina, M. D. Valdés-Peña, and M. J. Moure, ‘‘Advanced
features and industrial applications of FPGAs—A review,’’ IEEE Trans.
Ind. Informat., vol. 11, pp. 853–864, Jul. 2015.

[23] Z. Yao, D. Mei, and Z. Chen, ‘‘On-line chatter detection and identification
based onwavelet and support vector machine,’’ J. Mater. Process. Technol.,
vol. 210, no. 5, pp. 713–719, Mar. 2010.

[24] Y. Fu, Y. Zhang, H. Zhou, D. Li, H. Liu, H. Qiao, and X. Wang, ‘‘Timely
online chatter detection in end milling process,’’ Mech. Syst. Signal Pro-
cess., vol. 75, pp. 668–688, Jun. 2016.

[25] E. Kuljanic, G. Totis, and M. Sortino, ‘‘Development of an intelligent mul-
tisensor chatter detection system in milling,’’ Mech. Syst. Signal Process.,
vol. 23, no. 5, pp. 1704–1718, Jul. 2009.

[26] M. Nouari, G. List, and F. Girot, ‘‘Wear mechanisms in dry machining
of aluminium alloys,’’ Int. J. Mech. Prod. Syst. Eng, vol. 4, pp. 22–29,
Dec. 2003.

[27] G. Quintana and J. Ciurana, ‘‘Chatter in machining processes: A review,’’
Int. J. Mach. Tools Manuf., vol. 51, no. 5, pp. 363–376, May 2011.

[28] Y. Shu, H. Li, and Q. Wu, ‘‘Expansion application of dSPACE for HILS,’’
in Proc. IEEE Int. Symp. Ind. Electron., Jun. 2008, pp. 2231–2235.

[29] E. Monmasson and M. N. Cirstea, ‘‘FPGA design methodology for indus-
trial control Systems—A review,’’ IEEE Trans. Ind. Electron., vol. 54,
no. 4, pp. 1824–1842, Aug. 2007.

[30] K. J. Kaliński, M. A. Galewski, M. R. Mazur, and N. Morawska,
‘‘A technique of experiment aided virtual prototyping to obtain the best
spindle speed during face milling of large-size structures,’’ Meccanica,
vol. 5, pp. 1–6, Jul. 2020.

[31] K. J. Kaliński, A Surveillance of Dynamic Processes in Mechanical Sys-
tems. Gdansk, Poland: Gdansk Univ. Technol., 2012 (in Polish: Nad-
zorowanie procesów dynamicznych w układach mechanicznych).

[32] K. J. Kaliński, ‘‘The finite element method application to linear closed
loop steady system vibration analysis,’’ Int. J. Mech. Sci., vol. 39, no. 3,
pp. 315–330, Mar. 1997.

[33] J. Tomkow, Vibrostability of Machine Tools. Warsaw, Poland: The Scien-
tific and Technical, 1997.

[34] K. J. Kaliński and M. A. Galewski, ‘‘Optimal spindle speed determination
for vibration reduction during ball-end milling of flexible details,’’ Int.
J. Mach. Tools Manuf., vol. 92, pp. 19–30, 2015.

[35] L. Uriarte, M. Zatarain, D. Axinte, J. Yagáe-Fabra, S. Ihlenfeldt, J. Eguia,
and A. Olarra, ‘‘Machine tools for large parts,’’ CIRP Ann., vol. 62, no. 2,
pp. 731–750, 2013.

[36] A. D. Sarhan, S. R. Besharaty, and J. M. Akbaria Hamdi, ‘‘Improvement on
a CNC gantry machine structure design for higher machining speed capa-
bility,’’ Int. J. Mech., Aerosp., Ind., Mech.Manuf. Eng., vol. 9, pp. 534–538,
Dec. 2015.

[37] M. Chodnicki, K. J. Kaliński, andM. A. Galewski, ‘‘Vibration surveillance
during milling of flexible details with the use of active optimal control,’’
J. Low Freq. Noise Vib. Act. Control, vol. 32, pp. 145–156, 2013.

VOLUME 8, 2020 216001



M. R. Mazur et al.: FPGA-Based Real-Time Simulations of the Face Milling Process

[38] S. Kestur, J. D. Davis, and O. Williams, ‘‘BLAS comparison on FPGA,
CPU and GPU,’’ in Proc. IEEE Comput. Soc. Annu. Symp. VLSI, Jul. 2010,
pp. 288–293.

[39] ZCU102 Evaluation Board User Guide, UG1182 (v1.4), Xilinx, San Jose,
CA, USA, 2018. [Online]. Available: www.xilinx.com

[40] Zynq UltraScale+ MPSoC Data Sheet: Overview, DS891 (v1.7), Xilinx,
San Jose, CA, USA, 2018. [Online]. Available: www.xilinx.com

[41] Vivado HLS Optimization Methodology Guide, UG1270 (v2017.4), Xilinx,
San Jose, CA, USA, 2017. [Online]. Available: www.xilinx.com

[42] P. Guillaume, P. Verboven, S. Vanlanduit, H. Van der Auweraer, and
B. Peeters, ‘‘A poly-reference implementation of the least-squares complex
frequency-domain estimator,’’ in Proc. IMAC, 2003, pp. 1–9.

[43] R. J. Allemang, ‘‘The modal assurance criterion—Twenty years of use and
abuse,’’ Sound Vib., vol. 15, pp. 14–21, Aug. 2003.

[44] G. Totis, P. Albertelli, M. Torta, M. Sortino, and M. Monno, ‘‘Upgraded
stability analysis of milling operations by means of advanced modeling of
tooling system bending,’’ Int. J. Mach. Tools Manuf., vol. 113, pp. 19–34,
Feb. 2017.

[45] P. Albertelli, L. Braghieri, M. Torta, and M. Monno, ‘‘Development of a
generalized chatter detection methodology for variable speed machining,’’
Mech. Syst. Signal Process., vol. 123, pp. 26–42, May 2019.

[46] Y.-C. Yao, Y.-H. Chen, C.-H. Liu, and W.-P. Shih, ‘‘Real-time chatter
detection and automatic suppression for intelligent spindles based on
wavelet packet energy entropy and local outlier factor algorithm,’’ Int.
J. Adv. Manuf. Technol., vol. 103, nos. 1–4, pp. 297–309, Jul. 2019.

[47] K. Yang, G. Wang, Y. Dong, Q. Zhang, and L. Sang, ‘‘Early chatter
identification based on an optimized variational mode decomposition,’’
Mech. Syst. Signal Process., vol. 115, pp. 238–254, Jan. 2019.

[48] H. Caliskan, Z. M. Kilic, and Y. Altintas, ‘‘On-line energy-based milling
chatter detection,’’ J. Manuf. Sci. Eng., vol. 140, no. 11, pp. 1–12,
Nov. 2018.

MICHAŁ R. MAZUR received the M.Sc. and
Ph.D. degrees in machine construction and oper-
ation from the Gdańsk University of Technology
(GUT), Gdańsk, Poland, in 2005 and 2010,
respectively.

Since 2010, he has been an Associate Profes-
sor with the Faculty of Mechanical Engineering,
GUT. He is the author or the coauthor of over
38 articles. His research interests include problems
of robotics, especially mobile robots, mechanical

vibration, modal analysis, finite-element methods, theoretical and exper-
imental modal analysis, mechatronics, signal processing, and real-time
systems and programming.

MAREK A. GALEWSKI received theM.Sc. degree
in automatic control and robotics, and the Ph.D.
degree in machine construction and operation
from theGdańskUniversity of Technology (GUT),
Gdańsk, Poland, in 2003 and 2007, respectively,
and the D.Sc. degree for his works on mechatronic
solutions for vibration reduction in milling with
slender tools, in 2016.

He has been an Associate Professor with the
Faculty of Mechanical Engineering, GUT, since

2016. He is the author or the coauthor of over 65 articles, a book, and two
handbooks. His research interests include problems of vibration reduction
in dynamical objects, especially during milling processes, experimental
modal analysis and modal identification, signal processing, and vibrations
measurement systems integration and programming (mainly in C, LabView,
and LabWindows), including real-time systems.

KRZYSZTOF J. KALIŃSKI received the M.Sc.
degree from the Faculty of Production Engineer-
ing, Gdańsk University of Technology (GUT),
Gdańsk, Poland, in 1980, the Ph.D. degree from
the Faculty of Machine Building, GUT, in 1988,
and the D.Sc. degree from the Faculty of Mechan-
ical Engineering, GUT, in 2002. He received a
Professor’s title, in 2013.

He is currently a Full Professor with the Faculty
of Mechanical Engineering, GUT. He is the author

or the coauthor of over 250 publications. He was invited as a Visiting
Professor at the Ecole Nationale d’Ingénieurs de Metz, France, and North-
western University, Evanston, USA. He gave lectures at Basrah University,
Iraq, and London University, U.K. His research interests include theoretical
and applied mechanics, machine dynamics, vibration engineering, dynam-
ics of machine tools and production processes, robotics and automation,
finite-element methods, theoretical and experimental modal analysis, mecha-
tronics, and biomechanics of a mandible.

216002 VOLUME 8, 2020


