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ABSTRACT In the past few decades, how to reduce the computational complexity of dealing with k-valued
logical networks (LNs) has become a heated research topic. This paper firstly presents a brief survey on
the recent efforts of dealing with large-scale LNs, including approximation of LNs, network aggregation
approach, and logical matrix factorization technique. Then, by using the network aggregation approach,
the stability of large-scale network pairing problem is studied. The network aggregation approach is also
used to study probabilistic logical networks (PLNs). Finally, an illustrative example is given to demonstrate
the effectiveness of the obtained results.

INDEX TERMS Large-scale system, complex logical network, algebraic state space representation, network
aggregation, approximation, logical matrix factorization.

I. INTRODUCTION
As one of significant complex logical dynamic systems,
genetic regulatory networks (GRNs), which are effective to
forecast genetic diseases and design treatment schemes, have
attracted increasing attention due to the broad applications
[1]. There are many mathematical tools to study GRNs, such
as differential equations [2]–[6] and Boolean networks [7].
GRNs are in fact a kind of complex networks [8]–[13].
Multi-valued logical networks (LNs) are a natural extension
of Boolean networks [14], [15], which were firstly proposed
by Jan Lukasiewicz in order to solve the problems in com-
puter and engineering. The values of nodes in LNs are taken
from Dk := {0, 1, · · · , k − 1}, and the update rules are
determined by logical mappings. LNs with control inputs
and outputs are called k-valued logical control networks
(LCNs). Furthermore, LNs can be generalized to probabilistic
logical networks (PLNs), which are powerful to solve the
stochasticity in the process of model establishment.

Recently, based on the semi-tensor product of matrices
(STP), a new framework called algebraic state space repre-
sentation (ASSR) method has been proposed for the analy-
sis and control of LCNs [16]–[20]. Under this framework,
one can convert a logical expression into an equivalent
algebraic form. Many landmark results about LCNs have
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been presented, such as controllability [21]–[24], observabil-
ity [25]–[28], stability and stabilization [29]–[34], optimal
control [35]–[37], output tracking control [38]–[41], distur-
bance decoupling problem [42], [43], pinning control design
[44]–[47], and so on [48]–[53]. In addition, the STP method
is also applied to PLNs. Correspondingly, the stability
[54]–[60], stabilization [61]–[65], controllability [66]–[68],
and other issues of PLNs [69]–[73] are investigated. There
also exist some results in complex networked evolutionary
games theory [74]–[79], multi-agent systems [80], and other
fields [81]–[86], which show the extensive applications of
STP. Lu et al. [87] pointed out that computational complexity
is one of control challenges faced by control theory. When
the number of nodes is large, the results mentioned above are
hardly to use in large-scale LCNs, which shows that how to
reduce the computational load is urgently needed.

Based on the ASSR framework, many efficient techniques
have been introduced to solve the control problems of
large-scale LCNs, including approximation method [88],
network aggregation approach [89]–[91], logical matrix
factorization technique [92], and pinning control design
method [44]. The approximation of LNs was firstly pro-
posed by Cheng and Zhao [88] to obtain a simplified net-
work of large-scale LNs. Zhao et al. [90] firstly introduced
the network aggregation approach for the attractors anal-
ysis of large-scale LNs. Another effective way of dealing
with large-scale LNs is logical matrix factorization [92].
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Li and Wang [92] firstly proposed the logical matrix fac-
torization technique for the topological structure analy-
sis of LNs, and a size-reduced structure-equivalent LNs
is constructed for a given LNs. Zhong et al. [44] pro-
posed a network-structure-based distributed pinning control
framework to design pinning control with lower dimen-
sional controllers and less computational load. In addi-
tion, Yu et al. [93] firstly proposed decompositions of
non-negative integer vectors. By resorting to logical matrix
equations, original networks can be decomposed into many
independent subsystems.

Network pairing problem was proposed in [94] to gener-
alize conventional pairing problem, which can be modeled
as multi-valued LNs. How to find a stable arrangement of
applicants and employers is an interesting issue, but it is hard
to obtain an arrangement when the number of players is large.
In this paper, we explore the properties of large-scale network
pairing problem. Topological structure is a fundamental issue
for LNs. In this paper, we consider a version of this problem
in which the network is PLNs.

In this paper, we give a review of the research progress
for large-scale LCNs and propose some new results about
large-scale LCNs. The remainder of this paper is pre-
sented as follows. In Section II, some preliminaries about
the STP of matrices and ASSR of LCNs are introduced.
In Section III, the methods of dealing with large-scale LCNs
are reviewed, including approximation of LNs, network
aggregation approach and logical matrix factorization tech-
nique. In Section IV, we explore the stability of large-scale
network pairing problem. In Section V, we investigate the
topological structure of PLNs. A numerical example is given
in Section VI, which is followed by the conclusion in
Section VII.

II. PRELIMINARIES
A. NOTATIONS
In this subsection, we give some notations. Please refer to [16]
for more details.
• 1>k =

[
1 · · · 1︸ ︷︷ ︸

k

]
.

• Colj(A)
(
Rowj(A)

)
: the j-th column (row) of A. Col(A)

denotes the set of columns of A.
• 1k := {δ

i
k = Coli(Ik ) : i = 1, · · · , k}, where Ik denotes

the k-dimensional identity matrix.
•An n× t real matrix L is called a logical matrix, ifCol(L) ⊆
1n, and the set of n× t logical matrices is denoted by Ln×t .
• If L ∈ Ln×t , then it can be expressed as L = [δi1n · · · δ

it
n ];

for brevity, L = δn[i1 · · · it ].
• The Khatri-Rao product of two matrices A ∈ Rp×n and
B ∈ Rq×n is

A ∗ B = [Col1(A)⊗ Col1(B) · · · Coln(A)⊗ Coln(B)],

where ‘‘⊗’’ denotes the Kronecker product.

B. ALGEBRAIC EXPRESSION OF LOGICAL FUNCTION
Given a logical function f : Dn

k → Dk . By using the STP
method introduced in [16], one can obtain a unique logical

matrix Mf such that

f (x1, x2, · · · , xn) = Mf nn
i=1 xi, (1)

where Mf ∈ Lk×kn is the structural matrix of f , xi ∈ 1k ,
i = 1, · · · , n and nn

i=1xi = x1 n · · ·n xn.
For example, given a Boolean function

f (x1, x2, x3) = x1 ∨ x2 ∨ ¬x3,

where x1, x2, x3 ∈ D2 are Boolean variables. The correspond-
ing algebraic form is

f (x1, x2, x3) = Mf n3
i=1 xi,

where xi ∈ 12, i = 1, 2, 3, Mf = δ2[1 1 1 1 1 1 2 1] ∈ L2×8
is the structural matrix.

For a given a logical mapping F : Dn
k → Dm

k , which
contains m logical functions. Then, by using the Khatri-Rao
product of matrices [16], it holds that

F(x1, x2, · · · , xn) = MF nn
i=1 xi, (2)

where MF ∈ Lkm×kn is the so-called structural matrix of F .
For example, given a Boolean mapping F : D3

2 → D2
2 ,

which is described as follows:{
f1(x1, x2, x3) = x1 ∨ x2,
f2(x1, x2, x3) = ¬x2 ∧ x3,

where x1, x2, x3 ∈ D2 are Boolean variables. Then, the cor-
responding algebraic form is

F(x1, x2, x3) = MF n3
i=1 xi,

where MF = Mf1 ∗Mf2 = δ4[2 2 1 2 2 2 3 4] ∈ L4×8 is the
structural matrix.

C. ALGEBRAIC STATE SPACE REPRESENTATION OF
LOGICAL NETWORKS
Consider the following LN: x1(t + 1) = f̃1(x1(t), · · · , xn(t)),

· · ·

xn(t + 1) = f̃n(x1(t), · · · , xn(t)),
(3)

where xi(t) ∈ Dk , i = 1, · · · , n are state variables, f̃i : Dn
k →

Dk , i = 1, · · · , n are k-valued logical functions.
By using the algebraic form of logical variables, Cheng

et al. [16] established the ASSR of system (3) as follows:

x(t + 1) = L̃x(t), (4)

where x(t) = nn
i=1xi(t), L̃ ∈ Lkn×kn is the state transition

matrix.
If system (3) has input and output variables, then system (3)

becomes an LCN which is expressed as
x1(t + 1) = f1(u1(t), · · · , um(t), x1(t), · · · , xn(t)),
· · ·

xn(t + 1) = fn(u1(t), · · · , um(t), x1(t), · · · , xn(t)),
γj(t) = hj(x1(t), · · · , xn(t)), j = 1, · · · , ρ,

(5)

where xi(t) ∈ Dk , i = 1, · · · , n are state variables, uj(t) ∈
Dk , j = 1, · · · ,m are control inputs, γj(t) ∈ Dk , j = 1, · · · , ρ
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are outputs, fi : Dm+n
k → Dk , i = 1, · · · , n and hj : Dn

k →

Dk , j = 1, · · · , ρ are k-valued logical functions.
Similarly, the ASSR of system (5) is obtained as{

x(t + 1) = Lu(t)x(t),
γ (t) = Hx(t),

(6)

where x(t) = nn
i=1xi(t), u(t) = nm

j=1uj(t), γ (t) = nρj=1γj(t),
L ∈ Lkn×km+n is the state transition matrix, and H ∈ Lkρ×kn
is the output matrix.
Example 1: Consider the following Boolean network:

x1(t + 1) = x2(t) ∧ x3(t),
x2(t + 1) = x1(t) ∨ x3(t),
x3(t + 1) = ¬x2(t),
x4(t + 1) = x1(t) ∨ ¬x4(t),

(7)

where xi ∈ D, i = 1, · · · , 4. By using the STP method,
the ASSR of system (7) can be obtained as

x1(t + 1) = δ2[1 1 2 2 2 2 2 2 1 1 2 2 2 2 2 2]x(t),
x2(t + 1) = δ2[1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 2]x(t),
x3(t + 1) = δ2[2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1]x(t),
x4(t + 1) = δ2[1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1]x(t),

(8)

where x(t) = n4
i=1xi(t). Then, the state transition matrix of

system (7) is

MF = δ16[3 3 11 11 9 9 9 9 4 3 16 15 10 9 14 13].

III. EXISTING METHODS OF STUDYING LARGE-SCALE
COMPLEX LOGICAL NETWORKS
A. APPROXIMATION METHOD
The approximation of large-scale LNs (3) was firstly inves-
tigated in [88] by aggregating the whole networks into sev-
eral subsystems. According to the observed data, the best
approximation of original networks is given in [88].

Consider system (3). Setting node set X = {x1, · · · , xn},
then partition X into s blocks as

X = X1 ∪ · · · ∪ Xs, (9)

where Xi = {xi,1, · · · , xi,ni}, i = 1, · · · , s is the subset of X .
We emphasize that Xi ∩ Xj = ∅, i, j = 1, · · · , s, i 6= j.

In addition, for the i-th block Xi, if there exist incom-
ing (outgoing) edges from (to) other blocks, then the start-
ing nodes of these incoming (outgoing) edges are called
input (output) nodes of blockXi. Denote the set of input nodes
and output nodes of the i-th block by Zi = {zi,1, · · · , zi,pi}
and Yi = {yi,1, · · · , yi,qi}, respectively. In the sequel, without
loss of generality, we assume that the elements in Xi, Zi and
Yi keep the order in X if they are nonempty sets.

From the above partition, we can obtain that
s∑
i=1

ni = n,

s∑
i=1

pi =
s∑
j=1

qj := ϑ .

Each block forms a subnetwork. Denote the i-th block by
6i, i = 1, · · · , s. The dynamics of 6i is described as: xi,j(t + 1) = f̃i,j(zi,1(t), · · · , zi,pi (t), xi,1(t),

· · · , xi,ni (t)), j = 1, · · · , ni
yi,j(t) = gi,j(xi,1(t), · · · , xi,ni (t)), j = 1, · · · , qi.

(10)

The ASSR of system (10) is{
Xi(t + 1) = L̃iZi(t)Xi(t),
Yi(t) = GiXi(t),

(11)

where Xi(t) = nni
j=1xi,j(t), Zi(t) = npi

j=1zi,j(t), Yi(t) =
nqi
j=1yi,j(t), L̃i ∈ Lkni×kni+pi , Gi ∈ Lkqi×kni .
Combining the equation in (11), it holds that

Yi(t + 1) = GiXi(t + 1)

= GiL̃iZi(t)Xi(t)

= GiL̃W[kni ,kpi ]Xi(t)Zi(t)

:= L̃i(t)Zi(t),

where L̃i(t) is called the input-output transition matrix of 6i,
which is a time-varying matrix.

Setting Y (t) = ns
i=1Yi(t), then there exists a dummy

operator 9i such that

Zi(t) = 9iY (t),

where 9i is in the form of (1>ai ⊗ I>bi ⊗ 1>ci ), and ai, bi, ci
are dependent on the partition. Therefore, system (11) can be
written as

Yi(t + 1) = L̂i(t)Y (t), (12)

where L̂i(t) = L̃i(t)9i, i = 1, · · · , s.
By using the observed data, system (12) is approximately

estimated in [88], and a simplified logical network for sys-
tem (3) can be obtained.

More importantly, qi, pi � n, which shows that the size
of the structural matrix in (12) is quite small. Therefore, one
can use the new simplified networks to explore the properties
of original large-scale LNs, which will further reduce the
computational load.

B. NETWORK AGGREGATION METHOD
1) ATTRACTORS ANALYSIS OF LARGE-SCALE LNs
Consider system (3) with aggregation (9). The input-state
transition graph of 6i, i = 1, · · · , s can be defined as

{(α1, β1)→ (α2, β2) : αj ∈ 1kni , βj ∈ 1kpi , j = 1, 2,

Xi(α1, β1) = α2}.

According to the input-state transition graph, the control
fixed point and control limit cycle of 6i can be derived,
i = 1, · · · , s.

Firstly, a natural mapping from the state in set P =

{nn
i=1αi : αi ∈ 1k , i = 1, · · · , n} ⊆ 1kn to the state in set

Q = {nm
j=1αij : αij ∈ 1k , ij ∈ {1, · · · , n}, j = 1, · · · ,m} ⊆

1km is defined as:

π (P,Q) : 1kn → 1km .

Split state transition matrix L̃i defined in (11) into kpi

blocks:

L̃i = [L̃1i · · · L̃
kpi
i ]. (13)

For the control fixed points of 6i, Zhao et al. [90]
pointed out that (δαkni , δ

β

kpi ) is a control fixed point of 6i, iff
Xi(δαkni , δ

β

kpi ) = δ
α
kni , that is, (L̃

β
i )α,α = 1.
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In [90], Zhao et al. proposed that a chain of distinct com-
ponents

{
(δα1kni , δ

β1
kpi ) → · · · → (δαlkni , δ

βl
kpi )
}
is a control limit

cycle with length l of subnetwork 6i, iff Xi
(
δ
αj
kni , δ

βj
kpi
)
=

δ
αj+1
kni , j = 1, · · · , l − 1, Xi

(
δ
αl
kni , δ

βl
kpi
)
= δ

α1
kni , that is,(

L̃
βj
i

)
αj+1,αj

= 1,
(
L̃βli
)
α1,αl
= 1, j = 1, · · · , l − 1.

In [90], the fixed points and limit cycles of large-scale
LNs are obtained by combining the control fixed points and
limit cycles of each subnetwork which satisfy the matching
criteria.

Therefore, the complete solution of attractors for
large-scale LNs is obtained via network aggregation
approach.

2) CONTROLLABILITY ANALYSIS OF LARGE-SCALE LCNs
Consider system (5). The node set of (5) is denoted by
N = {x1, · · · , xn, u1, · · · , um}, where state node set is X =
{x1, · · · , xn}, and control input node set is U = {u1, · · · , um}.
Partition N into s blocks as

N = N1 ∪ · · · ∪Ns, (14)

where Ni = {xi,1, · · · , xi,ni , ui,1, · · · , ui,mi} is the proper
subset of N , and Ni ∩Nj = ∅, i, j = 1, · · · , s, i 6= j.
Similarly, the input nodes and output nodes of the i-th

block can be described by Zi = {zi,1, · · · , zi,pi} and Yi =
{yi,1, · · · , yi,qi}, respectively. 6i is also used to express the i-
th block, i = 1, · · · , s. The dynamics of 6i can be described
as:  xi,j(t + 1) = fi,j(zi,1(t), · · · , zi,pi (t), ui,1(t),

· · · , ui,mi (t), xi,1(t), · · · , xi,ni (t)), j = 1, · · · , ni,
yi,j(t) = hi,j(xi,1(t), · · · , xi,ni (t)), j = 1, · · · , qi.

(15)

Then, the ASSR of system (15) is{
Xi(t + 1) = LiZi(t)Ui(t)Xi(t),
Yi(t) = HiXi(t),

(16)

where Xi(t) = nni
j=1xi,j(t), Zi(t) = npi

j=1zi,j(t), Ui(t) =
nmi
j=1ui,j(t), Yi(t) = nqi

j=1yi,j(t), Li ∈ Lkni×kni+pi+mi , Hi ∈
Lkqi×kni .
The weak connectivity of network graph for large-scale

LCN (5) and each subnetwork is needed. In addition, there
exists at least one state node in each block.
From the controllability of the whole system (5) with

aggregation (14), the controllability of each subnetworks is
derived. Zhao et al. [91] proved that if system (5) with aggre-
gation (14) is controllable, then all the subnetworks 6i are
controllable, i = 1, · · · , s.
Remark 1: It is worth pointing out that, the result for

controllability of large-scale LCNs via network aggregation
is just a necessary condition. The sufficient conditions need
to be explored further.

3) OBSERVABILITY ANALYSIS OF LARGE-SCALE LCNs
The definition of observability considered in this part is sim-
ilar to Definition 1.1 (D4) in [26].
Noticing that the observability of system (5) needs to

consider the output sequence, in the following, we give

a new node partition which contains the output node set
0 = {γ1, · · · , γρ}.
Consider system (5). Denote the node set of (5) as

N = X ∪ U ∪ 0 = {x1, · · · , xn, u1, · · · , um, γ1, · · · , γρ}.

Partition N into s blocks as
N = N1 ∪ · · · ∪Ns, (17)

where Ni is a proper subset of N , and Ni ∩ Nj = ∅, i, j =
1, · · · , s, i 6= j.
In like manner, the set of input nodes and output nodes of

6i can be denoted by Zi and Yi, i = 1, · · · , s, respectively.
The observability of large-scale LCNs was investigated in

[89], which shows that if system (5) has an acyclic aggrega-
tion and all the subnetworks 6i, i = 1, · · · , s are observable,
then system (5) is observable.
We emphasize that the observability of large-scale LCNs

in general network aggregation structure needs further
exploration.

4) STABILIZATION OF LARGE-SCALE LCNs
Consider system (5) with network aggregation (14). Given
equilibrium point Xe. System (5) is called globally stabiliz-
able, if for any initial state, there exists a control sequence
{U (t) : t ≥ 0} such that system (5) can converge to Xe.
For the stabilization of system (5), a necessary condi-

tion is given in [91]. If system (5) is stabilized to Xe, then
subnetwork 6i is stabilizable to π (Xe,Xi), i = 1, · · · , s.
In the following, the sufficient condition for stabilization

of large-scale LCNs is explored via acyclic aggregation.
Some terms need to be defined before the sufficient

condition is stated:
• Level-0 blocks: the blocks with in-degree 0;
• Level-r blocks: the block which the longest path from it to
the level-0 block is of length r ;
• N r :={level-0 block}∪ · · · ∪{level-r block};
• The stabilized fixed output of N r : if subnetworks cor-
responding to the level-0 block to the level-r block are
stabilized after time t , then the output of the subnetworks
corresponding to N r are fixed after time t , which is called
the stabilized fixed output of N r .
Given an acyclic aggregation of system (5). Suppose that

all the subnetworks corresponding to level-0 block are glob-
ally stabilizable. For a certain r > 0, there is a stablilized
fixed output of N r such that, when the input of the sub-
networks corresponding to the level-r block are fixed as the
mapping of the stabilized fixed output, all the subnetworks
corresponding to the level-r block are stabilizable. Then,
the whole system (5) is globally stabilizable.
Remark 2: The sufficient condition of stabilization for

large-scale LCNs is dependent on the special network struc-
ture. The corresponding results in general network structure
deserve further discussion.

C. LOGICAL MATRIX FACTORIZATION METHOD
Consider system (3). Suppose that the state transition matrix
is L̃ = δkn [i1 · · · ikn ]. There exists a permutation matrix
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Q ∈ Lkn×kn such that

˜̃L = L̃Q = δkn
[
î1 · · · î1︸ ︷︷ ︸

s1

· · · îr · · · îr︸ ︷︷ ︸
sr

]
∈ Lkn×kn ,

where îj denotes the different components in the vector
(i1, · · · , ikn ), r is the number of distinct components, and
sj is the number of components in the vector (i1, · · · , ikn )
coinciding with îj, j = 1, · · · , r .
In [92], Li and Wang firstly proposed a matrix factoriza-

tion form for state transition matrix L̃. In details, the state
transition matrix L̃ of system (3) can be factorized as L̃ =
L̃1L̃2, where L̃1 = δkn [î1 · · · îr ] ∈ Lkn×r , L̃2 =
δr

[
1 · · · 1︸ ︷︷ ︸

s1

· · · r · · · r︸ ︷︷ ︸
sr

]
Q−1 ∈ Lr×kn .

In order to obtain the equivalent size-reduced logical net-

work of system (3), a bijection from {δ
îµ
kn : µ = 1, · · · , r} to

1r is defined as 8(δ
îµ
kn ) = δ

µ
r . Then, setting

˜̃L = L̃2L̃1 ∈ Lr×r , (18)

the size-reduced logical network with state transition matrix
˜̃L ∈ Lr×r is obtained as

w(t + 1) = ˜̃Lw(t), (19)

where w(t) ∈ 1r .
By using logical matrix factorization technique, the dimen-

sion of state transitionmatrix of system (3) is reduced from kn

to r . In [92], the topological structure of system (3) is proved
to be equivalent to that of size-reduced system (19).

Similarly, logical matrix factorization technique can also
be applied to large-scale LCNs in order to reduce the dimen-
sion of state transition matrix which can be further studied in
the future.

IV. NETWORK PAIRING PROBLEM
A network pairing problem is denoted by a tuple

2 = {A,M ,G,X ,R}, (20)

whereA is the set of n applicants andM is the set of n employ-
ers. G := {A,M ,E} is called a graph, where E ⊆ A × M
is the set of edges. In this section, the graph is undirected.
X := {x1, · · · , xn}, xi ∈ Ni is the proposal of applicant i,
i = 1, · · · , n, where Ni ⊆ M is the set of neighbors for
applicant i. R : A ×M → N2 is the ranking of pairs, which
comes from the preferences of applicants and employers.

Considering the ranking of pairs, the dynamics of a
network pairing problem can be modeled by x1(t + 1) = f1(x1(t), · · · , xn(t)),

· · ·

xn(t + 1) = fn(x1(t), · · · , xn(t)),
(21)

where xi ∈ Dki , i = 1, · · · , n are applicants, fi :
n∏
j=1

Dkj →

Dki are mix-valued logical functions, and ki := |Ni|. These
mix-valued logical functions are determined by the overall
ranking of pairs.

The ASSR of system (21) is

x(t + 1) = Lx(t), (22)

where x(t) = nn
i=1xi(t), L ∈ Lk×k , k =

n∏
i=1

ki is the structural

matrix.
One problem worth discussing is whether or not an

arrangement is stable. Zhang and Cheng [94] pointed out that
the arrangements of network pairing problem are the fixed
points and limit cycles of system (22). However, if the number
of players is large, it is hard to verify whether or not one
arrangement is stable. In the following, based on the network
aggregation method, we consider the stability of network
pairing problem.

Denoting X = {x1, · · · , xn}, partition X into s blocks:

X = X1 ∪ · · · ∪ Xs, (23)

where Xi is a proper subset of X consisting of state nodes
Xi = {xi,1, · · · , xi,ni} and Xi ∩ Xj = ∅, i 6= j. xi,j ∈ Ni,j
is the proposal of applicant (i, j), where (i, j) denotes the j-
th applicant in the i-th block, and Ni,j ⊆ M is the set of
neighbors for applicant (i, j), i = 1, · · · , s, j = 1, · · · , ni.
Set ki,j := |Ni,j|, j = 1, · · · , ni, i = 1, · · · , s.

The node partition is similar to aggregation (9), then the
set of input nodes and output nodes of the i-th block is
denoted by Zi = {zi,1, · · · , zi,pi} and Yi = {yi,1, · · · , yi,qi},
respectively.

The dynamics of subnetwork6i, i = 1, · · · , s is described
as:

xi,j(t + 1) = fi,j(xi,1(t), · · · , xi,ni (t), zi,1(t), · · · , zi,qi (t)).

(24)

The ASSR of system (24) is
Xi(t + 1) = FiZi(t)Xi(t), (25)

where Xi(t) = nni
j=1xi,j(t), Zi(t) = nqi

j=1zi,j(t), Fi ∈ Ldi×ridi ,

di =
ni∏
j=1

ki,j, ri =
qi∏
j=1

ki,j, i = 1, · · · , s.

By using themethod introduced in Section III-B1, the fixed
points and limit cycles of system (22) can be obtained, that is,
all the arrangements of network pairing problem are obtained.
The next question is to check which arrangement is stable.

By extending the Algorithm 1 in [94], the unstable degree
of each subnetwork can be obtained. If the unstable degree
is 0, then the corresponding arrangement is stable.
Remark 3: The algorithm provided in [94] can be applied

to the case of square matrix, while our method can be used in
the situation where the rank matrix is not a square matrix.

In the following, based on the acyclic network aggregation,
the global stability of network pairing problem is investi-
gated.

Denote the set of all arrangements of network pairing
problem by M. SetMi = π (Xi,M).
Definition 1: Subnetwork 6i is said to be globally set

stabilizable toMi, if for any initial state, there exists a control
sequence {Zi(t) : t ≥ 0} such that 6i converges to setMi.
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Algorithm 1 Unstable Degree Computation for Subnetwork
6i

1: Extract the rank matrix of applicants and employers for
6i, denoted by Mi and Ni, respectively.

2: Mark the elements ofMi andNi, which are corresponding
to the arrangement to be checked.

3: For each row ofMi, if there exists an elementwhich is less
than the marked one in the same row, use 1 to replace it;
otherwise, all elements of this row are 0. Denote the new
matrix by M̃i.

4: For each column of Ni, if there exists an element which
is less than the marked one in the same column, use 1
to replace it, and use 0 to replace the rest; otherwise, all
elements of this column are 0. Denote the new matrix by
Ñi.

5: Set Qi = M̃i ∩ Ñi. If
ni∑
j=1

n∑
l=1

Qi = %i, then the unstable

degree of 6i corresponding to this checked arrangement
is %i, i = 1, · · · , s

Theorem 1: Subnetwork 6i is globally set stabilizable to
the setMi, iff the following hold:
(i) The elements in Mi are fixed points of 6i;
(ii) In 6i, Mi is globally reachable.
Theorem 2: Consider system (22) whose network graph is

acyclic. It is globally set stable at M if the following hold:
(i) All the subnetworks corresponding to level-0 blocks

are globally set stable;
(ii) For any positive integer r , there exists a stabilized

fixed output from blocks Lr−1, such that subnetworks
corresponding to level-r block are set stabilizable to
their own mapping set from M, while the input states
of level-r blocks are the projections of the stabilized
fixed output from Lr−1.

V. TOPOLOGICAL STRUCTURE OF LARGE-SCALE
PROBABILISTIC LOGICAL NETWORKS
A. ALGEBRAIC FORM OF LARGE-SCALE PLNs
Consider the following PLN: x1(t + 1) = f (1) (x(t), · · · , xn(t)) ,

· · · · · ·

xn(t + 1) = f (n) (x1(t), · · · , xn(t)) ,
(26)

where xi ∈ Dk is state variable, i = 1, · · · , n. Assume that
there exist c(i) candidates of logical function f (i) as

f (i)l (x1(t), · · · , xn(t)), l = 1, · · · , c(i), i = 1, · · · , n. (27)

The probability of choosing logical function f (i)l as the update
function is ρ(i)l , that is,

ρ
(i)
l = P{f (i) = f (i)l }, l = 1, · · · , c(i), i = 1, · · · , n. (28)

It is obvious that
c(i)∑
l=1

ρ
(i)
l = 1, i = 1, · · · , n. (29)

Due to the randomness in genetic networks, the state of
gene i at the next moment is determined by c(i) logical func-
tions f (i)1 , · · · , f (i)c(i) with probabilities ρ(i)1 , · · · , ρ

(i)
c(i), respec-

tively. Moreover, notice that a PLN can be regarded as an
extension of LNs with a probabilistic setting. Then, in the
j-th LN, assume that the network update function is given
by fj = (f (1)j1

, · · · , f (n)jn ), ji ∈ {1, · · · , c(i)}, j = 1, · · · , τ ,

i = 1, · · · , n, τ =
n∏
i=1

c(i). Denote the probability that the

j-th LN is selected by ρj. The ASSR of PLN (26) is
x(t + 1) = Lx(t), (30)

where x(t) = nn
i=1xi(t) ∈ 1kn , L ∈ {L1 · · · ,Lτ }, and P{L =

Lj} = ρj, j = 1, · · · , τ .

B. TOPOLOGICAL STRUCTURE OF PLNs
The topological structure of PLN (30) includes positive
probability fixed point and positive probability basic cycle,
which were analyzed in [95].

Firstly, we give the one-step transition probability matrix
of PLN (30) as

M =
τ∑
j=1

ρjLj. (31)

It is easy to see that (M )α,β = P{x(t + 1) = δαkn | x(t) =
δ
β
kn}. By induction, the θ -step transition probability matrix of
PLN (30) isM θ , that is, (M θ )α,β = P{x(t+θ ) = δαkn | x(t) =
δ
β
kn}.
Definition 2 [96]: xe = δ

ζ
kn is said to be a positive proba-

bility fixed point of system (30), if P{x(t + 1) = δζkn | x(t) =
δ
ζ
kn} > 0, that is, (M )ζ,ζ > 0.
Definition 3 [96]: A chain of distinct states

{
δ
ζ1
kn → · · · →

δ
ζl
kn
}
is said to be a positive probability basic cycle with length

l of system (30), if P
{
x(t + 1) = δ

ζs+1
kn | x(t) = δ

ζs
kn
}
> 0,

s = 1, · · · , l − 1, and P
{
x(t + 1) = δζ1kn | x(t) = δ

ζl
kn
}
> 0,

that is, (M )ζs+1,ζs > 0, s = 1, · · · , l − 1, and (M )ζ1,ζl > 0.

C. AGGREGATION OF PLNs
Considering the network graph composed by all modes of
PLN (30), then partition the new network graph using the sim-
ilar partition method introduced in Section III. The dynamics
of subnetwork 6i is described as

xi,j(t + 1) = f (i,j)(xi,1(t), · · · , xi,ni (t), zi,1(t), · · · , zi,qi (t)),

(32)

where ρ(i,j)l = P{f (i,j) = f (i,j)l }, l = 1, · · · , c(i, j), c(i, j)
denotes the number of candidates for logical function f (i,j),
j = 1, · · · , ni, i = 1, · · · , s.
The ASSR of subnetwork (32) is

Xi(t + 1) = FiZi(t)Xi(t), (33)

where Xi(t) = nni
j=1xi,j(t), Zi(t) = nqi

j=1zi,j(t), Fi ∈

{Fi,1, · · · ,Fi,τi}, P{Fi = Fi,j} = ρ
(i)
j , j = 1, · · · , τi, τi =

ni∏
k=1

c(i, k), i = 1, · · · , s.
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D. TOPOLOGICAL STRUCTURE ANALYSIS
In this part, we consider the topological structure of
large-scale PLN (30) based on the topological structure of
subnetworks.

Consider subnetwork6i. Split structural matrix Fi into kqi
blocks. According to Fi ∈ {Fi,1, · · · ,Fi,τi}, we have

Fi,j = [F1
i,j · · ·F

kqi
i,j ], j = 1, · · · , τi. (34)

Then, under the control Zi(t) = δ
ξ

kqi , the transition probability
matrix of subnetwork 6i is

Mi,ξ =

τi∑
j=1

ρ
(i)
j F

ξ
i,j. (35)

Definition 4: Consider subnetwork 6i.
(i) The input-state positive probability transition graph

of 6i is defined as a directed graph
{
1kni ×

1kqi ,3i, {Mi,ξ , ξ = 1, · · · , kqi}
}
, where

3i =
{
(θ, β)→ (θ ′, β ′) | θ, θ ′ ∈ 1kni ,

β, β ′ ∈ 1kqi , (Mi,β )θ ′,θ > 0
}
; (36)

(ii) A period path of the input-state positive probability
transition graph with period 1 is called a positive prob-
ability control fixed point of 6i;

iii) A period path with distinct components of the
input-state positive probability transition graph with
period l, l > 1 is called a positive probability control
basic cycle with length l.

Lemma 1: (δαkni , δ
β

kqi ) is an positive probability control
fixed point of subnetwork 6i, iff P{Xi(t + 1) = δαkni | Xi(t) =
δαkni ,Zi(t) = δ

β

kqi } > 0, that is, (Mi,β )α,α > 0.
Lemma 2: A chain of distinct components

{
(δα1kni , δ

β1
kqi )→

· · · → (δαlkni , δ
βl
kqi )
}
is an positive probability control basic

cycle with length l of subnetwork6i, iff P
{
Xi(t+1) = δ

αs+1
kni |

Xi(t) = δ
αs
kni ,Zi(t) = δ

βs
kqi
}
> 0, s = 1, · · · , l − 1, and

P
{
Xi(t + 1) = δ

α1
kni | Xi(t) = δ

αl
kni ,Zi(t) = δ

βl
kqi
}
> 0, that

is, (Mi,βs )αs+1,αs > 0, s = 1, · · · , l − 1, and (Mi,βl )α1,αl > 0.
Firstly, we analyze the positive probability fixed points of

large-scale PLN (30) via network aggregation.
According to Lemma 1, one can obtain all positive proba-

bility control fixed points of subnetwork 6i as

Aji =
(
δ
α
j
i

kni , δ
β
j
i

kqi
)
, (37)

where j = 1, · · · , ei, ei is the number of positive probability
control fixed points in 6i, i = 1, · · · , s. Define Z (h)

i =

Y (i)
h := Zi∩Yh, i, h = 1, · · · , s, i 6= h. Given a set of positive

probability control fixed points as

{Ajii : i = 1, · · · , s}, (38)

where ji ∈ {1, · · · , ei}. If

π
(
Ajii ,Z

(h)
i

)
= π

(
Ajhh ,Y

(i)
h

)
(39)

holds for any i, h = 1, · · · , s, i 6= h, then the positive
probability control fixed points in (38) form a positive prob-
ability fixed point of system (30). Suppose that there exist
ε sets of positive probability control fixed points satisfying
condition (39), denoted by Ai, i = 1, · · · , ε. Assuming
that xα ∈ Xβ , let xeα := π (A

jβ
β , {xα}), α ∈ {1, · · · , n},

β ∈ {1, · · · , s}. Then, the corresponding positive probability
fixed point of system (30) is Xe = nn

α=1x
e
α .

Based on the above analysis, we give the following
algorithm to obtain all positive probability fixed points of
large-scale PLN (30).

Algorithm 2 The Following Steps Are Used to Calculate All
Positive Probability Fixed Points of Large-Scale PLN (30)
1: Calculate all positive probability control fixed points of
6i in the form of (37).

2: Find out all sets of positive probability control fixed
points satisfying condition (39). If there exists any,
denote them by Ai, i = 1, · · · , ε. Otherwise, stop.

3: According to Ai, i = 1, · · · , ε, calculate all positive
probability fixed points of large-scale PLN (30), denoted
by Xe,i = nn

j=1x
e,i
j , i = 1, · · · , ε.

Similarly, in the following, we analyze the positive prob-
ability basic cycles of large-scale PLN (30) via network
aggregation.

According to Lemma 2, it is easy to obtain all positive
probability control basic cycles of subnetwork 6i, denoted
by

Bji =
{(
δ
γ ij,1
kni , δ

λij,1
kqi

)
→ · · · →

(
δ
γ ij,lj
kni , δ

λij,lj
kqi

)}
, (40)

where the length of basic cycle Bji is lj, j = 1, · · · ,$i, and
$i is the number of positive probability control basic cycles
in 6i, i = 1, · · · , s.

Given a set of positive probability control basic cycles as

{Bjii : i = 1, · · · , s}, (41)

where ji ∈ {1, · · · ,$i}.

Define 5
(
Bji,D

)
:=

{
π (Bj1i ,D) → · · · → π (B

jlj
i ,D)

}
,

D ⊆
(
Xi ∪ Zi

)
⊆ X . If

5
(
Bjii ,Z

(h)
i

)
= 5

(
Bjhh ,Y

(i)
h

)
, (42)

holds for any i, h = 1, · · · , s, i 6= h, then the positive
probability control basic cycles in (41) form a positive prob-
ability basic cycle of system (30). Suppose that there exist
ε sets of positive probability control basic cycles satisfying
condition (42), denoted by Br , r = 1, · · · , ε. For

Br := {B
jri
i : i = 1, · · · , s}, (43)

denote the least common multiple of the length of Bj
r
i
i , i =

1, · · · , s by lr . By repeating the elements inBj
r
i
i (with possible

adjusting the order), one can extend the length of Bj
r
i
i to lr ,

denoted the obtained positive probability control basic cycle
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by B̃j
r
i
i . Then, according to B̃j

r
i
i , i = 1, · · · , s, one can obtain

xr,tj , j = 1, · · · , n, t = 1, · · · , lr . Thus, the positive proba-
bility basic cycles of system (30) corresponding to Br can be
obtained as {Xr,1 → · · · → Xr,lr }, where Xr,t = nn

j=1x
r,t
j ,

t = 1, · · · , lr .
Based on the following algorithm, all positive probability

basic cycles of large-scale PLN (30) can be obtained.

Algorithm 3 The Following Steps Are Used to Obtain All
Positive Probability Basic Cycles of Large-Scale PLN (30)
1: Calculate all positive probability control basic cycles of
6i in the form of (40).

2: Find out all sets of positive probability control basic
cycles satisfying condition (42). If there exists any,
denote them by Br , r = 1, · · · , ε. Otherwise, stop.

3: For each Br , r = 1, · · · , ε, construct the corresponding
B̃r .

4: According to B̃r , r = 1, · · · , ε, calculate the posi-
tive probability basic cycles of large-scale PLN (30) as
{Xr,1→ · · · → Xr,lr }.

Remark 4: There exists τ modes in PLN (30). When par-
titioning, we consider the network graph composed of all the
modes rather than the network graph of one mode.
Remark 5: When combining the positive probability con-

trol fixed points and basic cycles of subnetworks to obtain
the positive probability fixed points and basic cycles of sys-
tem (30), we use the information of different modes instead
of just one mode.

VI. EXAMPLE
Example 2: Considering the following probabilistic

Boolean network, and the update rules are given as follows:

x1(t + 1) = x2(t), ρ
(1)
1 = 1

x2(t + 1) =

{
x3(t) ∧ x7(t), ρ

(2)
1 = 0.7

x3(t), ρ
(2)
2 = 0.3

x3(t + 1) = x1(t) ∨ x2(t), ρ
(3)
1 = 1

x4(t + 1) =

{
x1(t) ∨ x5(t) ∨ x7(t), ρ

(4)
1 = 0.5

x1(t), ρ
(4)
2 = 0.5

x5(t + 1) = ¬x4(t), ρ
(5)
1 = 1

x6(t + 1) = x6(t), ρ
(6)
1 = 1

x7(t + 1) = x6(t), ρ
(7)
1 = 1

x8(t + 1) =

{
x7(t) ∨ x9(t), ρ

(8)
1 = 0.6

x7(t) ∧ x9(t), ρ
(8)
2 = 0.4

x9(t + 1) = x6(t), ρ
(1)
1 = 1.

(44)

Partition the node setX = {x1, x2, x3, x4, x5, x6, x7, x8, x9}
into 3 blocks:

X = X1 ∪ X2 ∪ X3,

whereX1 = {x1, x2, x3},X2 = {x4, x5},X3 = {x6, x7, x8, x9}.
One can find that Z1 = {x7}, Z2 = {x1, x7}, Z3 = ∅.
Figure. 1 is the network graph of system (44), where the
weight on edge represents the probability of interaction.

FIGURE 1. The network graph of system (44) in Example 2.

In this figure, the black line means that the probability of
interaction is 1, while lines in other colors represent different
modes of a node.

The ASSR of subnetwork 6i is:
Xi(t + 1) = FiZi(t)Xi(t), (45)

where Xi(t) = nni
j=1xi,j(t), Zi(t) = nqi

j=1zi,j(t), P{F1 =
F1,1} = 0.7, P{F1 = F1,2} = 0.3, P{F2 = F2,1} = 0.5,
P{F2 = F2,2} = 0.5, P{F3 = F3,1} = 0.6, P{F3 = F3,2} =
0.4, and

F1,1 = δ8[1 3 5 7 1 3 6 8 3 3 7 7 3 3 8 8],

F1,2 = δ8[1 3 5 7 1 3 6 8 1 3 5 7 1 3 6 8],

F2,1 = δ4[2 2 1 1 2 2 1 1 2 2 1 1 2 4 1 3],

F2,2 = δ4[2 2 1 1 2 2 1 1 4 4 3 3 4 4 3 3],

F3,1 = δ16[1 1 1 1 1 3 1 3 14 14 14 14 14 16 14 16],

F3,2 = δ16[1 3 1 3 3 3 3 3 14 16 14 16 16 16 16 16].

According to Lemma 1, the positive probability control
fixed points of 61 are

A11 = (δ18, δ
1
2),A

2
1 = (δ18, δ

2
2),A

3
1 = (δ88, δ

1
2),A

4
1 = (δ88, δ

2
2).

The positive probability control fixed points of 62 are

A12 = (δ24, δ
1
4), A22 = (δ24, δ

2
4), A32 = (δ24, δ

3
4),

A42 = (δ34, δ
3
4), A52 = (δ34, δ

4
4).

The positive probability control fixed points of 63 are

A13 = δ
1
16, A

2
3 = δ

16
16 .

The sets of positive probability control fixed points satis-
fying condition (39) are

A1 =
{
A11,A

1
2,A

1
3
}
, A2 =

{
A21,A

2
2,A

2
3
}
,

A3 =
{
A31,A

3
2,A

1
3
}
, A4 =

{
A31,A

4
2,A

1
3
}
,

A5 =
{
A41,A

5
2,A

2
3
}
. (46)

Therefore, from Algorithm 1, the positive probability fixed
points of system (44) are obtained as

Xe,1 = δ17512, Xe,2 = δ32512, Xe,3 = δ465512,

Xe,4 = δ481512, Xe,5 = δ496512 . (47)

According to Lemma 2, one can obtain all positive prob-
ability control basic cycles of 6i, i = 1, 2, 3. It is worth

VOLUME 8, 2020 215813



Y. Liu et al.: Further Results on Large-Scale Complex Logical Networks

pointing out that there exists no basic cycle in subnetwork63.
Therefore, there exists no positive probability basic cycle in
system (44).

One can see from this example that network aggrega-
tion method makes it possible to investigate the topological
structure of large-scale PLNs.

VII. CONCLUSION
In this paper, we have reviewed some efforts made for the
analysis and control of large-scale LNs, including approxima-
tion of LNs, controllability, stabilization, and observability of
LCNs via network aggregation method, and the topological
structure of LNs via logical matrix factorization technique.
By using the method introduced above, we have explored the
stability of large-scale version of network pairing problem
and the topological structure of large-scale PLNs. Future
works will devote to investigating other issues of large-scale
LCNs and PLNs by virtue of approximation method, net-
work aggregation approach and logical matrix factorization
technique. In addition, the methods reviewed in this paper
can be used to investigate the impulsive control [97]–[99] of
large-scale LCNs.
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