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ABSTRACT Actuator faults, which are common in industrial processes, can make the controller fail to
achieve the desired control objectives, which may lead to the degradation of control performance. In order
to solve this problem, this paper proposes a predictive functional control based on genetic algorithm
optimization. Firstly, an extended dimension discrete switched model is constructed, which consists of a
state difference variable, tracking error and a new state variable including tracking error. In this model,
the performance index function based on a genetic optimization algorithm is selected, and its parameters
are adjusted and the controller is designed. Then, under the obtained control law, the switching signal is
designed and the range of uncertainty caused by the actuator fault is given to realize the robustness of the
system. At the same time, the corresponding robustly sufficient conditions are presented. The advantage of
this design is to avoid the disadvantages of manually adjusting the performance parameters, and the system
has good tracking performance. Finally, taking the typical injection molding process of chemical production
process as an example, the speed and pressure parameters are controlled, and compared with the traditional
control method, the effectiveness and feasibility of the proposed method are verified.

INDEX TERMS Chemical industry processes, partial actuator faults, genetic-algorithm-optimization design,
predictive functional control.

I. INTRODUCTION
Chemical process control plays an important role in the man-
ufacturing of industrial products. It has made great progress
in control theory and application [1]. At the same time, people
put forward higher and higher requirements for high-quality
automation level. However, the existence of disturbances may
make the tracking performance of the system worse [2],
[3]. In addition, if the production is carried out under more
complicated conditions, the possibility that the system occurs
faults will increase correspondingly.

In the current process, if the system fault has been unable to
be effectively corrected, the control performance will gener-
ally become poor, which will affect product quality, and even
leading to serious safety problems. Therefore, it is urgent to
find a useful method to solve this problem. In this respect,
the research of fault tolerant control (FTC) has been widely
concerned since FTC can keep the closed-loop control perfor-
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mance in case of faults. Some representative results are avail-
able [4]–[10]. They can be roughly divided into two types:
active and passive. Passive fault-tolerant control is to control
the faulty systemwith the same design controller, while active
fault-tolerant control is to design the corresponding controller
according to different faults, including control reconfigura-
tion [5]–[7], fault compensation [8], [9] and fault hiding [10].
In industrial processes, the model based on data may not be
consistent with the actual one. The controller we constructed
is designed for the established model instead of the actual
one. In production, this controller is used to control the actual
system. The control in this case can be regarded as the fault-
tolerant control of industrial process. After all, the actual
model mismatch may be caused by actuator faults or system
internal faults. Therefore, this kind of fault-tolerant control
is also passive fault-tolerant control [11], [12]. Zhang et al.
proposed a new constrained MPC control [11] and applied
it to the injection molding machine. Industrial processes
are considered to be time and batch dependent, i.e. two-
dimensional. Fault-tolerant control has also been studied in
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two dimensions [13]–[17]: in [14], the author transformed the
industrial process with unknown disturbances and actuator
faults into two-dimensional Fornasini-Marchesini (2D-FM)
model. A controller is designed to ensure the closed-loop
convergence of the system along the time and batch direc-
tions.Wang et al. proposed a control law,which can guarantee
the closed-loop convergence in time and period direction
to satisfy H∞ performance even in the case of unknown
disturbances and actuator faults [15]. For uncertainty, state
delay and actuator faults,Wang et al. [16] proposedH-infinity
learning fault-tolerant guaranteed cost control, which is based
on the equivalent 2D system description of these processes.
At present, FTC has been extended to multi-phase or even
optimal guaranteed cost fault-tolerant control [17].

Iterative learning control (ILC) has good robustness,
especially for repetitive processes [18]–[24]. It includes
single-phase chemical process [23] and multi-phase chemical
process [24]. However, in fact, many industrial processes
have non repetitive dynamic characteristics and unknown
disturbances, which may lead to ILC losing effectiveness
[25], [26] and closed-loop robust stability [27]. This brings
great challenges and difficulties to iterative learning control.
In this complex situation, it is necessary to seek new control
methods.

As a current control algorithm, model predictive control
(MPC) is widely used because of its ability to improve control
performance [28]–[35]. Especially for a class of systems
whose process is nonlinear and its exact model is difficult
to obtain or whose process time delay is large, this method is
more popular. In order to solve the problem of disturbances
and faults, a model predictive fault-tolerant control (MPFTC)
strategy based on genetic algorithm (GA) is proposed [33].
The nonlinear model predictive control (NMPC) method is
constructed in [34], which solves the constraints and nonlin-
ear problems. Considering the uncertainty and disturbance of
the model, a multi-phase NMPC method is proposed in [35].
Predictive functional control (PFC) is the third generation of
the model predictive control algorithm, which not only keeps
the advantages of model predictive control, but also makes
the generated control input more regular, and can effectively
reduce the calculation amount of the algorithm, so it can
meet the fast requirements of a class of fast-responding
controlled objects for the control algorithm. PFC regards
the structure of control input as a key problem, which can
overcome the control input problem with unknown laws in
model predictive control, and has the advantages of simple
algorithm, small calculation, good tracking ability and strong
robustness. At present, there are also some studies on batch
processes [36]. Obviously, the research results are based on
a single model. In addition, the optimal control method men-
tioned above belongs to an analytical method, which is based
on the deviation between model predicted value and actual
value. At present, another commonly used optimization con-
trol method is numerical solution method, which is a kind
of intelligent algorithm. As an intelligent search algorithm,
the genetic algorithm has a strong advantage in batch process

optimization problem. In the description of the optimization
problem, it only needs to express the target simply, and the
operation object is the population individual after coding, and
the target has no continuous and differentiable constraints,
which reduces the difficulty of solving the problem. In the
process of solving the optimization problem, only the value
information is needed, and no additional external information
is required, which reduces the excessive requirements for the
accuracy and prior knowledge of the mathematical model.
At the same time, the implicit parallel search method is used
to search every point in the whole population area, which
has a wide coverage and is conducive to obtain the global
optimal solution. In the research of industrial process control
methods, it is found that combining analytical methods and
numerical methods to control some parameters of industrial
process may have better optimization effect, and the corre-
sponding results are embodied in the paper [37]. However,
there are still few research achievements in the multi-phase
industrial process. Some chemical industry processes have
multi-phase characteristics, and the parameters represented
by their models have different meanings in different phases,
which lead to different control objectives in each phase. In
addition, when to switch from one phase to another and how
long each phase runs will affect the quality of the products
produced. Therefore, it is very important to seek new con-
trol methods and switching strategies to achieve multi-phase
chemical process control optimization and robustness.

In view of this, this paper proposes a predictive function
control based on genetic algorithm for multi-phase chemi-
cal industry process, and designs the corresponding switch-
ing signal to ensure that the chemical process can still run
smoothly and maintain its optimal performance under the
influence of faults. Different from the traditional method,
this paper introduces a new state variable related to tracking
error, which is combinedwith a state difference variable along
time direction and tracking error to form an extended state
variable. Under this variable, the new extended state space
model is praised, and then the performance index function
is constructed and the predictive function control law is
designed. In order to make the chemical industry process
have better control optimization performance, some param-
eters in the performance index function are optimized by a
genetic algorithm, and the optimal control law is obtained.
Then, considering the mismatch of system parameters caused
by uncertain factors such as actuator faults, the range of
uncertain parameters that can be resisted under this control
law and the conditions that the switching law needs to meet
are given. The advantages of this design are as follows:
Search some parameter variables in the function index by the
genetic algorithm, which avoids the disadvantages of arti-
ficial adjustment; According to the newly formed extended
state space model, the control law designed by the genetic
algorithm combined with predictive function control method
has the advantages of simple design and good tracking per-
formance. Finally, taking the injection molding process as
an example, compared with the traditional method, the case
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analysis results show that the proposedmethod is feasible and
effective.

II. PROBLEM DESCRIPTION
For complex chemical processes, it may be necessary to
control multiple models to complete the control task, or it
may be necessary to approximate multiple models due to the
complexity of the models. For the ith model which is assumed
to be single-input single-output (SISO), the following system
model with disturbances can be constructed:{

x i(k + 1) = Ãix i(k)+ Bui(k)
yi(k) = C ix i(k)

(1)

where, k represents the current time, x i(k) ∈ Rn, yi(k) ∈ R
and ui(k) ∈ R represent the state, output and input of the
process at time k , respectively, Ai,Bi,C i are process matrices
with appropriate dimensions and Ãi = Ai +1Ai, 1Ai means
the system disturbance, which is caused by system actuator
faults here.

In the actual production process, the design of the con-
troller is mostly not for the system with disturbances, but for
the nominal system, and the designed controller has a certain
anti-interference ability. Therefore, the following controller
design is for the nominal system, that is, the case of1Ai = 0.
The nominal system model is as follows:{

x i(k + 1) = Aix i(k)+ Bui(k)
yi(k) = C ix i(k)

(2)

For the above-mentioned systems, especially in the case of
a single model, in order to meet the needs of industrial pro-
cesses, model predictive control came into being. The most
commonly used design method is to directly use the system
state to design the controller, namely u(k + j|k) = Kix i(k +
j|k), where j is the prediction step size. In order to improve
its control performance and make the system tracking control
show better control results, different model predictive control
algorithms have been proposed, such as the extended state
control model based on output, as in [38], the control law is
designed as follows:

1u(k) = K
[
1x(k)
y(k)

]
,

where 1x(k) is the state difference variable along the time
direction. Here we call it state difference variable. Recently,
based on the extended model related to tracking error, [37]
proposed such a design method of the control law

1u(k) = K
[
1x(k)
e(k)

]
,

where e(k) is the following formula (4). It can be seen from
the case in the article that the control method proposed above
can indeed improve the control effect of the system. So,
in addition to the above methods, is there a better control
scheme that makes the control effect better? The next thing
to do is to achieve the above goals: design a new controller to
achieve the actual output better track the given output.

III. A NEW PREDICTIVE FUNCTION CONTROL BASED ON
GENETIC ALGORITHM OPTIMIZATION
A. THE ESTABLISHMENT OF NEW STATE SPACE MODEL
Introducing the difference operator 1 and defining

1x i(k + 1) = x i(k + 1)− x i(k), (3a)

We can get

1x i(k + 1) = Ai1x i(k)+ B1ui(k) (3b)

In order to have better tracking performance and keep the
system running in a more stable state, the output tracking
error is defined as:

ei(k) = yi(k)− r i(k) (4)

And then it has:

ei(k + 1)=ei(k)+ C iAi1x i(k)+ C iBi1ui(k)−1r i(k + 1)

(5)

where yi(k) and yir (k) are respectively the actual output value
and tracking set point of the i model at time k , ei(k) is
the output error of the i model at time k; 1r i(k + 1) is
the difference between the set value of the ith model of the
chemical process at time k + 1.

Introduce a new state variable:

x̂ i(k + 1) = x̂ i(k)+ ei(k) (6)

where the selection of x̂ i(k) is determined by the output error
ei(k).

Define a new state variable zi(k) as the following form

zi(k) =
[
1x iT(k) x̂ iT(k) eiT(k)

]T (7)

A new type of equivalent model can be obtained from (3-7)

zi(k + 1) = Āi(k)x̄ i(k)+ B̄i1ui(k)+ C̄ i1r i (k + 1) (8)

where

Āi =

 Ai 0 0
0 I I

C iAi 0 I

 , B̄i=

 Bi

0
C iBi

 , C̄ i
=

 0
0
−I

T

,

I represents the unit matrix, and 0 represents the zero matrix.
The above system is represented by a switched system

model, and its form is as follows:

z(k + 1) = Aσ (t)z(k)+ Bσ (t)1u(k)+ Cσ (t)1r(k + 1) (9)

where, σ (k) : Z+ → N := {1, 2, · · · ,N } represents the
switching signal, which may be related to time or system
state, N is the model of the subsystem, and Aσ (t),Bσ (t),Cσ (t)

represent the model (9).
For the ith model at time k, if the switching condition is

true for model i+ 1, the system will switch to model i+ 1 at
time k + 1. The switching time can be defined as:

T is = min
{
k > T i−1s |L

i(x(k)) < 0
}
, T 0

s = 0 (10a)
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The above process has n models, and
[
T i−1s ,T is

]
is called the

time interval when the i(i = 1, 2, . . . n) model is switched
at time T i−1s . Therefore, the switching sequence of the entire
chemical process can be described as

6 =

{
T 1
1 , σ

(
T 1
1

)
,T 2

1 , σ
(
T 2
1

)
, . . . ,T p1 , σ

(
T p1
)
,

T 1
2 , σ

(
T 1
2

)
, . . .T p2 , σ

(
T p2
)
, . . . ,T is , σ

(
T is
)
, . . .

}
(10b)

where
[
(T ni ), σ (T

n
i )
]
connects the connection point at the end

of the previous handover and the start of the next handover.
In addition, in the industrial production process, if the

parameters that need to be controlled by different models are
different, their dimensions may be different, the following
formula is used to express the state relationship between the
two models at the time of switching

x i+1(T ik ) = L ix i(T ik ) (10c)

where, L i is called the state transition matrix. If the system
state has the same physical meaning in adjacent models, then
L i = I i.

B. CONTROLLER DESIGN OF A NEW PREDICTIVE
FUNCTION BASED ON GENETIC ALGORITHM
OPTIMIZATION
Aiming at system (9), the controller (optimal controller)
based on a new predictive function optimized by a genetic
algorithm is design. The idea is as follows:

Select the corresponding performance index form as fol-
lows:

J i =
p∑
j=1

ziT(k + j)Qijz
i(k + j) (11)

where, p is the prediction layer, and Qij is the symmetric
weighting matrix of the ith model, with an appropriate power,
which can be expressed as:

Qij = diag
{
qjx1, qjx2, · · · , qjxn, qjx̂ , qje

}
1 ≤ j ≤ p (12)

Formula (11) includes output tracking error and process state
variable, as well as newly introduced state variable, which are
considered together in controller design.

Select the input signal as follows:

ui(k + t) =
N∑
j=1

µijf
i
j (t) (13)

where ui(k + t) is the industrial process input signal of the ith

model at time k + t , uij is the weight coefficient, f
i
j (t) is the

basis function sampled at time k + t , and N is the number of
basis functions.

Define the following two variables

T it = [f1(t), f2(t), · · · , fN (t)] , (t = 0, 1, · · · , p− 1)

γ i =
[
µi1 µi2 · · · µiN

]T (14)

The formula (13) can be further expressed as:

ui (k + t) = T it γ
i (15)

Based on equation (8), the state predictor variable from sam-
pling time k is expressed as:

Z i =


zi(k + 1)
zi(k + 2)

...

zi(k + p)

 , 1Ri =


1r i(k + 1)
1r i(k + 2)

...

1r i(k + p)

 (16)

The future state vector Z i is related to the current state zi(k)
and the future control vector γ i by the following equation:

Z i = F izi(k)− Giui(k − 1)+ φiγ i + S i1Ri (17)

And

F i =


Āi

Ā2i
...

Āpi

 , Gi =


B̄i

ĀiB̄i

Ā2iB̄i
...

ĀpiB̄i

 (18a)

S i =


C̄ i 0 0 0 0
ĀiC̄ i C̄ i 0 0 0
Ā2iC̄ i

...

ĀiC̄ i

...

C̄ i

...

0 0
. . .

...

Ā(p−1)iC̄ i Ā(p−2)iC̄ i Ā(p−3)iC̄ i
· · · C̄ i


(18b)

φi =



B̄iT i0
(ĀiB̄i − B̄i)T i0 + B̄

iT i1
(Ā2iB̄i − ĀiB̄i)T i0 + (ĀiB̄i − B̄i)T i1 + B̄

iT i2
...
p−1∑
k=1

(Āik B̄i − Ā(k−1)iB̄i)T ip−1−k + B̄
iT ip−1


(18c)

The performance index (11) can be expressed in vector form
as:

J i =
(
ZT
)i
QiZ i (19)

where, Qi = diag
{
Qi1,Q

i
2, · · · ,Q

i
P

}
Substituting formula (17) into (19), the control law can be

derived as:

γ i = −(φiTQiφi)−1φiTQi(F izi(k)− Giui(k − 1)+ S i1Ri)

(20)

And make the following definition:

µi1 = −(1, 0, · · · , 0)(φ
iTQiφi)−1φiTQi

× (F izi(k)− Giui(k − 1)+ S i1Ri)

= −hi1z
i(k)+ hiu1u

i(k − 1)− mi11R
i

...

µiN = −(0, 0, · · · , 1)(φ
iTQiφi)−1φiTQi
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× (F izi(k)− Giui(k − 1)+ S i1Ri)

= −hiN z
i(k)+ hiuN u

i(k − 1)− miN1R
i (21)

Then the control signal is:

ui(k) =
N∑
j=1

µijf
i
j (0) = −H

izi(k)+ H i
uu
i(k − 1)−M i1Ri

(22)

where, H i
=

N∑
j=1

f ij (0)h
i
j, H

i
u =

N∑
j=1

f ij (0)h
i
uj , M

i
=

N∑
j=1

f ij (0)m
i
j

C. Qi
j SELECTION BASED ON GENETIC ALGORITHM

Usually, the process response is related to the elements in
Qij. It is often the weighting factor of the performance index.
It is necessary to achieve some compromise between the
output tracking error and the control input. In the result [42],
the weighting factor of the process output tracking error qje
can be set to a fixed value and qje is selected as 1. Now what
we have to do is all elements in Qij participate in the design.
This paper takes the sum

J =
n∑
i=1

J i =
n∑
i=1

p∑
j=1

ziT(k + j)Qijz
i(k + j) (23)

of all model performance indicators as the objective function,
the initial population size of decision variables Qij is set to
20, the crossover rate is set to 0.8, the mutation rate is set to
0.05, and the elite strategy is adopted in the genetic algorithm
(Reserve in each generation and the best two solutions are
retained for the next generation), and the termination criterion
is that 50 consecutive iterations no longer produce better
solutions.

The controller obtained above is designed under the nom-
inal system. The real industrial process is influenced by the
factors such as actuator faults, internal disturbances, and so
on, and these factors are the main reason that the system
performance is degenerative and even instable.

Below what we mainly do is to analyze the robustness of
the uncertain system caused by actuator faults and design the
switching law in different phase.

The actuator fault we consider here is a partial actuator
fault, and the control input under the fault can be expressed
as

uiF (k) = αiui (k) (24)

where 0 < αi ≤ αi ≤ ᾱi with αi ≤ 1, ᾱi ≥ 1, ui(k)
is the calculated input for the actuator, and uiF (k) is the
actual physical actuator action. Equation (24) is widely used
to describe the partial actuator faults. αi = 0 denotes the
actuator is completely invalid. At this time, the controller
is no longer functioning, so it will not be considered here.
αi = 1 denotes the healthy situation.
Theorem 1: For chemical industry processes with partial

actuator faults that is described by Eq. (24), if the predictive
function controller is designed through the nominal process

model described by Eq. (1) such that the following conditions
holds:

σmax(1Āi) < −σmax(Āi − B̄iK i
s)+

√
σ 2
max(Āi − B̄iK i

s)

+
λmin(W i)
λmax(Pi)

(25a)

and the switching signal satisfies:

τ ai ≥
(
τ ai
)∗
= −

lnµi
lnβi

(25b)

σmax(ξ i), λmin(ξ i), λmax(ξ i) are the maximum singular value,
minimum eigenvalue and maximum eigenvalue of matrix ξ ,
the matrix Pi,W i are positive definite symmetric matrices
and defined as

(Āi − B̄iK i
s)
TPi(Āi − B̄iK i

s)− βiP
i
= −W i (25c)

the matrices 1Āi,K i
s are given as

1Āi =

 1Ai 0 0
0 0 0

C i1Ai 0 0

 (26)

K i
s = (1, 0, . . . , 0)(ψ iTφiφiTQiψ i)−1ψ iTφiφiTQiF i (27)

ψ i
=


B̄i 0 0 · · · 0
ĀiB̄i B̄i 0 · · · 0
Ā2iB̄i ĀiB̄i B̄i · · · 0
...

...
...

. . .
...

Ā(p−1)iB̄i Ā(p−2)iB̄i Ā(p−3)iB̄i · · · B̄i

 (28)

then the proposed predictive function control holds robust
stability for the chemical industry process.

Proof: The robust stability criterion follows the gen-
eral idea of Lyapunov theory. Now we prove it as follows.
Firstly, the incremental control input is shown as below.
Equation (21) can be rewritten as

φiTQi[φiγ i − Giui(k − 1)] = −φiTQi(F izi(k)+ S i1Ri)

(29)

According to formula (14) and (15), formula (18a-18c) can
be rewritten as

φiγ i − Giui(k − 1)

=



B̄iT i0
(ĀiB̄i − B̄i)T i0 + B̄

iT i1
(Ā2iB̄i − ĀiB̄i)T i0 + (ĀiB̄i − B̄i)T i1 + B̄

iT i2
...
p−1∑
k=1

(Āik B̄i − Ā(k−1)iB̄i)T ip−1−k + B̄
iT ip−1


γ i

−


B̄i

ĀiB̄i

Ā2iB̄i
...

ĀpiB̄i

 ui(k − 1) (30)

= 9 i1U i (31)
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That means the following is true

φiTQi9 i1U i
= −φiTQi(F izi(k)+ S i1Ri) (32)

Multiply both sides of equation (14) by 9 iφiT at the same
time to get

1U i
= −(9 iTφiφiTQi9 i)−19 iTφiφiTQi(F izi(k)+ S i1Ri)

(33)

let

K i
s = (1, 0, . . . , 0)(9 iTφiTφiQi9 i)−19 iTφiφiTQiF i (34a)

K i
R = (1, 0, . . . , 0)(9 iTφiTφiQi9 i)−19 iTφiφiTQiS i (34b)

Then the incremental control vector at time k is

1ui(t) = −K i
sz
i(t)− K i

R1R
i (35)

When considering closed-loop stability, the set point can be
selected as 1Ri = 0 without loss of generality. This shows
that the control law of the proposed method is

1ui(t) = −K i
sz
i(t) (36)

Using the same idea shown in Section III (A), it is easy to
conclude that1Āi and the uncertain system (1) are related to
the nominal system (2) in the following form:

zi(k + 1) = A
i
zi(k)+ B

i
αi1ui(k)

zi(k + 1) = A
i
zi(k)+ B

i
1ui(k)− B

i
1ui(k)+ B

i
αi1ui(k)

(37)

Substitute (36) into (37), it has

zi(k + 1) = (Āi − B
i
K i
s)z

i(k)+ B
i
(I i − αi)K i

sz
i(k)

Here B
i
(I i − αi)K i

s is represented by 1Āi, that is, it is an
internal disturbance. Then check the stability of the following
closed-loop uncertain system:

zi(k + 1) = (Āi − B̄iK i
s)z

i(k)+1Āizi(k) (38)

Define the stability function V i, and obtain its increment1V i

in the following form:

1V i(zi(k))

= V i(zi(k + 1))− V i(zi(k)) ≤ V i(zi(k + 1))− βiV i(zi(k))

= ziT(k)(Āi − B̄iK i
s)
TPi(Āi − B̄iK i

s)z(k)+ z
iT(k)

× (Āi−B̄iK i
s)
TPi(1Āi)z(k)+ziT(k)(1ĀiT)Pi(Āi − B̄iK i

s)
T

× z(k)+ ziT(k)(1ĀiT)Pi1Āizi(k)− ziT(k)βiPizi(k) (39)

where i ∈ N ,N := {1, 2, · · · ,N }.
According to equation (26), the first and last terms on the

right side of equation (39) represent

ziT(k)
[
(Āi − B̄iK i

s)
TPi(Āi − B̄iK i

s)− βiP
i
]
zi(k)

≤ −λmin(W i)
∥∥∥zi(k)∥∥∥2 (40)

The second and third terms indicate

ziT(k)(Āi − B̄iK i
s)
TPi(1Āi)zi(k)+ ziT(k)(1Āi)T

×Pi(Āi − B̄iK i
s)z

i(k)

≤ 2σmax(Āi − B̄iK i
s)λmax(Pi)

∥∥∥1Āi∥∥∥ ∥∥∥zi(k)∥∥∥2 (41)

The fourth item means

ziT(k)(1Āi)TPi(1Āi)zi(k)+ ziT(k)(1Āi)T

×Pi(1Āi)zi(k)

≤ λmax(Pi)
∥∥∥1Āi∥∥∥2 ∥∥∥zi(k)∥∥∥2 (42)

We can get:

1V i(zi(k)) ≤
∥∥∥zi(k)∥∥∥2 (−λmin(W i)+ 2σmax(Āi − B̄iK i

s)λmax

× (Pi)
∥∥∥1Āi∥∥∥+ λmax(Pi)

∥∥∥1Āi∥∥∥2) (43)

Obviously the following conditions are met

−σmax(Āi − B̄iK i
s)−

√
σ 2
max(Āi − B̄iK i

s)+
λmin(W i)
λmax(Pi)

<

∥∥∥1Āi∥∥∥ < −σmax(Āi − B̄iK i
s)

+

√
σ 2
max(Āi − B̄iK i

s)+
λmin(W i)
λmax(Pi)

(44)

Therefore,

σmax(1Āi) < −σmax(Āi − B̄iK i
s)

+

√
σ 2
max(Āi − B̄iK i

s)+
λmin(W i)
λmax(Pi)

(45)

That is, the controller designed in this paper still has robust
stability when the above equation is satisfied within the inter-
ference range.

Then for the switching system model, we find the system
stability conditions and design the switching signal.

If the switching system is stable, there must be
1V i(zi(k)) < 0, which is equivalent to

(Āi − B̄iK i
s)
TPi(Āi − B̄iK i

s)− βiP
i
= −W i < 0 (46)

And under the constraint condition of (45), we can get

(Āi − B̄iK i
s +1Ā

i)TPi(Āi − B̄iK i
s +1Ā

i)− βiPi < 0 (47)

From the formula (39) we can know1V i < 0, that is V i(k +
1) ≤ βiV i(k), then

V i(k + 1) ≤ βiV i(k) ≤ β t−T
i−1
s V i

(
T i−1s

)
(48)

where T i−1s is the switching time of the ith model.
From V i < µiV i−1, we can know

V σ (k)(k) ≤ α
k−T i−1s
i µiV i−1

(
T i−1s

)
...

≤

p∏
i=1

(βi)
T̃ (k0,k)

p∏
i=1

(ui)
T̃(k0,k)
τi V σk0 (k0)
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FIGURE 1. Comparison under constant fault: a output comparison, b
input comparison.

≤

p∏
i=1

(
βiµ

1
τi
i

)T̃ (k0,k)
V σ(k0) (k0) (49)

Assuming that ν = max

(
βiµ

1
τi
i

)
, it has

V σ (k)(k) ≤ νk−k0V σk0 (k0) (50)

It can be seen from the above that when the switching signal
is satisfied to be τ ai ≥ −

lnµi
lnβi

,V σ (k)(k) is convergent, that is,
the system is asymptotically stable.

This method designs a corresponding simple, real-time
and flexible controller based on different models and inter-
ferences. The controller has a certain degree of robustness,
thereby improving its control quality and solving the dis-
advantage of the existing method that the controller gain
cannot be adjusted in the whole process. And use the average
dwell time method to design the switching signal, we can
find the minimum running time. The biggest advantage of
this method is: the traditional method is to obtain Qi through
debugging. This method uses the genetic algorithm and uses
the concept of population to select the optimal Qi to achieve

FIGURE 2. Comparison under time-varying fault: a output comparison, b
input comparison.

better control effects, so as to achieve the goals of energy
saving and consumption reduction.

IV. SIMULATION CASE
The injection molding process is a typical chemical industry
production process based on multi-phase production. Each
product produced mainly includes five steps, namely, clamp-
ing section→ injection section→ pressure holding section
→ cooling section → mold opening section. Parameters
such as the injection speed of the injection section and the
holding pressure of the holding pressure section require high-
precision control to achieve an increase in the yield of the
final product. Here we take the single-phase and multi-phase
as examples to consider its control effect.

A. SINGLE PHASE SITUATION
Take the control speed parameter as the research object. First,
the response to the injection speed (process output) of the
proportional valve (process input) is determined as the autore-
gressive model, and the mathematical model of the injection
section is established as follows:

P(z) =
1.69z+ 1.419

z2 − 1.582z+ 0.5916
(51)
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FIGURE 3. Comparison under constant faults: a output comparison, b
input comparison.

For the above model, the set point takes the following form:
r(k) = 15 (1 ≤ k ≤ 40)
r(k) = 20 (41 ≤ k ≤ 120)
r(k) = 15 (121 ≤ k ≤ 200)

(52)

In the nominal traditional controller design, its control law is
designed as follows

u(k) = u(k − 1)+1u(k) = u(k − 1)+ K
[
1x(k)
e(k)

]
.

Table 1 lists the performance function parameter comparison
of these twomethods. Here the final parameters are optimized
by the genetic algorithm, and then the controller is designed.
It can be seen that the proposed method will have more
degrees of freedom to adjust the control performance due to
the newly introduced state variables.

1) CONSTANT FAULTS
Figure 1 is a comparison diagram of output and input in
case of a constant fault. The actuator fault is α = 0.45.
From the output comparison Figure 1a, it can be seen that
the output is obviously worse under the traditional method,
while it has only a small fluctuation with the method in this

FIGURE 4. Comparison under time-varying faults: a output comparison, b
input comparison.

TABLE 1. Comparison of performance index function parameters.

paper. Moreover, it is obvious that a smaller input is required,
as shown in Figure 1b.

2) TIME VARYING FAULT
A time varying fault is selected as α = 0.5 + 0.01 sin(k).
It can be seen from Figure 2 that although all kinds of curves
fluctuate under the influence of such faults, it is obvious
that the curve fluctuation is smaller and smoother under the
proposed method, and the control performance is obviously
better.

B. MULTI -PHASE SITUATION
In this example, take injection processes as an example,
and define injection section as the first phase and pressure
maintaining section as the second phase.
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FIGURE 5. Comparison under time-varying faults: a output comparison, b
input comparison.

In the injection section, the injection velocity (IV) model
corresponding to the valve opening (VO) can be described as
follows:(
1− 0.9291z−1 − 0.03191z−2

)
IV

=

(
8.687z−1 − 5.617z−2

)
VO+ z−1w(z) (53)

Themodel of nozzle pressure (NP) corresponding to injection
velocity is as follows:(

1− z−1
)
NP = 0.1054IV (54)

Similarly, in the pressure maintaining section, the nozzle
pressure model corresponding to the valve opening is as
follows:(
1− 1.317z−1 + 0.3259z−2

)
NP

=

(
171.8z−1 − 156.8z−2

)
VO+ z−1w(z) (55)

(53) and (54) constitute the state space model according to
the former form. The state of the first phase is considered
as x1 (k), and the switching condition between phases is
G1 (x (k)) = 350 −

[
0 0 1

]
x1 (k) < 0, that is, when the

nozzle pressure is greater than 350 Pa, the switching occurs.

TABLE 2. Performance index function parameters.

In case 2, the control effect is analyzed in two cases. In Fig-
ure 3, the constant fault is chosen as α = 0.8; and in Fig-
ure 4 and Figure 5, the time-varying faults are considered,
which are α = 0.8 + 0.01 sin(k) and α = 0.8 + 0.1 sin(k).
The occurrence time is the starting time.

In this case, the selection of multi-phase parameters is as
follows:

Figure 3a, Figure 4a and Figure 5a represent the output
curve, Figure 3b, Figure 4b and Figure 5b are the input curve.
It can be seen that they are relatively smooth by using the
new control method. Figure 3 is various curves of the system
under constant faults. It can be seen that when the fault occurs,
no matter what kind of curve has a certain mutation and is of
different degrees, the control effect of the systemwill become
worse. Under the control algorithm proposed in this paper,
there is not much change. Figure 4 and Figure 5 are all kinds
of curve tracing diagram of the system under time-varying
fault. It can be seen from the diagram that the time-varying
fault has a great impact on the control performance of the
system, but within the allowable range, it is obviously better
than the existing control methods.

V. CASE STUDIES
For chemical production processes, considering actuator
faults, a new predictive functional control method based on
genetic algorithm optimization has been constructed and real-
ized the output tracking performance improvement of the sys-
tem in case of faults. The advantage of the proposed strategy
is that the controller is designed by adjusting the performance
index parameters of the genetic algorithm, which can achieve
better control effect of the system. Compared with the exist-
ing results, the proposed method is more effective.
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