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ABSTRACT This article is devoted to the problem of H∞ control for a class of singular Markovian jump
systems with time-varying delay and generally uncertain transition rates, which means each transition rate
is completely unknown or only its estimated value is known. By using Lyapunov stability theory, a new
delay-dependent H∞ admissible criterion in terms of strict linear matrix inequalities is obtained, which
guarantees that the singular Markovian jump systemwith known transitions rates is regular, impulse-free and
stochastically stable with a prescribed H∞ disturbance attenuation level γ . Based on this obtained criterion,
some suitable state feedback controllers are designed such that the closed-loop delayed singular Markovian
jump system with generally uncertain transition rates is H∞ stochastically admissible. Finally, numerical
examples are included to illustrate the effectiveness and the less conservativeness of the proposed method.

INDEX TERMS H∞ control, singular Markovian jump systems, time-varying delays, generally uncertain
transition Rates.

I. INTRODUCTION
Singular systems, also known as generalized systems,
descriptor systems, differential-algebraic systems or implicit
systems, can provide comprehensive and natural repre-
sentations in the description of many physical systems,
such as electrical circuits, economic systems, robotic
manipulator systems, chemical systems and other practical
systems [1]–[5]. And Markovian jump systems have been
extensively studied in the past decades [6]–[14] due to the
better describing dynamic systems subject to abrupt varia-
tions including abrupt environment disturbances, changing
subsystem interconnections and random component failures
or repairs [15]–[17]. When the singular systems experience
the aforementioned random abrupt changes in their parame-
ters or structures, they can be effectively modeled as singular
Markovian jump systems (SMJSs) [18]. For example, in net-
worked control systems, network delay or packet dropouts
often occur randomly. An effective method is to use Markov
process to describe such phenomena and model the system as
a SMJSs, and then a controller is designed to eliminate the
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influence of these random factors. In recent years, consider-
able attention has been paid to the stability analysis, controller
synthesis, and filtering problems of SMJSs, see [19]–[35],
and the references therein.

On the other hand, time-delays are necessary to be consid-
ered since they can lead to serious performance degradation
or system instability [36]. There are two types of literature on
the study of the systems with time-delay: delay-independent
results and delay-dependent results. In recent years, more
and more attention has been paid to the delay-dependent
results [6], [22], [23], [30]–[32], [38]. For example, in a recent
article [38], a new approach to analyze delay-dependent sta-
bility of linear impulsive delay systems is proposed based on
the delay-partitioning method, the time-dependent Lyapunov
functional method, and the looped-functional method. It is
well known that the delay-dependent results are less con-
servative than the delay-independent ones especially when
the time-delay is small. Recently, numerous articles ana-
lyze the admissibility and stabilization of SMJSs with or
without time delays. In [29], the authors dealt with the
admissibility analysis of stochastic SMJSs with time delays
and presented a more general condition for the existence
and uniqueness of the impulse-free solution to delayed
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SMJSs. The problems of mean-square exponential stability
for discrete-time nonlinear SMJSs were investigated in [30],
and based on the free-weighting matrix method, the authors
presented a delay-dependent sufficient condition which guar-
antees the considered systems to be mean-square exponen-
tially stable. In [31], on the basis of the delay subinterval
decomposition approach, the authors proposed a strict linear
matrix inequality (LMI) sufficient condition to guarantee
SMJSs stochastically admissible with H∞ performance γ .
In [35], the problems of optimal H∞ filtering problem for
SMJSs were considered, and a necessary and sufficient con-
dition in terms of strict LMIs for optimal H∞ filtering was
derived.

What should be noticed is that the results in the above-
mentioned literature are under the assumption of completely
known transition rates (TRs). However, in practice, the TRs in
some jumping processes are difficult to precisely acquire due
to the limitations of equipment and the influence of uncertain
complex factors. For example, as a result of the existence of
the packet dropout and channel delays in networked control
systems, the TRs cannot be measured precisely, and even if it
is measured, the cost may be high [23] . At present, there are
three types of descriptions of uncertain TRs. The first one is
bounded uncertain transition rates (BUTRs), where the exact
value of each TR may be unknown, but its boundaries (upper
and lower bounds) are known [14]. The second one is partly
unknown transition rates (PUTRs), where each TR is either
completely known or completely unknown, see [20]–[21].
However, in practice, either the aforementioned two cases
are too difficult to be satisfied or the cost is too much.
For example, working modes of vertical takeoff and landing
aircraft need to be determined according to the wind speed,
but the accurate value of the transition probability matrix
of wind speed changes is very difficult to obtain. Generally,
only a certain value range can be obtained, sometimes even
completely unknown [37]. Based on the above factors, some
researchers proposed a new type of TRs, namely general
unknown transition rates (GUTRs), where each TR can be
completely unknown or only its estimated value is avail-
able [13]. Compared with the first two cases BUTRs and
PUTRs, the case of GUTRs is more general (in fact, BUTRs
and PUTRs are the special cases of GUTRs), and has a wider
scope of application [13], [22]–[28].

It is worth noting that although scholars have done exten-
sive researches on SMJSs in recent years, there are few
researches on the control problem of SMJSs under GUTRs,
especially considering the time-varying delays and H∞ per-
formance simultaneously. Currently, H∞ control for a class
of nonlinear stochastic SMJSs with GUTRs has been investi-
gated in [25] using adaptive control, but the sufficient con-
dition in [25] includes non-strict matrix inequality which
cannot be solved directly by standard LMI solvers. Therefore,
finding a more general strict LMI sufficient condition for
stochastic admissibility of SMJSs with time-varying delay
and GUTRs and seeking more effective techniques to design

a controller that can ensure the closed-loop system is H∞
stochastically admissible are of great significance.

Motivated by the aforementioned discussion, this article is
concerned with H∞ control for a class of SMJSs with time-
varying delays and GUTRs. The main contributions are as
follows: (i) a new delay-dependent sufficient condition for
H∞ stochastically admissible of SMJSs is derived, which is
less conservative than some existing methods; (ii) sufficient
condition is obtained to make the SMJSs with GUTRs and
time-varying delays stochastically admissible with a pre-
scribed H∞ performance index γ ; (iii) the desired H∞ state
feedback controller is designed by solving a set of strict LMIs.
Notation: Throughout this article, Rm×n denotes the set of

all m × n real matrices, and Rn denotes the n-dimensional
Euclidean space. N+ represents the set of positive integers.
‖ · ‖ represents for the Euclidean norm for a vector. The
symbol Sym {·} denotes Sym {M} = M + MT for any
square matrix M , diag(·) represents a block diagonal matrix.
L2 [0,∞) stands for the space of square integrable functions
on [0,∞). (�,F,P) is a probability space, � is the sample
space,F is the σ -algebra of subsets of the sample space andP
is the probability measure on F. ε {·} denotes the expectation
operator with respect to some probability measure P. The
superscript ‘T’ and ‘−1’ represent the transpose and the
inverse of a matrix, respectively, and ‘∗’ denotes the term that
is induced by symmetry.

II. PROBLEM FORMULATION AND PRELIMINARIES
Consider the following continuous-time SMJSs defined on a
complete probability space (�,F,P) as follows
Eẋ (t) = A (rt) x (t)+Ad (rt) x (t−d (t))+B (rt) u (t)

+Bω (rt) ω (t)
z (t) = C (rt) x (t)+ D (rt) u (t)
x (t) = φ (t) , t ∈

[
−d̄, 0

] (1)

where x (t) ∈ Rn is the state vector, u (t) ∈ Rm is the control
input, z (t) ∈ Rq is the controlled output, ω (t) ∈ Rp is the
external disturbance input which belongs to L2 [0,∞). φ (t)
is a compatible vector valued initial function. The matrix E ∈
Rn×n may be singular with rank (E) = r ≤ n.A (rt) ,Ad (rt) ,
B (rt) ,Bω (rt) ,C (rt) , and D (rt) are known real constant
matrices with appropriate dimensions for each rt ∈ S. d (t) is
the time-varying delay satisfying

0 < d (t) ≤ d̄, ḋ (t) ≤ µ (2)

where d̄ is the time delay upper bound, and µ is the upper
bound of time delay variation rate.
In system (1), the mode jumping process {rt , t ≥ 0} is a

right-continuous Markov process taking values in a finite set
S = {1, 2, · · · , s} with the mode transition probabilities

Pr {rt+h = j | rt = i} =

{
πijh+ o (h) , i 6= j,
1+ πijh+ o (h) , i = j.

where h > 0, lim
h→0

o(h)
h = 0, and πij ≥ 0, for i 6= j, is the

transition rate from mode i at time t to mode j at time t + h,
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and πii = −
∑s

j=1,j 6=i πij. The transition rate matrix 5 ,{
πij
}
, is considered to be generally uncertain, which can be

expressed as
π̂11 +111 ? π̂13 +113 · · · ?

? ? π̂23 +123 · · · π̂2s +12s
...

...
...

. . .
...

? π̂s2 +1s2 ? · · · π̂ss +1ss

 (3)

where π̂ij and 1ij ∈
[
−δij, δij

] (
δij ≥ 0

)
are the estimated

value of the uncertain transition rate πij and the estimated
error bound, respectively. And both π̂ij and δij are known. ‘‘?’’
represents the completely unknown transition rates, which
means its estimate value π̂ij and estimate error bound δij are
the completely unknown. In a Markovian jump system, if the
system is in mode i and the transition rate to mode j at the next
moment cannot be measured, then the position of ith row and
jth column in the transition rate matrix 5 is ‘‘?’’.

For all i ∈ S, denote the set U i by U i
= U i

k ∪ U
i
Uk with

U i
k , {j : The estimated value of πij is known for j ∈ S}

and U i
Uk , {j: The estimated value of πij is unknown for

j ∈ S}. Moreover, if U i
k 6= ∅, it is further described as

U i
k = {k

i
1, k

i
2, · · · , k

i
m}, where k

i
m ∈ N+ represents the mth

bound-known element with the index k im in the ith row of
the transition rate matrix 5. And then, the following three
assumptions can be defined reasonable, since they can be
directly derived from the features of transition rates πij ≥ 0,
for i 6= j and πii = −

∑s
j=1,j 6=i πij.

Assumption 1: If U i
k = S, then π̂ij − δij ≥

0, (∀j ∈ S, j 6= i) , π̂ii = −
∑s

j=1,i 6=j π̂ij ≤ 0, and δii =∑s
j=1,i 6=j δij > 0;
Assumption 2: If U i

k 6= S and i ∈ U i
k , then π̂ij − δij ≥

0,
(
∀j ∈ U i

k , j 6= i
)
, π̂ii + δii ≤ 0, and

∑
j∈U i

k
π̂ij ≤ 0;

Assumption 3: If U i
k 6= S and i /∈ U i

k , then π̂ij − δij ≥
0,
(
∀j ∈ U i

k

)
.

For simplicity, in this article, when r (t) = i, i ∈ S, a matrix
M (rt) will be denoted by Mi; for example, A (rt) is denoted
by Ai, Ad (rt) is denoted by Adi and so on.
Remark 1: The BUTRs model [14] is

π̂11 +111 π̂12 +112 · · · π̂1s +11s
π̂21 +121 π̂22 +122 · · · π̂2s +12s

...
...

. . .
...

π̂s1 +1s1 π̂s2 +1s2 · · · π̂ss +1ss


with π̂ij − δij (∀j ∈ S, j 6= i) , π̂ii = −

∑s
j=1,i 6=j π̂ij, and δii =∑s

j=1,i 6=j δij. And the PUTRs model [20]–[21] is
π11 ? · · · πs1
? ? · · · ?
...

...
. . .

...

πs1 ? · · · πss


Obviously, if U i

k = S, the GUTRs model (3) is reduced to
BUTRs model, and if δij= 0,∀i ∈ S,∀j ∈ U i

k , the GUTRs
model (3) is reduced to PUTRsmodel. Therefore, the GUTRs

model considered in this article is more general than BUTRs
and PUTRs. Furthermore, the systems considered in this
article are more universal.
The system (1) with u(t) = 0 can be described as follows

Eẋ (t) = Aix (t)+ Adi (t − d (t))+ Bωiω (t)
z (t) = Cix (t)
x (t) = φ (t) , t ∈

[
−d̄, 0

] (4)

Definition 1 [17]: 1) The system (4) is said to be regular
and impulse-free, if the pairs (E,Ai) and (E,Ai + Adi) are
regular and impulse-free for every i ∈ S.
2) The system (4) is said to be stochastically stable, if for

any initial mode r0 and any initial condition x (t) = φ (t),
t ∈

[
−d̄, 0

]
, there exists a scalar M (r0, φ (·)) such that

lim
T−∞

ε

{∫ T

0
xT (t) x (t) dt|φ (t) , r0

}
≤ M (r0, φ (·)) .

3) The system (4) is said to be stochastically admissible,
if it is regular, impulse-free and stochastically stable.
Definition 2: The singular Markovian jump time-delay

system (4) is said to be stochastically admissible with a given
H∞ performance index γ , if it is stochastically admissible,
and under zero initial condition, for any external disturbance
ω (t) ∈ L2 [0,∞),

ε

{∫
∞

0
z (t)T z (t) dt

}
≤ γ 2

∫
∞

0
ω (t)Tω (t) dt. (5)

Consider the following state feedback controller

u (t) = Kix (t) (6)

where Ki(i = 1, 2, · · · , s) are the controller gain matrices to
be determined.

Substituting the controller (6) into system (1), we can
obtain the close-loop system

Eẋ (t) = (Ai + BiKi) x (t)+ Adix (t − d (t))
+Bωiω (t)

z (t) = (Ci + DiKi) x (t)
x (t) = φ (t) , t ∈

[
−d̄, 0

] (7)

The objective of this article is to design state feedback
controller (6) for system (1) with GUTRs such that the
closed-loop system (7) is stochastically admissible while sat-
isfying a prescribed H∞ performance γ .
Lemma 1 [31]: The singular Markovian jump system

Eẋ (t) = Aix (t) is stochastically admissible if and only
if there exist symmetric positive-definite matrices Pi and
matrices Si such that for each i ∈ S,
s∑
j=1

πijETPjE + ETPiAi+SiRTAi + ATi PiE + A
T
i RS

T
i < 0

where R ∈ Rn×(n−r) is any matrix with full column rank and
satisfies ETR= 0.
Lemma 2 [5]: For any constant matrices N1 ∈ Rn×n,

N2 ∈ Rn×n, W ∈ Rn×n, a positive definitive symmetric
matrix Z ∈ Rn×n, and the time-varying delay d (t), we have
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−
∫ t
t−d(t) ẋ

T (s)ETZEẋ (s) ≤ ξT (t)
{
H + d (t)Y TZ−1Y

}
ξ (t) where ξ (t)= [xT (t) xT (t − d (t))ωT (t))]

T and

H =

NT
1 E + E

TN1 ETN2 − NT
1 E ETW

∗ −NT
2 E − E

TN2 −ETW
∗ ∗ 0

,
Y =

[
N1 N2 W

]
.

Lemma 3 [1]: Given any scalar α and matrix Q, and any
matrix T> 0 of appropriate dimension, the following matrix
inequality holds

α
(
Q+QT

)
≤ α2T+QT−1QT .

III. MAIN RESULTS
In this section, the H∞ state feedback control problem will
be investigated for the SMJSs (1) with time-varying delay
and GUTRs. To begin with, considering the systems (4)
with a special situation of completely known transition
rates, a new delay-dependent condition is proposed such
that the SMJSs (4) is stochastically admissible with H∞
performance γ .
Theorem 1: Given scalars d̄> 0, γ> 0, and µ, the

system (4) with completely known transition rates is
stochastically admissible with H∞ performance γ for any
time-varying delay d (t) satisfying (2), if there exist the
symmetric positive-definite matrices Pi, Q1, Q2, Z and the
matrices Si, Sdi, N1, N2, W such that for each i ∈ S,

011i 012i 013i 014i d̄NT
1 d̄ATi Z CT

i
∗ 022i 023i 024i d̄NT

2 d̄ATdiZ 0
∗ ∗ 033i 034i 0 0 0
∗ ∗ ∗ −γ 2I d̄W T d̄BTωiZ 0
∗ ∗ ∗ ∗ −d̄Z 0 0
∗ ∗ ∗ ∗ ∗ −d̄Z 0
∗ ∗ ∗ ∗ ∗ ∗ −I


<0

(8)

where R ∈ Rn×(n−r) is any matrix with full column satisfying
ETR = 0, and

011i = Sym
{
ETPiAi + ATi RS

T
i + N

T
1 E

}
+ Q1 + Q2

+

s∑
j=1

πijETPjE,

022i = − (1− µ)Q1 + Sym
{
ATdiRS

T
di − N

T
2 E

}
,

033i = −Q2,

012i = ETPiAdi + ETN2 − NT
1 E + A

T
i RS

T
di + SiR

TAdi,

013i = −ATi RS
T
di,

014i = ETW + ETPiBωi + SiRTBωi,

023i = −ATdiRS
T
di,

024i = −ETW + SdiRTBωi,

034i = −SdiRTBωi.

Proof:The regularity and impulse-free of SMJSs (4) will
be proved firstly.

Since rank (E) = r ≤ n, there must exist two non-singular

matrices G and H ∈ Rn×n such that GEH =
[
Ir 0
0 0

]
where

Ir is an identity matrix with r-dimension.
Denote

GAiH =
[
Āi1 Āi2
Āi3 Āi4

]
, G−TPiG−1=

[
P̄i1 P̄i2
P̄i3 P̄i4

]
,

G−TN1H =
[
N̄1 N̄2
N̄3 N̄4

]
, HT S i =

[
S̄i1
S̄i2

]
.

And it follows from ETR= 0 that the matrix R can be param-
eterized as

R = GT
[
0
R̄

]
where R̄ ∈ R(n−r)×(n-r) is any non-singular matrix.

Pre- and post-multiplying 011i by HT and H , respectively,
we have

Sym
{
S̄i2R̄T Āi4

}
< 0

which implies Āi4 are non-singular for each i ∈ S, thus
the pair (E,Ai) is regular and impulse-free for each i ∈ S.
From (8), it is easy to see that011i 012i 013i

∗ 022i 023i
∗ ∗ 033i

 < 0 (9)

Pre- and post-multiplying on both sides of (9) by

 I I I0 I 0
0 0 I


and its transpose, respectively, we have

011i + 022i + 033i + Sym {012i + 013i + 023i} < 0

Hence,
s∑
j=1

πijETPjE+Sym
{(
ETPi+SiRT

)
(Ai+Adi)

}
< 0 (10)

From Lemma 1, (10) implies that the pair (E,Ai + Adi) is
regular and impulse-free for each i ∈ S. Then according to
Definition 1, system (4) is regular and impulse-free.

Define the following stochastic Lyapunov functional can-
didate for system (4)

V (x, rt , t) =
4∑

m=1

Vm (x, rt , t) (11)

where

V1 (x, rt , t) = xT (t)ETP (rt)Ex (t) = xT (t)ETPiEx (t) ,

V2 (x, rt , t) =
∫ t

t−d(t)
xT (s)Q1x (s)ds,

V3 (x, rt , t) =
∫ 0

−d̄

∫ t

t+θ
ẋT (s)ETZEẋ (s) dsdθ,

V4 (x, rt , t) =
∫ t

t−d̄
xT (s)Q2x (s)ds.
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andP (rt) = Pi,Q1,Q2, and Z are symmetric positive definite
matrices. Noting that ETR = 0, we have

ẋT (t)ETR
(
STi x (t)+ S

T
dix (t − d (t))

)
=

(
xT (t) Si + xT (t − d (t)) Sdi

)
RTEẋ (t)

= ẋT (t)ETRSTdix
(
t−d̄

)
=xT

(
t−d̄

)
SdiRTEẋ(t)=0

Let L be the weak infinitesimal generator of the random
process {(x, rt) , t ≥ 0}, and then

LV (x, rt , t)

≤ Sym
{
ẋT (t)ETPTi Ex (t)

}
+xT (t)

 s∑
j=1

πijETPjE

 x(t)

+xT (t)Q1x (t)− (1− µ) xT (t − d (t))Q1x (t − d (t))

+d̄ ẋT (t)ETZEẋ (t)−
∫ t

t−d(t)
ẋT (s)ETZEẋ (s) ds

+xT (t)Q2x (t)− xT
(
t − d̄

)
Q2x

(
t − d̄

)
+Sym

{(
xT (t) Si + xT (t − d (t)) Sdi

)
RTEẋ (t)

}
−Sym

{
xT
(
t − d̄

)
SdiRTEẋ (t)

}
.

It follows from Lemma 2 that

−

∫ t

t−d(t)
ẋT(s)ETZEẋ(s) ds≤ ξT(t)

{
H+d(t)Y TZ−1Y

}
ξ(t)

where ξT (t) =
[
xT (t) xT (t − d (t)) 0

]
, H and Y are the

same as that defined in Lemma 2.
Then,

LV (xt , rt , t) ≤ ηT (t)fiη (t)

where ηT =
[
xT (t) xT (t − d (t)) xT

(
t − d̄

) ]
, and

fi =

∇11i ∇12i 013i
∗ ∇22i 023i
∗ ∗ 033i


with

∇11i = Sym
{
ETPiAi + ATi RS

T
i + N

T
1 E

}
+ Q1 + Q2

+

s∑
j=1

πijETPjE + d̄NT
1 Z
−1N1 + d̄ATi ZAi,

∇22i = − (1− µ)Q1 + d̄NT
2 Z
−1N2 + d̄ATdiZAdi

+Sym
{
ATdiRS

T
di − N

T
2 E

}
∇12i = ETPiAdi + ETN2 − NT

1 E + A
T
i RS

T
di + SiR

TAdi
+d̄NT

1 Z
−1N2 + d̄ATi ZAdi.

From Schur complement formula, if the inequality (8) holds,
which implies fi < 0, thus LV (x, rt , t) ≤ ηT (t)fiη

(t) < 0, moreover, there exists a scalar λ > 0 such that

LV (xt , rt , t) ≤ −λ ‖x (t)‖2

Hence, for any t ≥ 0,

ε {V (xt , rt , t)} − ε {V (x0, r0, 0)} ≤ −λε
{∫ t

0
‖x (s)‖2 ds

}
which yields

ε

{∫ t

0
‖x (s)‖2 ds

}
≤ λ−1ε {V (x0, r0, 0)}

According to Definition 1, the inequality (8) can guarantee
the system (4) with ω (t) ≡ 0 is stochastically stable.

Next, consider the following performance

Jzω = ε
{∫
∞

0

[
z (s)T z (s)− γ 2ω (s)Tω (s)

]
ds
}

(12)

Under zero initial condition, it follows from (8) and Schur
complement formula that

Jzω = ε
{∫
∞

0

[
z (s)T z (s)−γ 2ω (s)Tω (s)+LV (x, i, s)

]
ds
}

= ε

{∫
∞

0

[
x (s)TCT

i Cix (s)

−γ 2ω (s)T ω (s)+ LV (x, i, s)
]
ds
}

≤ ε

{∫
∞

0
ςT (s)2iς (s) ds

}
where

ςT (s) =
[
xT (s) xT (t − d (s)) xT

(
t − d̄

)
ωT (s)

]
2i =


∇11i + CT

i Ci ∇12i 013i ∇14i
∗ ∇22i 023i ∇24i
∗ ∗ 033i 034i
∗ ∗ ∗ ∇44i


with

∇14i = ETW + ETPiBωi + SiRTBωi + d̄NT
1 Z
−1W

+d̄ATi ZBωi,

∇24i = −ETW + SdiRTBωi + d̄NT
2 Z
−1W + d̄ATdiZBωi,

∇44i = −γ
2I + d̄W TZ−1W + d̄BTωiZBωi.

Hence, Jzω < 0, and the inequality (5) holds. Thus, from
Definition 2, the SMJSs (4) with completely known transition
rates is stochastically admissible with H∞ performance γ .
Thus, this completes the proof. �
Remark 2: Currently, many solvability conditions in terms

of the filtering or the control for SMJSs are non-strict LMIs,
such as the theorems given in references [19], [22], [23],
and [25] containing semi-definite matrix inequalities ETPi =
PTi E ≥ 0. Notably, those semi-definite matrix inequalities
fail to meet the standard LMI and thus could not be solved by
it directly. Due to the round-off errors in digital computation,
it will result in further problems of checking the inequality
conditions numerically. Nevertheless, the Theorem 1 in this
article is a strict LMI and it does not have the trouble men-
tioned above. Thereby, the theorem in this article is more
general than those referred in the articles above.
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Theorem 1 solves the H∞ stochastically admissible prob-
lem of SMJSs (4) with completely known transition proba-
bilities. In the sequel, based on the obtained Theorem 1, the
H∞ stochastically admissible problem for SMJSs (4) with
GUTRs is further investigated and the following Theorem 2
is immediate.
Theorem 2: Given scalars d̄ > 0, γ> 0 and µ, system (4)

with GUTRs is stochastically admissible with H∞ perfor-
mance γ for any time-varying delay d (t) satisfying (2),
if there exist symmetric positive-definite matrices Pi,Q1,Q2,
Z and the matrices Si, Sdi, N1, N2, W such that the following
inequalities hold for each i ∈ S.
Case I: If i /∈ U i

k and U i
k =

{
k i1, k

i
2, · · · , k

i
m
}
, existing a

set of positive definite matrices Tij ∈ Rn×n
(
i /∈ U i

k , j ∈ U
i
k

)
such that  0̃11i 02i 0̃3i

∗ 04i 0
∗ ∗ 0̃5i

 < 0 (13a)

with ET
(
Pj − Pi

)
E≥ 0,∀j ∈ U i

k .

where

0̃11i = Sym
{
ETPiAi + ATi RS

T
i + N

T
1 E

}
+ Q1 + Q2

+

∑
j∈U i

k

π̂ijET
(
Pj − Pi

)
E +

∑
j∈U i

k

δ2ij

4
Tij,

02i =
[
012i 013i 014i d̄NT

1 d̄ATi Z CT
i

]
,

0̃3i =
[
ET (Pk i1

− Pi)E ET (Pk i2
−pi)E · · ·ET (Pk im−Pi)E

]
,

04i =


022i 023i 024i d̄NT

2 d̄ATdiZ 0
∗ 033i 034i 0 0 0
∗ ∗ −γ 2I d̄W T d̄BTωiZ 0
∗ ∗ ∗ −d̄Z 0 0
∗ ∗ ∗ ∗ −d̄Z 0
∗ ∗ ∗ ∗ ∗ −I

,

0̃5i = diag
{
−Tik i1

, − Tik i2
, · · · ,−Tik im

}
,

and other notations are defined as in Theorem 1.
Case II: If i ∈ U i

k , U
i
Uk 6= ∅ and U

i
k =

{
k i1, k

i
2, · · · , k

i
m
}
,

there exist a set of positive definite matricesVijl ∈ Rn×n(i, j ∈
U i
k , l ∈ U

i
Uk ) such that 0̄11i 02i 0̄3i

∗ 04i 0
∗ ∗ 0̄5i

 < 0 (13b)

where

0̄11i = Sym
{
ETPiAi + ATi RS

T
i + N

T
1 E

}
+ Q1 + Q2

+

∑
j∈U i

k

π̂ijET
(
Pj − Pl

)
E +

∑
j∈U i

k

δ2ij

4
Vijl,

0̄3i =
[
ET (Pk i1

− Pl)E ET (Pk i2
− pl)E · · ·ET (Pk im − Pl)E

]
,

0̂5i = diag
{
−Ri1, · · · ,−Ri(i−1),−Ri(i+1), · · · ,−Ris

}
,

and other notations are defined as in Case I and
Theorem 1.

Case III: If i ∈ U i
k ,U

i
Uk = ∅, there exist a set of positive

definite matrices Rij ∈ Rn×n(i, j ∈ U i
k ) such that 0̂11i 02i 0̂3i

∗ 04i 0
∗ ∗ 0̂5i

 < 0 (13c)

Where

0̂11i = Sym
{
ETPiAi+ ATi RS

T
i + N1TE

}
+ Q1 + Q2

+

∑
j∈S,j6=i

[
π̂ijET

(
Pj − Pi

)
E +

δ2ij

4
Rij

]
,

0̂3i =
[
ET (P1 − Pi)E · · ·ET (Pi−1 − Pi)E

× ET (Pi+1 − Pi)E · · ·ET (Ps − Pi)E
]

0̂5i = diag
{
−Ri1, · · · ,−Ri(i−1),−Ri(i+1), · · · ,−Ris

}
,

and other notations are defined as in Case I and Theorem 1.
Proof: Firstly, we prove that (8) can be guaranteed from

inequalities (13a), (13b), and (13c) in three different cases
respectively. And then based on Theorem 1, we can derive
that system (4) with GUTRs is stochastically admissible.

Similar to Theorem 1, pre- and post-multiplying
0̃11i < 0, 0̄11i < 0 and 0̂11i< 0 by HT and H , respectively.
In all the above three cases, we have

Sym
{
S̄i2R̄T Āi4

}
< 0

which implies Āi4 are non-singular for every i ∈ S and thus
the pairs (E,Ai) are regular and impulse-free for each i ∈ S.
By (13a), (13b), and (13c), it is easy to see that

Case I: i /∈ U i
k and U i

k =
{
k i1, k

i
2, · · · , k

i
m
}
, according to

Schur complement and inequality (13a), we have[
˜̃
011i 02i
∗ 04i

]
< 0 (14)

where

˜̃
011i =

∑
j∈U i

k

[
δ2ij

4
Tij + ET

(
Pj − Pi

)
ET−1ij ET

(
Pj − Pi

)
E

]

+Sym
{
ETPiAi+ATi RS

T
i + N

T
1 E

}
+ Q1

+Q2 +
∑
j∈U i

k

π̂ijET
(
Pj − Pi

)
E

It follows from (13a) that ˜̃011i 012i 013i
∗ 022i 023i
∗ ∗ 033i

< 0 (15)

Pre- and post-multiplying (15) by

 I I I0 I 0
0 0 I

 and its transpose

respectively, yields
˜̃
011i + 022i + 033i + Sym {012i + 013i + 023i}< 0
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Hence,∑
j∈U i

k

[
δ2ij

4
Tij + ET

(
Pj − Pi

)
ET−1ij ET

(
Pj − Pi

)
E

]
+Sym

{(
ETPi + SiRT

)
(Ai + Adi)

}
+

∑
j∈U i

k
π̂ijET

(
Pj − Pi

)
E < 0 (16)

Since ET
(
Pj − Pi

)
E ≥ 0,∀j ∈ U i

k , and note that in this case,∑
j∈U ,k i6=j

πij = −πii−
∑

j∈Uk i πij and πij≥ 0, we have

s∑
j=1

πijETPjE=πiiETPiE+
∑
j∈U i

k

πijETPjE

+

∑
j∈U i

Uk ,j6=i

πijETPjE ≤
∑
j∈U i

k

πijETPjE + πiiETPiE

+

−πiiETPiE −∑
j∈U i

k

πij

ETPiE

=

∑
j∈U i

k

(
π̂ij +1ij

)
ET

(
Pj − Pi

)
E

=

∑
j∈U i

k

[
1ij

2
ET

(
Pj − Pi

)
E +

1ij

2
ET

(
Pj − Pi

)
E
]

+

∑
j∈U i

k

π̂ijET
(
Pj − Pi

)
E

By using Lemma 3, we have
s∑
j=1

πijETPjE ≤
∑
j∈U i

k

π̂ijET
(
Pj − Pi

)
E

+

∑
j∈U i

k

[
δ2ij

4
Tij + ET

(
Pj − Pi

)
ET−1ij ET

(
Pj − Pi

)
E

]
(17)

According to Lemma 1, the formula (16) and (17) imply
that the pairs (E,Ai + Adi) are regular and impulse-free for
each i ∈ S. Thus, the system (4) with GUTRs is regular
and impulse-free. On the other hand, from inequalities (13a)
and (14), we have 011i ≤

˜̃
011i < 0, therefore, the inequality

(8) holds.
Case II: i ∈ U i

k , U
i
Uk 6= ∅ and U

i
k =

{
k i1, k

i
2, · · · , k

i
m
}
,

according to Schur complement and inequality (13b),
we have [

¯̄011i 02i
∗ 04i

]
< 0 (18)

where

¯̄011i
∑
j∈U i

k

[
δ2ij

4
Vijl + ET

(
Pj − Pl

)
EV−1ijl E

T (Pj − Pl)E]

+Sym
{
ETPiAi + ATi RS

T
i + N

T
1 E

}
+ Q1 + Q2

+

∑
j∈U i

k

π̂ijET (Pj− Pl)E

Similar to Case I, the following formula holds∑
j∈U i

k

[
δ2ij

4
Vijl + ET

(
Pj − Pl

)
EV−1ijl E

T (Pj − Pl)E]

+Sym
{(
ETPi + SiRT

)
(Ai + Adi)

}
+

∑
j∈U i

k
π̂ijET

(
Pj − Pl

)
E < 0 (19)

Because of U i
k =

{
k i1, k

i
2, · · · , k

i
m
}
, there must exist l ∈ U i

Uk
so that ETPlE ≥ EPjET

(
∀j ∈ U i

Uk

)
. In this case, since

πii = −
∑s

j=1,j 6=i πij ≤ 0 and πii ∈ U i
k , then

∑
j∈U i

Uk
πij =

−
∑

j∈U i
k
πij. And we have∑s

j=1
πijETPjE

=

∑
j∈U i

k
πijETPjE +

∑
j∈U i

Uk
πijETPjE

≤

∑
j∈U i

k
πijETPjE +

∑
j∈U i

Uk
πijETPlE

=

∑
j∈U i

k
πijETPjE −

∑
j∈U i

k
πijETPlE

=

∑
j∈U i

k
π̂ijET

(
Pj − Pl

)
E +

∑
j∈U i

k
1ijET

(
Pj − Pl

)
E

=

∑
j∈U i

k

[
1ij

2
ET

(
Pj − Pl

)
E +

1ij

2
ET

(
Pj − Pl

)
E
]

+

∑
j∈U i

k
π̂ijET

(
Pj − Pl

)
E

It follows from Lemma 3 that,∑s

j=1
πijETPjE ≤

∑
j∈U i

k
π̂ijET

(
Pj − Pl

)
E

+

∑
j∈U i

k

[
δ2ij

4
Vijl + ET

(
Pj − Pl

)
EV−1ijl E

T (Pj − Pl)E]
(20)

According to Lemma 1, the formula (19) and (20) imply
that the pairs (E,Ai + Adi) are regular and impulse-free for
each i ∈ S. Thus, the system (4) with GUTRs is regular
and impulse-free. On the other hand, from inequalities (13b)
and (18), we have 011i ≤ 011i < 0. Therefore, the inequal-
ity (8) holds.

The proof of Case III is similar to that of Case I, and it
is omitted here. Therefore, if the inequalities (13a), (13b)
and (13c) hold, then according to Definition 1 and Theorem 1,
we conclude that the system (4) with GUTRs is stochasti-
cally admissible with a given H∞ performance γ for any
time-varying delay d (t) satisfying (2), thus, it completes the
proof. �
Remark 3: In many engineering areas, there is a need

to model the dynamics of a control system in partial func-
tional differential equations [39]–[40]. It should be noted
that by using the methods mentioned in this article, it is
easy to extend the results of this article to SMJSs with
reaction-diffusion terms under GUTRs.

In the following theorem, we aim at designing the con-
troller (6) such that the closed-loop SMJSs (7) with GUTRs
is stochastically admissible with H∞ performance γ .
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Theorem 3: Given scalars d̄ > 0, γ> 0, and µ, for
the system (1) with GUTRs, there exist a state feedback
controller (6) such that the closed loop systems (7) are
stochastically admissible with H∞ performance γ for any
time-varying delay d (t) satisfying (2), if there exist positive
definite matrices Pi, Q1, Q2, Z and the matrices Si, N1, N2,
W , Xi, Hi such that the following linear matrix inequalities
hold. And the controller gain matrices can be obtained as
Ki = HiX

−1
i .

Case I: If i /∈ U i
k and U

i
k =

{
k i1, k

i
2, · · · , k

i
m
}
, there exist a

set of positive definite matrices Tij ∈ Rn×n
(
i /∈ U i

k , j ∈ U
i
k

)
such that  9̃11i 92i 9̃3i

∗ 94i 0
∗ ∗ 9̃5i

 < 0 (21a)

with ET
(
Pj − Pi

)
E≥ 0,∀j ∈ U i

k .

where

9̃11i =
∑
j∈U i

k

π̂ijE
(
Pj − Pi

)
ET +

∑
j∈U i

k

δ2ij

4
Tij

+Sym {AiXi + BiHi + EN1} + Q1 + Q2,

92i = [912i 913i914i 915i d̄NT
1 0 Bωi],

9̃3i =

[
ET (Pk i1

− Pi)E ET (Pk i2
−pi)E · · ·ET (Pk im−Pi)E

T
]
,

94i =



922i 923i 924i 925i 0 − d̄Z 0
∗ 933i 934i 935i d̄NT

2 0 0
∗ ∗ −Q2 945i 0 0 0
∗ ∗ ∗ − γ 2I d̄W T 0 0
∗ ∗ ∗ ∗ − d̄Z 0 0
∗ ∗ ∗ ∗ ∗ − d̄Z 0
∗ ∗ ∗ ∗ ∗ ∗ − I


,

9̃5i = diag
{
−Tik i1

, − Tik i2
, · · · ,−Tik im

}
,

922i = −Xi − XTi ,

933i = − (1− µ)Q1 + Sym
{
AdiXiSTdi − EN

T
2

}
,

912i = EPi + AiXi + BiHi + SiRT − XTi ,

913i = EN2 − NT
1 E

T
+ XTi A

T
di + AiXiS

T
di + BiHiS

T
di,

914i = −AiXiSTdi − BiHiS
T
di,

915i = EW + XTi C
T
i + H

T
i D

T
i ,

923i = XTi A
T
di − XiS

T
di,

924i = −XiSTdi,

925i = XTi C
T
i + H

T
i D

T
i ,

934i = −AdiXiSTdi,

935i = −EW + SdiXTi C
T
i + SdiH

T
i D

T
i ,

945i = −SdiXTi C
T
i − SdiH

T
i D

T
i ,

and R ∈ Rn×(n−r) is any matrix with full column satisfying
ETR = 0;Sdi is anymatrix with appropriate dimensions; Xi ∈
Rn×n is any non-singular matrix.

Case II: If i ∈ U i
k , U

i
Uk 6= ∅ and U

i
k =

{
k i1, k

i
2, · · · , k

i
m
}
,

there are a set of positive definite matrices Vijl ∈ Rn×n(i, j ∈

U i
k , l ∈ U

i
Uk ) such that 9̄11i 92i 9̄3i

∗ 94i 0
∗ ∗ 9̄5i

 < 0 (21b)

where

9̄11i =
∑
j∈U i

k

π̂ijE
(
Pj − Pl

)
ET +

∑
j∈U i

k

δ2ij

4
Vijl

+Sym {AiXi + BiHi + EN1} + Q1 + Q2,

9̄3i =

[
E(Pk i1

−Pl)ET E(Pk i2
−pl)E · · ·ET (Pk im−Pi)E

T
]
,

9̄3i =

[
E(Pk i1

−Pl)ET E(Pk i2
−pl)E · · ·ET (Pk im−Pi)E

T
]
,

and other notations are defined as in Case I.
Case III: If i ∈ U i

k ,U
i
Uk = ∅, there exist a set of positive

definite matrices Rij ∈ Rn×n(i, j ∈ U i
k ) such that 9̂11i 92i 9̂3i

∗ 94i 0
∗ ∗ 9̂5i

 < 0 (21c)

where

9̂11i =
∑

j∈S,j 6=i

[
π̂ijE

(
Pj − Pi

)
ET +

δ2ij

4
Rij

]
+Sym {AiXi + BiHi + EN1} + Q1 + Q2,

9̂3i =

[
E(P1−Pi)ET · · ·E(Pi−1 − Pi)ET ,

× E(P1−Pi)ET · · ·ET (Pk im−Pi)E
T
]

9̂5i = diag
{
−Ri1, · · · ,−Ri(i−1),−Ri(i+1), · · · ,−Ris

}
,

and other notations are defined as in Case I.
Proof: Rewrite the close-loop system (7) with GUTRs

in the following form
Ē ẋ (t) = Āix̄ (t)+ Ādix̄ (t − d (t))+ B̄ωiω (t)
z (t) = C̄ix (t)
x (t) = φ (t) , t ∈

[
−d̄, 0

] (22)

where

x̄ (t) =
[
x(t)
Eẋ(t)

]
, Ē =

[
E 0
0 0

]
,

Āi =
[

0 I
Ai + Bi Ki − I

]
, Ādi =

[
0 0
Adi 0

]
,

B̄ωi =
[

0
Bωi

]
, C̄i =

[
Ci + DiKi 0

]
.

It follows from Theorem 2 that the closed-loop sys-
tem (22) with GUTRs is stochastically admissible with
H∞ performance γ , if there exist positive definite matrices
P̄i, Q̄1, Q̄2, Z̄ and matrices S̄i, S̄di, R̄ such that the inequali-
ties (13a), (13b), and (13c) hold.

As a particular case, we set

P̄i =
[
Pi 0
0 εI

]
, Q̄1 =

[
Q1 0
0 εI

]
, Q̄2 =

[
Q2 0
0 εI

]
,
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TABLE 1. Minimum allowed H∞ performance γ .

Z̄ =
[
Z 0
0 εI

]
, S̄i =

[
Si I
0 I

]
, R̄ =

[
R 0
0 Xi

]
,

S̄di =
[
0 Sdi
εI 0

]
, T̄ij =

[
Tij 0
0 εI

]
, V̄ijl =

[
Vijl 0
0 εI

]
,

R̄ij =
[
Rij 0
0 εI

]
. (23)

where R ∈ Rn×(n−r) is any matrix with full column satisfying
ETR = 0;Sdi is any matrix with appropriate dimensions, and
Xi ∈ Rn×n is any non-singular matrix, ε > 0. It is obvious
that ĒT R̄ = 0 and R̄ ∈ R2n×(2n−r) is of full column rank.
ReplacematricesPi,Q1,Q2, Z , Si, Sdi,R, Tij,Vijl ,Rij,E ,Ai,

Adi, Bωi, and Ci in Theorem 2 with matrices P̄i, Q̄1, Q̄2, Z̄ , S̄i,
S̄di, R̄, T̄ij, V̄ijl , R̄ij, Ē , Āi, Ādi, B̄ωi, and C̄i respectively, similar
to the proof of Theorem 2 [31], the results in Theorem 3 (21a),
(21b), and (21c) can be easily derived, the detail is omitted
here for the sake of brevity and readability. It completes the
proof. �

IV. NUMERICAL EXAMPLES
To show the effectiveness of the proposed method for the
SMJSs with time-varying delays, some numerical examples
are presented in this section.
Example 1: Consider the time-delay SMJSs (4) with two

modes and the following parameters [34]:

E =
[
1 0
0 1

]
,

[
π11 π12
π21 π22

]
=

[
−0.5 0.5
0.5 − 0.5

]
,

A1 =
[
−2 1
1 − 2

]
, Ad1 =

[
0.5 − 0.2
0.2 0.3

]
, Bω1 =

[
0.1
0.2

]
,

A2 =
[
−2 1
1 − 2

]
, Ad2 =

[
0.3 0.5
0.4 0.5

]
, Bω2 =

[
0.2
0.3

]
,

C1 =

[
0.1
0.2

]T
, C2 =

[
−0.1
0.2

]T
. (24)

Choose the known scalars d̄ = 2 and µ = 0.37. Table 1
presents the comparison results on minimum allowed H∞
performance γ , which shows that Theorem 1 in this article
is better than that in [9], [11], [34].
Next, consider the time-delay SMJSs (4) with E = I , two

modes and the following parameters [32]:

5 =

[
π11 π12
π21 π22

]
,

A1 =
[
−3.4888 0.8057
−0.6451 −3.2684

]
,

Ad1 =
[
−0.8620 −1.2919
−0.6841 −2.0729

]
,

A2 =
[
−2.4898 0.2895
1.3396 −0.0211],

]
,

Ad2 =
[
−2.8306 0.4978
−0.8436 −1.0115

]
.

TABLE 2. Allowable upper bound d̄ for different π11.

FIGURE 1. State trajectories of system (4) when π22= −0.5 and
d̄= 0.4519.

Similar to [32], let π22 = −0.8 and µ = 0.9, compute
upper bound d̄ with various π11, and Table 2 presents the
comparison results. It is clear that the result of Theorem 1 is
less conservative than that in [32]. In special, when π22 =
−0.5 and d̄= 0.4519, Fig. 1 shows the state trajectories of
the open-loop system (4). It is obvious that the system (4)
is asymptotically stochastic admissible, which illustrates the
accuracy and benefits of Theorem 1.
Remark 4: It can be seen from the above example that the

admissible H∞ performance index γ in Theorem 1 of this
article is smaller than that in [9], [11], [34], and the upper
bound of the time delay allowed is larger than that in [32].
This means that the theorem in this article is less conservative.
In addition, it should be pointed out that the transition rates
considered in the above literature is completely known, but
when the transition probabilities are not completely known,
the approach in the above literature cannot be available, The-
orem 2 and Theorem 3 proposed in this article are effective.
Example 2: This example shows the effectiveness of Theo-

rem 3 when the considered SMJSs meet three different cases
of the TRs (BUTRs, PUTRs, and GUTRs).
Case 1: Consider the SMJSs (7) with two modes, that

is, S = {1, 2} and the upper and lower bounds of each
transition rate are known, that is, the type of TRs is BUTRs.
The system parameters and transition rates are described as
follows [14]:

E =
[
1 0
0 1

]
, A1 =

[
0 0.1
0 1

]
, A2 =

[
−1 0.1
0 − 1

]
,

B1 =
[
0.9
−1

]
, B2 =

[
0.1
1

]
, Bω1 =

[
1
0

]
, Bω2 =

[
0.1
1

]
,

C1 =

[
1 − 0.1
0 1

]
, C2 =

[
1 0.1
0 1

]
, D1 =

[
0
0

]
,

D2 =

[
0
0

]
.
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FIGURE 2. System jumping modes of SMJSs with BUTRs.

FIGURE 3. State trajectories of open-loop SMJSs with BUTRs.

It can be seen from [14], when i = 1, the lower bound
of transition probability λ1 = −3.7, the upper bound of
transition probability λ1 = 3.7, and when i = 2, the
lower bound of transition probability λ2 = −18, the upper
bound of transition probability λ2 = 18. We can assume that
the estimate of the real transition probability is as follows:
π̂11 = −2, π̂12 = 2, π̂21 = 8, π̂22 = −8. According to
the lower and upper bounds, we can assume that 111,112 ∈

[−1.7, 1.7],121,122 ∈ [−10, 10]. And as defined above,
for all i∈ S, we denote the set U i by U i

= U i
k∪U

i
Uk with

U1
k = {1, 2}, U

2
k = {1, 2}.

Using Theorem 3 and LMI toolbox in MATLAB, the
closed-loop systems (7) are stochastically admissible and
the desired state feedback controller gains are obtained as
follows:

K1 =
[
6.3416 13.4877

]
, K2 =

[
−1.0382 −1.5392

]
.

Fig. 2 shows the Markovian process system switches
between mode 1 to mode 2 and Fig. 3 indicates the state
trajectories of open-loop SMJSs with BUTRs, respectively.
Fig.4 shows the state trajectories of closed-loop system
obtained by the above controller gains. It can be known from
Fig.4 that the stochastically admissible problem of SMJSs
with BUTRs can be solved by Theorem 3 in this article.
Case 2: Consider the SMJSs (1) with three modes, that is,

S = {1, 2, 3}. And the type of TRs is PUTRs. The system
parameters and transition rates are described as follows [21]:π11 π12 π13
π21 π22 π23
π31 π32 π33

 =
−1.3 ? ?

? ? 1.1
0.2 0.3 − 0.5

, E =
[
1 0
0 0

]

FIGURE 4. State trajectories of closed-loop SMJSs with BUTRs.

A1 =
[
0.5 − 0.75
1 2

]
, Ad1 =

[
0.3 − 0.5
0.2 − 0.4

]
,

B1 =
[
0.5
1.0

]
,Bω1 =

[
0.01
0

]
, C1 =

[
1
2

]T
, D1 = 2,

A2 =
[
3.4 − 2
1 − 3

]
, Ad2 =

[
0.8 1.5
−0.4 − 0.3

]
, B2 =

[
2
0

]
,

Bω2 =
[
0.05
0.1

]
, C2 =

[
1
2

]T
, D2 = 3,

A3 =
[
0.2 1
1 − 0.5

]
, Ad3 =

[
−0.8 − 1
−0.9 − 1.5

]
,

B3 =
[
1
3

]
, Bω3 =

[
0.3
0.1

]
, C3 =

[
1
2

]T
, D3 = 1.5.

According to the description of GUTRs matrix 5 in (3),
we have

5 =

π11 π12 π13
π21 π22 π23
π31 π32 π33


=

 π̂11 +111 ? ?
? ? π23 +123

π31 +131 π32 +132 π33 +133


=

−1.3 ? ?
? ? 1.1
0.2 0.3 −0.5

 (25)

where π̂11 = −1.3, π̂23 = 1.1, π̂31 = 0.2, π̂32 = 0.3, π̂33 =
−0.5, 111 = 123 = 131 = 132 = 133 = 0. And we know
U1
k = {1}, U

2
k = {3}, U

3
k = {1, 2, 3}.

From Theorem 3 and LMI toolbox in MATLAB, the
SMJSs (7) are stochastically admissible with the following
state feedback controller gains:

K1 =
[
0.3994 −4.6430,

]
,

K2 =
[
−2.9448 −0.5971

]
,

K3 =
[
−2.0343 −2.7217

]
.

Fig. 5 shows the Markovian process system switches
betweenmode 1 to mode 3 and Fig 6 indicates the state trajec-
tories of open-loop SMJSs with PUTRs, respectively. Fig. 7
shows the state trajectories corresponding to the obtained
control gains. It can be seen from Fig. 7 that the stochastically
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FIGURE 5. System jumping modes of SMJSs with PUTRs.

FIGURE 6. State trajectories of open-loop SMJSs with PUTRs.

FIGURE 7. State trajectories of closed-loop SMJSs with PUTRs.

admissible problem of SMJSs with PUTRs can also be solved
by Theorem 3 in this article.
Case 3: Consider the SMJSs (7) with three modes, that is,

S = {1, 2, 3} and each transition probability is completely
unknown or only its estimate is known. The type of TRs is
GUTRs. We use the same method in [26], and the system
parameters are described as follows [26]:

A1 =

−1.0344 −0.8755 2.0747 0.1249
0.4124 1.4002 0.1 0.8501
−1.1249 1.3997 0.4499 0.7499

,
A2 =


−0.1688 −3.4001 −1.3907 −0.9748
0.3375 −1.3996 −0.1989 −1.9500

0 −0.2501 2.3743 −1.8747
0.2249 2.4989 11.2475 −1.9495

,

A3 =


−1.0126 −1.7748 −1.0521 −1.5377
−0.2248 −2.1091 −6.6669 −0.2697
−0.75 0.3003 −1.6343 −0.775
1.3498 2.0995 1.2299 2.2496

,

B1 =


−0.2751 4.5008
0.4701 6.7507
0.0499 −0.2506
0.7999 4.9988

, B2 =


−0.8002 0.05
1.5201 −0.26
0.1499 0.2
1.2997 0.6

,

B3 =


−0.225 0.2749

0 0.4001
−0.05 0.7499
0.1 0.6998

 .
The mode switching is governed by the rate matrix

5 =

−3.2+111 ? ?
? ? 2+123

1.5+131 2.1+132 −3.6+133


where π̂11 = −3.2, π̂23 = 2, π̂31 = 1.5, π̂32 =
2.1, π̂33 = −3.6,111,132 ∈ [−0.1, 0.1],123,131,133 ∈

[−0.2, 0.2] . And we know π11 ∈ [−3.3,−3.1], π12=?,
π13=?, π21=?, π22=?, π23 ∈ [1.8, 2.2], π31 ∈

[1.3, 1.7], π32 ∈ [2.0, 2.2], π33 ∈ [−3.8,−3.4], and U1
k =

{1}, U2
k = {3}, U

3
k = {1, 2, 3}.

Without losing generality, we can assume that π11 = −3.0,
π12 = 2.0, π13 = 1.0, π21 = 1.7, π22 = −3.6, π23 =
1.9, π31 = 1.4, π32 = 2.2, and π33 = −3.6.
In this case, we can assume that

E =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

, x(0) =


0.5
−1
−1.5
1.2

, R =


0
0
0
1

,

Sd1 = Sd2 = Sd3 =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 .
According to Theorem 3 and LMI toolbox in MATLAB, the
SMJSs (7) is stochastically admissible with the following
state feedback controller gains:

K1 =

[
5.2040 −9.7542 −10.9004 −6.6986
−0.3067 0.2164 0.8476 0.3304

]
,

K2 =

[
0.8033 −2.6911 −2.1159 −0.6558
−0.8234 0.6351 −12.1663 −0.0656

]
,

K3 =

[
−3.8502 −8.6180 7.1047 −14.9156
−3.6980 −2.3098 −1.2993 −4.2519

]
.

Fig. 8 shows that the Markovian process system switches
between mode 1 to mode 3. Fig. 9 shows that the open-loop
system trajectories of x1, x2, x3, and x4 under above switch-
ing modes are not stochastically stable. And Fig. 10 shows
the closed-loop system state trajectories obtained by the
above controller gains. The simulation results demonstrate
the above controller gains is effective and that the system is
stochastically admissible. It should be pointed out that [26]
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FIGURE 8. System jumping modes of SMJSs with GUTRs.

FIGURE 9. State trajectories of open-loop SMJSs with GUTRs.

FIGURE 10. State trajectories of closed-loop SMJSs with GUTRs.

is concerned with SMJSs without disturbance and time-
delay, while the SMJSs we consider is the one with external
disturbance ω (t) and time-varying delay d (t). Therefore,
the theorems in this article are more general than those
in [26].

Remark 5: Example 2 shows that whether the transition
probability model of SMJSs is BUTRs or PUTRs, the state
feedback controller can be designed by Theorem 3 in this arti-
cle, which makes the system stochastically admissible with
H∞ performance γ . However, the theorems in [14] and [21]
can only be used to solve the specific transition probability
model. That is to say, [14] can only solve the case where
the lower and upper bounds of each transition probability is
known, and [21] can only solve the case where the transition
probability is partly unknown.

V. CONCLUSION
In this article, by using the Lyapunov theory and LMIs
approach, the problem of H∞ control for continuous-time
singular Markovian jump time-varying delay system with
general uncertain transition rates has been analyzed. Firstly,
under the assumption that the transition probability is com-
pletely known, a new delay-dependent strict LMI suffi-
cient condition is obtained, which ensures that the system
is stochastically admissible and that a given H∞ perfor-
mance index γ is satisfied. Then, some strict LMIs criteria
on stochastically admissible for singular Markovian jump
time-varying delay systems with general uncertain transition
rates are proposed. Furthermore, a H∞ state feedback con-
troller is designed to guarantee that the closed-loop system
is stochastically admissible and the gain of the controller can
be obtained by solving a set of strict LMIs. Finally, numerical
examples demonstrate the advantage and effectiveness of our
proposed method.
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