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ABSTRACT In this paper, we mainly study the adaptive exponential quasi-passivity and adaptive tracking
control of lower triangular uncertain switched nonlinear systems, even though the adaptive output tracking
control problem of individual subsystem is unsolvable. First, the exponential quasipassivity concept is
proposed to describe the energy changing of the overall switched nonlinear systems without the exponential
quasi-passivity property of all the subsystems. Then, for switched nonlinear systems, the semiglobally
uniformly ultimate boundedness is achieved by using exponential quasipassivity. Second, this result is
applied to solve adaptive tracking control problem uncertain switched nonlinear systems in lower-triangular
form. A new adaptive tracking control technique is developed by combining quasi-passificationmethodswith
adaptive backstepping techniques. The unknown nonlinear functions are approximated by the radial basis
function neural networks. In contrast to the existing results, the multiple storage functions method reduces
the conservativeness caused by a common Lyapunov function for all subsystems. Finally, the effectiveness
of the proposed method is verified by an example.

INDEX TERMS Switched nonlinear systems, neural networks, output tracking control, exponential quasi-
passification.

I. INTRODUCTION
The notion of passivity originated in electrical network theory
was first proposed byWillems [1]. In general, passive system
dissipates no more energy than the external supply. Passiv-
ity theory was widely applied in analysis and synthesis of
nonlinear systems [2], [3]. This motivates the researchers [4]
to establish necessary and sufficient conditions for feed-
back passification of nonlinear systems. In practical sys-
tems, In practical systems, structural uncertainty and other
uncertainties are ubiquitous. These effects of uncertainties
on plants can be eliminated with the aid of robust control
and adaptive control [5], [6]. To deal with with structural
uncertainties, [5] adopted robust control method to solve
passfication and stabilization problems. In [6], adaptive pas-
sification method was developed for nonlinear systems with
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parameter uncertainties. When the controlled system is con-
sidered unknown, neural networks passivity was investigated
in [7], [8]. Nevertheless, the aforementioned feedback passifi-
cation method is its limitation to systems with relative degree
one and being minimum-phase. To overcome these restrictive
conditions, [5], [9] combined backstepping technique with
passification method to solve the stabilization problem of
uncertain nonlinear systems. Because of the existence of the
large uncertainties, it was often hard to realize exact feedback
passification. In [10], [11], only passivity except for a com-
pact region was achieved. Similar practical passivity prop-
erty was investigated in [12]–[14]. [12] proposed a concept
of quasi-passivity. Compared with passive systems, quasi-
passive systems can produce energy itself. In [13], [14], semi-
passivity was studied and applied to solve synchronization
in networks of neuronal oscillators. This practical passivity
was also used to solve nonlinear control problem of uncertain
nonlinear systems in lower-triangular form [11], [15]. In [11],
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exponential quasipassivity and backstepping technique were
adopted to anaylize stability of power system. In [15], based
on the set passivity theory, adaptive fuzzy tracking problem
was solved by backstepping technique for a class of unknown
nonlinear systems with saturation input nonlinearity.

On the other hand, switched systems have received
extensive research attention in recent years [16]–[23].
Many real-world systems can be modeled as switched sys-
tems [16]–[19]. Several methods were often used to inves-
tigate switched nonlinear systems [18]–[23]. Passivity is
an important system property of switched systems as non-
switched systems. So far, many scholars have studied the
passivity of switched systems [24]–[31]. [24] defined pas-
sivity of switched systems using a common storage function
method. But it is often hard to obtain a common storage
function even not exist. Therefore, it is natural to study pas-
sivity of switched systems by the adoption of multiple storage
functions [25], [26]. For switched nonlinear systems with
structural uncertainties, robust passification and stabilization
were investigated in [27]. In [28], H∞ control problem was
solved for uncertain switched nonlinear systems with passive
and non-passive subsystems. For switched nonlinear systems
with parameter uncertainties, the adaptive control technique
and passification method were combined to solve the ouput
tracking and stabilization problems in [29], [30]. Neverthe-
less, there are few results on passvity of the switched system
with unknown nonlinear functions. [31] investigated passivity
analysis and feedback passification for a class of switched
T-S fuzzy systems with the sampled-data-dependent switch-
ing strategy and controllers. As nonswitched systems, quasi-
passivity is useful for practical switched systems. Although
exponential quasi-passivity property for non-switched sys-
tems has been studied thoroughly in [13]–[17], a switched
system does not necessarily inherit the properties of its sub-
systems. Hence, [27] studied expnential quasi-dissipativity
and boundedness of switched nonlinear systems without
considering uncertainties. In [28], practical stability for
uncertain switched nonlinear systems using exponential
quasi-passivity property of subsystems was obtained via the
average dwell time method. Nevertheless, at least a sub-
system was required to be feedback quasipassive, which is
a conservative condition, because non-quasi-passive system
is commonly encountered in the real world. Subsequently,
in [29], robust semipassivity of switched nonlinear systems
with structural uncertainties was studied by the design of
a state dependent switching law, even if each subsystem
was not semipassive. Nevertheless, a switched system with
unknown nonlinear functions has not been studied in [29].
Moreover, to solve the feedback quasi-passification prob-
lem, the relative degree of each subsystem was required
to be one. How to remove this restriction is worth
studying.

Motivated by the above analysis, this paper will solve
adaptive exponential quasi-passification and adaptive track-
ing control for uncertain switched nonlinear systems
in lower-triangular form. The contributions are in three

aspects. First, an exponential quasipassivity is proposed.
It is a generalization of exponential passivity. Second,
the semiglobally uniformly ultimate boundedness is obtained
using the quasi-passivity concept. This result was firstly
applied to solve adaptive tracking control for uncertain
switched nonlinear systems in lower-triangular form. In con-
trast to conventional backstepping, a class of nonlinear
adaptive controllers with new control inputs are designed
constructively. The new control inputs can be redesigned to
solve the tracking and stabilization problem and so on. This
method can remove the major obstacle to feedback quasi-
passification that requires the relative degree of each sub-
system is one [29]. Finally, a more general switching law
which allows the storage function increase at each switching
point is designed constructively to achieve output tracking
control, while the dwell time and the common Lyapunov
method adopted in [20]–[22] are infeasible for the problem
under study.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. PRELIMINARIES
Consider a switched nonlinear system described by

ẋ = fσ (x, uσ ) ,

y = hσ (x) , (1)

where x ∈ Rn is the state, σ : [0,∞)→ I = {1, 2, . . . ,M},
called a switching signal, is a piecewise constant function.
ui ∈ Rm and y ∈ Rm are the input and output vectors of the
i-th subsystem, respectively. fi (·) and hi(·) are assumed to
be smooth with fi (0, 0) = 0 and hi (0) = 0. The switching
signal can be characterized by∑
= {x0; (i0, t0), (i1, t1), . . . , (ik , tk ), ...|ik ∈ I , k ∈ Z+} ,

(2)

in which x0 denotes the initial state at the initial time t0 and Z+
stands for the set of non-negative integers. When σ (t) = ik ,
the ik -th subsystem is active during [tk , tk+1) . In addition,
we assume that the state of the system (1) does not jump at
the switching instants.

The definitions of class K∞ functions, class GK function
are introduced as follows.
Definition 1 [35]: A function γ : R+ → R+ is called a

classK∞ function if it is continuous, positive definite, strictly
increasing and γ (r)→∞ as r →∞.
Definition 2 [19]: A function α : R+ → R+ is called a

class GK function if it is increasing and right continuous at
the origin with α (0) = 0.

Next, wewill give an exponential quasi-passivity definition
of system (1).
Definition 3: System (1) is said to be exponentially quasi-

passive, if, for a given switching signal σ , there is a nonneg-
ative function V (σ (t) , x) : I × Rn → R+, called storage
function, constants λ > 0, ci ≥ 0, class GK function α such
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that

eλtV (σ (t) , x (t))− eλt0V (σ (t0) , x (t0))

≤

∫ t

t0
eλτuσ(τ) (τ ) , y (τ )+ cσ(τ)) dτ + eλt0α (‖x (t0)‖)

(3)

holds for all the initial state x (t0).
Remark 1:Obviously, system (1) is quasi-passive by letting

λ = 0. ci is seen as internal supply rates, which means
system can produce energy by itself. If ci = 0, Definition 2
degenerates into passivity of switched system in [27]. By (3),
the energy of switched system may increase at any switching
time and is bounded by eλt0α (‖x (t0)‖).
We will investigate ultimately boundedness of system (1)

using exponential quasi-passivity.
Definition 4: System (1) is semiglobally uniformly ulti-

mately bounded, find, if possible, feedback controllers ui, i ∈
I and a switching signal σ (t) such that for given any initial
compact set �, the closed-loop system possesses the follow-
ing properties.

(a) (Uniform boundedness) there exists compact set �ε
such that for all t0 ≥ 0, x0 ∈ � implies x (t) ∈ �ε,∀t ≥ t0.

(b) (convergence) for all initial condition x0 ∈ �, there
exists T > 0 such that states x (t) eventually converge to the
compact set �s, i.e. x (t) ∈ �s, t ≥ T .

We will investigate ultimately boundedness of system (1)
using exponential quasi-passivity.
Lemma 1: Suppose that system (1) is exponentially quasi-

passive with a storage function V (σ (t) , x) = Vσ(t) (x) . If
there exist class K∞ functions φ1, φ2 satisfying φ1 (‖x‖) ≤
Vi (x) ≤ φ2 (‖x‖). Then, the closed-loop system (1) with
the output feedback controllers ui = −9i (y) is semiglob-
ally uniformly ultimately bounded, where 9i (y) , i ∈ I are
continuous functions satisfying ψi (0) = 0 and yTψ i (y) ≥ 0.
Proof: Since system (1) is exponentially quasi-passive, for

t ∈ [tk , tk+1), substituting ui = −9i (y) into (3) gives

eλtV (σ (t) , x (t))− eλt0V (σ (t0) , x (t0))

= eλtVik (x (t))− e
λt0Vi0 (x (t0))

≤

∫ t

t0
eλτ cσ(τ)dτ + eλt0α (‖x (t0)‖) . (4)

It follows from φ1 (‖x‖) ≤ Vi (x) ≤ φ2 (‖x‖) that

φ1 (‖x (t)‖)

≤ Vik (x (t))

≤ e−λ(t−t0)Vi0 (x (t0))+ e
−λ(t−t0)α (‖x (t0)‖)

+
c
λ

(
1− e−λ(t−t0)

)
≤ e−λ(t−t0)

(
Vi0 (x (t0))−

c
λ
+ α (‖x (t0)‖)

)
+
c
λ

(5)

≤ α (‖x (t0)‖)+
c
λ
, (6)

where c = max
i∈I
{ci} , α = α + φ2. From (6), for any

bounded initial conditions x0 ∈ �, there exists a compact

set �ε =
{
x| ‖x‖ ≤ φ−11

(
α (‖x (t0)‖)+ c

λ

)}
such that for

all t0 ≥ 0,x (t) ∈ �ε.
(1) When Vi0 (x (t0)) −

c
λ
+ α (‖x (t0)‖) = 0, for

any bounded initial conditions x0 ∈ �, (5) implies that
lim
t→∞
‖x (t)‖ = φ−11

( c
λ

)
., i.e. there is T > 0 such that state

x (t) ∈ �s =

{
x| ‖x‖ ≤ φ−11

( c
λ

)}
, t ≥ T .

(2) When Vi0 (x (t0))−
c
λ
+ α (‖x (t0)‖) 6= 0, for any x0 ∈

�, we have lim
t→∞
‖x (t)‖ = φ−11

( c
λ

)
.

Therefore, the closed-loop system is semiglobally uni-
formly ultimately bounded.

B. PROBLEM FORMULATION
1) SYSTEM DESCRIPTION
Consider system (1) in the special form

ż = f0σ (z, x1) ,
ẋ1 = x2 + f1σ (z, x̄1) ,
ẋ2 = x3 + f2σ (z, x̄2) ,
. . .

ẋn−1 = xn + f(n−1)σ (z, x̄n−1) ,
ẋn = uσ + fnσ (z, x̄n) ,
y = x1,

(7)

where z ∈ Rp, x = (x1, x2 . . . xn)T are the system states with
x̄k = (x1, . . . xk)T , k = 1, 2 . . . n. f0i (.) , fki (.) , k =
1, 2 . . . n, i ∈ I are unknown smooth functions and f0i (0) =
0 , fki (0) = 0, k = 1, 2 . . . n, i ∈ I . The switching
sequences can be characterized by

6 = {
(
zT
0
, xT0

)
; (i0, t0), (i1, t1), . . . , (il, tl),

. . . |il ∈ I , l ∈ N } (8)

with the initial states
(
zT0 , x

T
0

)T
In this paper, for a given reference signal yd (t), the main

control objective is to design adaptive NNs-based controller
for each subsystem of system (7) and an appropriate switch-
ing law such that

(a) all the signals of the resulting closed-loop system are
semiglobally uniformly ultimately bounded.,
(b) the output of the system can follow the reference
signal yd (t) to a small compact.
To this end, we make the following assumptions.
Assumption 1: There exists a positive definite and radially

unbounded smooth function Wi (z), βij (z) ≤ 0, and smooth
functions µij (z) with µij (0) = 0 and µii (z) = 0, constants
ci ≥ 0, λi > 0 for i, j ∈ I such that

Lf 0i (z,yd )
Wi (z)+ λiWi (z)

+

M∑
k=1

βik (z) (Wi (z)−Wk (z)+ µik (z)) ≤ ci, (9)

Lf 0i (z,x1)
µik (z)+ λµik (z) ≤ 0, (10)

µij (z)+ µjk (z) ≤ min {0, µik (z)} (11)

hold for i, j ∈ I .
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Assumption 2: The reference signal yd (t) and its
time derivatives ẏd (t) , ÿd (t) . . . y

(n)
d (t) are continuous and

bounded.
Remark 2: Under Assumption 1, the tracking control

problem for each subsystem is not required to be solvable.
Therefore, Assumption 1 is much weaker than the conditions
provided in [23], [26], [30]. Assumption 1 can degenerate
into [30] by letting ci = 0.

2) FUNCTION APPROXIMATION USING RBF NNs
RBF neural network is usually used to model nonlinear func-
tions. In [35], an unknown continuous function f (X) : Rn→
R can be expressed as f (X) = ŴS (X) + ε (X) , where
X = [x1, . . . , xn]T ∈ Rn is the input vector of NN, Ŵ ∈ Rl

is a weight vector of the NN, l > 1 is the number of the
NN nodes. ε (X) is the approximation error which satisfies
|ε (X)| ≤ |ε| and ε is an unknown bounded parameter,
S (X) = [s1 (X) , . . . sl (X)]T ∈ Rl is the basis function
vector, where si(X ) can be chosen as the Gaussian functions
in th form

si (X) = exp

[
− (X − µi)T (X − µi)

ξ2
i

]
, i = 1, 2, . . . l,

(12)

whereµi = [µi1, µi2, . . . , µin]T is the center of the receptive
field and ξi is the width of the Gaussian function.

As mentioned in [36], for sufficiently large nodes num-
ber l, the RBF neural networks θ∗S (X) can approximate any
continuous function f (X) over a compact set �, that is, for
∀ε > 0, there exists the RBF neural networks W ∗S (X) such
that

f (X) = θ∗S (X)+ ε∗ (X) , ∀X ∈ � ⊂ Rn, (13)

where W ∗ is the optimal weight and |ε∗ (X)| ≤ ε is the
smallest approximation error.

III. MAIN RESULTS
This section will solve the output tracking control problem of
system (7) using the exponential quasi-passivity concept.

A. NEURAL NETWORKS-BASED ADAPTIVE EXPONENTIAL
QUASI-PASSIFICATION CONTROLLER AND SWITCHING
LAW DESIGN
In the following, a set of adaptive controllers and a state-
dependent switching law will be designed constructively
to solve the exponential quasi-passification problem of
system (7).
Step 1: Consider the i-th (z, x1) subsystem. Construct the

output e1 = x1 − yd . Thus, the i-th (z, x1) subsystem is
described by

ż = f0i (z, e1 + yd ) ,

ė1 = x2 + f1i (z, e1 + yd )− ẏd , (14)

where x2 is a virtual input of (14). Thus, the zero dynamics of
system (14) is ż = f0i (z, yd ) . Using the mean value theorem

gives:

f0i (z, e1 + yd ) = f0i (z, yd )+ eT1 f̃0i (z, e1 + yd ) , (15)

where f̃0i (z, e1 + yd ) =
∫ 1
0
∂f0i(z,ς+yd )

∂ς

∣∣∣∣ ς = se1
ds are

unknown smooth functions. Let

R1i (X1) = f1i (z, x1)+
1
l
∂Wi (z)
∂z

f̃0i (z, x1)− ẏd ,

X1 = (z, x1, yd , ẏd ) .

Using an RBF neural network θT∗i1 S1 (X1)+ ε∗i1 to approx-
imate R1i (X1) gives

R1i (X1) = θT∗i1 S1 (X1)+ ε•i1 (X1) ,
∣∣ε•

i1

∣∣ ≤ ε̄1
with the ideal constant weights θ∗i1, and the approximation
error ε∗i1. Define an unknown constant 21 = max

i∈I

{
‖θi1‖

2}.
A storage function for system (14) is constructed as

V1i
(
z, e1, 2̃1

)
=

1
lWi (z) +

e21
2 +

1
2l 2̃

2
1 with the estimation

error 2̃1 = 21−2̂1,where 2̂1 is the estimation of21, l > 0
is a design parameter.

Differentiating V1i together with (9) gives

V̇1i

= e1

(
x2 +

1
l
∂Wi

∂z
f̃0i (z, e1 + yd )+ f1i (z, e1 + yd )− ẏd

)
+
1
l
∂Wi

∂z
f0i (z, yd )−

1
l
2̃12̂1

= e1
(
x2 + θT∗i1 S1 (X1)+ ε•i1 (X1)

)
+
1
l
∂Wi

∂z
f0i (z, yd )−

1
l
2̃12̂1 (16)

Applying the Young’s inequality gives

e1θT∗i1 S1 (X1) ≤
e21
2a21

21ST1 S1 +
a21
2
, e1ε•i1 ≤

e21
2
+
ε̄21

2
, (17)

where a1 > 0 is a design parameter. Therefore,

V̇1i ≤ e1

(
x2 +

e1
2a21

21ST1 S1 +
e1
2

)
+
a21
2

+
ε̄21

2
+

1
l
∂Wi

∂z
f0i (z, yd )−

1
l
2̃12̂1. (18)

Design the virtual common controller as:

x2 = α1
(
2̂1, e1,X1

)
+ e2,

α1 = −
e1
2a21

2̂1ST1 S1 −
(
λ

2
+

1
2

)
e1 + ẏd ,

˙̂
21 = l

e21
2a21

ST1 S1 − λ2̂1, (19)

where λ = min
i∈I
{λi} . From (9) and (19), we have

V̇1i ≤ e1e2 − λ
e21
2
+
a21
2
+
ε̄2i1

2

+
1
l
∂Wi

∂z
f0i (z, yd )+

λ

l
2̃12̂1
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≤ e1e2 −
λ

l
Wi (z)− λ

e21
2
−
λ

l

2̃2
1

2
+
a21
2
+
ε̄21

2
+
λ

l

22
1

2

+

M∑
k=1

βik (z)
(
Wi (z)
l
−
Wk (z)
l
+
µik (z)
l

)
+
ci
l

≤ e1e2 − λV1i +
a21
2
+
ε̄21

2
+
λ

l

22
1

2
+
ci
l

+

M∑
k=1

βik (z) (V1i (z, e1)− Vk (z, e1)+ µ̃ik (z, e1)),

where µ̃ik (z,e1) =
1
l µik (z) .

Step j(1 ≤ j ≤ n−1): Let Xk =
(
z, x̄k , 2̂1, . . . , 2̂k−1, yd ,

. . . , y(k)d
)T

, Zj =
(
z, e1, . . . ej

)
, ϑj =

(
2̃1, . . . , 2̃j

)
. Repeat-

ing this process, we can obtain, at the j-th step, that the
virtual output, virtual input and the storage functions of(
z, x̄j−1, 2̂1, . . . , 2̂j−2

)
subsystem: ej−1 = xj−1 − αj and

xj = αj−1
(
Xj
)
+ ej, Vj−1,i

(
Zj−1, ϑj−1

)
=

1
lWi (z) +

j−1∑
k=1

e2k
2 +

2̃2
k

2l satisfying

V̇j−1,i ≤ ej−1ej − λVj−1i +
j−1∑
k=1

(
a2k
2
+
ε̄2k

2
+
λ

l

22
k

2
)+

ci
l

+

M∑
k=1

βik (z)
(
Vj−1,i

(
Zj−1, ϑj−1

)
− Vj−1,k

(
Zj−1, ϑj−1

)
+µ̃ik

(
Zj−1, ϑj−1

))
. (20)

where µ̃ik = 1
l µik (z).

Consider the i-th
(
z, x̄j, 2̂1, . . . , 2̂j−1

)
subsystem. Let

the output ej = xj − αj−1.xj+1 is a virtual input of i th(
z, x̄j, 2̂1, . . . , 2̂j−1

)
subsystem. Let Rj,i

(
Xj
)
= fj,i

(
z, x̄j

)
−

α̇j−1, which are the unknown functions. Employing an RBF
neural network θT∗ij Sj

(
Xj
)
to approximate Rj,i

(
Xj
)
gives

Rj,i
(
Xj
)
= θT∗ij Sj

(
Xj
)
+ ε∗ij

(
Xj
)
,

∣∣∣ε∗ij (Xj)∣∣∣ ≤ ε̄j, (21)

where θT∗ij denotes the ideal constant weights, ε∗
ij
is the

approximation error with constant ε̄j > 0. Define 2j =

max
i∈I

{∥∥θij∥∥2}.
Choose the storage function as

Vji
(
Zj, ϑj

)
= Vj−1,i

(
Zj−1, ϑj−1

)
+
e2j
2
+
2̃2
j

2l
,

where 2̃j = 2j − 2̂j, 2̂j is the estimation of 2j.
The derivative of Vji along the trajectory of the i-th

(
z, x̄j

)
subsystem together with (20) and (21) is

V̇ji ≤
(
ej−1 + xj+1 + fji

(
z, x̄j

)
− α̇j

)
ej − λVj−1,i

+

j−1∑
k=1

(
a2k
2
+
ε̄2k

2
+
λ

l

22
k

2
)+

ci
l
−
2̃j

l
2̂j

+

M∑
k=1

βik (z)
(
Vji
(
Zj, ϑj

)
− Vjk

(
Zj, ϑj

)
+ µ̃ik

)

≤

(
ej−1 + xj+1 + θT∗ij Sj

(
Xj
)
+ ε∗ij

)
ej − λVj−1,i

+

j−1∑
k=1

(
a2k
2
+
ε̄2k

2
+
λ

l

22
k

2
)+

ci
l
−
2̃j+1

l
2̂j+1

+

M∑
k=1

βik (z)
(
Vji
(
Zj, ϑj

)
− Vjk

(
Zj, ϑj

)
+ µ̃ik

)
. (22)

Applying the Young’s inequality gives

ejθT∗ij Sj
(
Xj
)
≤

e2j
2a2j

2jSTj Sj +
a2j
2
, ejε•i,j ≤

e2j
2
+
ε̄2j

2
, (23)

where aj+1 > 0 is a design parameter.
Design the virtual common controller as:

xj+1 = αj + ej+1,

αj = −
ej
2a2j

2̂jSTj Sj − ej−1 −
λ

2
ej,
˙̂
2j = l

e2j
2a2j

STj Sj − λ2̂j.

(24)

Substituting (23), (24) into (22) gives

V̇j,i ≤ ejej+1 − λVj,i +
j∑

k=1

(
a2k
2
+
ε̄2k

2
+
λ

l

22
k

2
)+ ci

+

M∑
k=1

βik (z)
(
Vj,i

(
Zj, ϑj

)
− Vj,k

(
Zj, ϑj

)
+ µik (z)

)
.

(25)

Step n: According to the above analysis, we have

V̇n−1,i ≤ en−1en − λVn−1,i +
n−1∑
k=1

(
a2k
2
+
ε̄2k

2
+
λ

l

22
k

2
)+

ci
l

+

M∑
k=1

βik (z)
(
Vn−1,i (Zn−1, ϑn−1)

−Vn−1,k (Zn−1, ϑn−1)+ µ̃ik
)
.

Consider the i-th
(
z, x̄n, 2̂1, . . . , 2̂n−1

)
subsystem. Define

the output en = xn − αn−1. Use an RBF neural network
θT∗in Sn (Xn) to approximate fn,i (z, x̄n)− α̇n−1.

Let 2j+1 = max
i∈I

{∥∥θij+1∥∥2}. Choose the storage function
as

Vni (Zn, ϑn) = Vn−1,i (Zn−1, ϑn−1)+
e2n
2
+
2̃2
n

2l
,

where 2̃n = 2n−2̂n and 2̂n is the estimation of2n. Design
the controllers as:

ui = αn + vi,

αn = −
en
2a2n

2̂nSTn Sn − en−1 −
λ

2
en,

˙̂
2n = l

e2n
2a2n

STn Sn − λ2̂n, (26)
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The derivative of Vni is

V̇ni ≤ envi − λVni +
n∑

k=1

(
a2k
2
+
ε̄2k

2
+
λ

l

22
k

2
)+

ci
l

+

M∑
k=1

β̃ik (Zn, ϑn) (Vni (Zn, ϑn)− Vnk (Zn, ϑn)

+µ̃ik (Zn, ϑn)) , (27)

where β̃ik (Zn, ϑn) = βik (z) , µ̃ (Zn, ϑn) = 1
l µik (z) .

Let

�i = { (Zn, ϑn)|Vni (Zn, ϑn)

−Vnk (Zn, ϑn)+ µ̃ik (Zn, ϑn) ≤ 0, j ∈ I }

and

�̃ij = { (Zn, ϑn)|Vni (Zn, ϑn)

−Vnk (Zn, ϑn)+ µ̃ik (Zn, ϑn) = 0, i 6= k} .

According to [22], the set { �i| i ∈ I } is a partition of
R2n+p. When Vni (Zn, ϑn)−Vnk (Zn, ϑn)+ µ̃ik (Zn, ϑn) ≤ 0,
we have

V̇ni ≤ envi − λVni +
n∑

k=1

(
a2k
2
+
ε̄2k

2
+
λ

l

22
k

2
)+

ci
l
. (28)

Multiplying both sides of (28) by eλt , respectively, yields:

d
dt

(
eλtVni

)
≤ eλt (envi + Ci) , (29)

where Ci =
n∑

k=1
(
a2k
2 +

ε̄2k
2 +

λ
l
22
k
2 )+ ci

l .

Integrating (29) over [s, t] for ∀t > s ≥ t0 gives:

eλtVni(t)−eλsVni(s)≤
∫ t

s
eλτ (en (τ ) vi (τ )+ Ci) dτ . (30)

Design the switching law as:

σ (t) = i if σ
(
t−
)
= i and x (t) ∈ �i,

σ (t) = min
{
j
∣∣∣x (t) ∈ �̃ij

}
if σ

(
t−
)
= i and x (t) ∈ �̃ij.

(31)

From (31), we have

Vni (Zn (tl) , ϑn (tl))− Vnk (Zn (tl) , ϑn (tl))

= µ̃ik (Zn (tl) , ϑn (tl)) , l = 0, 1, . . . (32)

and eλt µ̃ik j (Zn (t) , ϑ (t)) are decreasing on [tl, tl+1).
The storage function of system (7) is defined as

V (σ (t) ,Zn, ϑn) = Vσ(t) (Zn, ϑn). For t ≥ t0 > 0 and
t ∈ [tk , tk+1) .
From (30), (32), and (21), we have:

eλtV (σ (t) ,Zn (t) , ϑn (t))− eλt0V (σ (t0) ,Zn (t0) , ϑn (t0))

= eλtVik (Zn (t) , ϑn (t))− e
λtkVik (Zn (tk) , ϑn (tk))

+

k−1∑
p=0

(
eλtp+1Vip

(
Zn
(
tp+1

)
, ϑn

(
tp+1

))

−eλtpVip (Zn
(
tp
)
, ϑn

(
tp
)
)
)

+

k∑
p=1

eλtp
(
Vip (Zn

(
tp
)
, ϑn

(
tp
)
)

−Vip−1
(
(Zn

(
tp
)
, ϑn

(
tp
)
)
))

≤

∫ t

t0
eλτ (en (τ ) vσ (τ )+ Cσ ) dτ

+

k∑
p=1

eλtpµ̃ip−1ip (Zn
(
tp
)
, ϑn

(
tp
)
)

≤


∫ t
t0
eλτ (en (τ ) vσ (τ )+ Cσ ) dτ if k is even∫ t

t0
eλτ (en (τ ) vσ (τ )+ Cσ ) dτ

+eλt0µ̃i0i1 (Zn (t0) , ϑn (t0) ) if k is odd

≤

∫ t

t0
eλτ (en (τ ) vσ (τ )+ Cσ ) dτ

+eλt0α(‖(Zn (t0) , ϑn (t0))‖) (33)

where α (s) = max
‖(Zn,ϑn)‖≤s

{ |µik (Zn, ϑn)| |i, k ∈ I } is a

class GK function. Therefore, system (7) is exponentially
quasi-passive.
Remark 3: Because of the existence of uncertainty, quasi-

passification was only achieved instead of exact feedback
passification.

B. STABILITY ANALYSIS
Based on the above quasipassive system, the output tracking
problem will be solved by output feedback controllers.
Theorem 1: Consider system (7). For the given refer-

ence signal yd (t), suppose Assumptions 1,2 hold. Then,
there exists the switching law (31) and adaptive controllers
(26) such that closed- loop system is exponentially quas-
ipassive from the inputs vi to the output en = xn −
αn. Furthermore, if the new control input is redesigned as
vi = −9i (en) with the continuous function φi (·) satisfy-
ing eTn9 i (en) ≥ 0, the output tracking control problem is
solvable.
Proof: By Lemma 1, all the signals of the resulting closed-

loop system are semiglobally uniformly ultimately bounded.
Thus, all the signals

(
z, e1, . . . en, 2̃1, . . . 2̃n

)
in the closed-

loop system are bounded. Because 21,22 . . . 2n are con-
stants, 2̂1, . . . 2̂n are bounded. ByAssumption 2, z, x1, . . . xn
are bounded. The states and parameter estimation errors con-
verge to compact sets whose sizes can be reduced by choosing
appropriate design parameters l and ai.On the other hand, for
all initial condition, e1 eventually converge to the compact set.
Therefore, the output can follow the reference signal yd (t) in
a small compact.
Remark 4: In contrast to conventional backstepping, a class

of nonlinear adaptive controllers with new control inputs
are designed constructively. The new control inputs can be
redesigned to solve the tracking and stabilization problem and
so on. The switching law (31) can degenerate into the well-
known ‘‘min-switching’’ law in [23] by setting µij ≡ 0.
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IV. EXAMPLE
In this section, a numerical example is given to demonstrate
the effectiveness of the results.

Consider the following system
ż = f0σ (z, x1) ,
ẋ1 = x2 + f1σ (z, x̄1) ,
ẋ2 = uσ + f2σ (z, x̄2) ,
y = x1,

(34)

where σ (t) : [0,+∞)→ I = {1, 2} z = [z1, z2]T ∈ R2, x =
[x1, x2]T ∈ R2, f01 = [−9z1 + 3x1, 2z2 + cos(z1z2)]T ,
f11 = z1x1 + x21 , f21 = z2

2
+ ex

2
1 , f12 = x2

1
z2 + cos x1, f02 =

[2z1 + cos (1.2z2) ,−16z2 + 2x1]T , f22 = z21x
3
2 . The refer-

ence signal is yd (t) = sin t .
First, let W1 =

1
2 z

2
1 + z22,W2 = z21 +

1
2 z

2
2. It is easy to

verify that the conditions in Assumption 1 are satisfied with
λ1 = 1, λ2 = 6, c1 = 2, c2 = 2, µ12 = µ21 = 0 and
β12 = −12, β21 = −22.
Similar to the proof of Theorem 1, the adaptive NN con-

trollers and update laws as:

x2 = cos t −
e1
2a21

2̂1ST1 S1 −
(
λ

2
+

1
2

)
e1 + e2, (35)

u1 = −
e2
2a22

2̂2ST2 S2 − e1 −
λ1

2
e2 + v1, (36)

u2 = −
e2
2a22

2̂2ST2 S2 − e1 −
λ2

2
e2 + v1, (37)

˙̂
21 = l

e21
2a21

ST1 S1 − 22̂1, (38)

˙̂
22 = l

e22
2a22

ST2 S2 − 62̂2, (39)

where λ = min {λi |i = 1, 2 } = 1. Then

V̇21 ≤ 12 (V21 (z, e2)− V22 (z, e2))+ e2v1 − V21 + d21,

V̇22 ≤ 22 (V22 (z, ē2)− V21 (z, ē2))+ e2v2 − V22 + d22,

where

d2i =
2∑

k=1

(
a2k
2
+
ε̄2k

2
+
λ

l

22
k

2
)+

ci
l
,

ε̄1 = ε̄2 = 2, i = 1, 2.

V2i (z, ē2) = V1i +
e22
2
+

1
2l
2̃2

2,

V1i (z, e1) =
1
l
Wi (z)+

e21
2
+

1
2l
2̃2

1, i = 1, 2.

Design the switching law as follows:

σ (t) = 1, when V21 (z, ē2)− V22 (z, ē2) ≤ 0;

σ (t) = 2, when V22 (z, ē2)− V21 (z, ē2) ≤ 0; (40)

By Theorem 1, system (33) is exponentially quasi-passive
from vi to the output e2. Therefore, the output tracking prob-
lem for closed-loop system (33,36-39) is solvable by v1 =
−e2, v2 = −2e2 under the switching law (40).

FIGURE 1. State responses of the switched system.

FIGURE 2. Output and reference signal.

FIGURE 3. Tracking error.

Let a1 = 0.24, a2 = 0.2, l = 20.
The input vectors of RBFNNs are X1 = (z1, z2, x1, yd , ẏd )

and X2 =
(
z1, z2, x̄k , 2̂1, . . . , 2̂k−1, yd , . . . , y

(k)
d

)T
. The

centers and widths are chosen on a regular lattice in the
respective compact sets.The centers and widths of RBFNNs
evenly spaced on [−2, 2] , [−2, 2].The widths of RBFNNs
are ξ1 = ξ2 = 2. The simulation was performed with
the initial state (z (0) , x (0)) = (−1.5, 0.6,−0.2,−0.05) ,
2̂1 (0) = 0, 2̂2 (0) = 0.
The simulation results are shown in Figs. 1-4. See from

Figure 1, the states are bounded under the switching law
described in Fig. 4. Figs. 2 and 3 imply the outputs of the sys-
tem (33) can track the reference signal under the controllers
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FIGURE 4. Switching law (39).

FIGURE 5. Control input.

as shown in Fig. 5. Therefore, the adaptive tracking control
problem of the resulting closed-loop system (33) - (39) is
solvable. The simulation results well illustrate the effective-
ness of the proposed approach.

V. CONCLUSION
This paper has studied adaptive exponential quasi-
passification and adaptive tracking control for uncertain
switched nonlinear systems in lower-triangular form. A more
general switching law and adaptive controller are designed
constructively. There are relevant problems that need to be
investigated. One of such problems is how to solve finite
time tracking problems using finite-time quasi-passivity for
switched nonlinear systems.
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