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ABSTRACT Array processing is an interdisciplinary topic of both physics and signal processing. Physical
basis of array processing is the orderly-setup of sensors in space that induces regular change of the phase of
external sources incident upon sensor array. In the current paper the direction-of-arrival (DoA) estimation of
an azimuth-only uniform linear array (ULA) is investigated in theory and method from the fused perspective
of signal and physical properties of the incident sources. By organically fusing the stationary assumption on
source signals and noises with difference operation on the phases, a distinctive system of linear equations
satisfied by the incident sources is theoretically derived for the azimuth-only ULA with the Hankel-block-
matrix of signal correlations as coefficient matrix and the elementary power-sum symmetric functions of the
propagators of incident sources as the unknowns. Based on the derived system of linear equations, signal
model of the incident sources is first proved as a degenerate spatial ARMA process subject to the identical
autoregressive and moving average parameters and simultaneously obeying the dimensional homogeneity
principle (DHP) in physics. The explicit root-finding polynomial is proposed with the unknowns of the
system of linear equations as polynomial coefficients and the propagators as the roots. No extraneous
roots and conjugate symmetry constraint on polynomial coefficients are involved. The DoAs and noise
variances can be separately estimated under the backgrounds of spatially white and colored noises, which are
numerically analyzed with the different coherent lengths of noises. A simple sound experiment is designed
and performed to verify the proposed DoA estimation method. It is promising to investigate the DoA
estimation of the ULA model, particularly of the ULAs of the multi-dimensional array from the fused
perspective of physical and signal properties of the incident sources.

INDEX TERMS Array signal processing, direction-of-arrival estimation, phase-difference, the azimuth-only
ULA, the degenerate spatial ARMA process, the modified Yule-Walker (MYW) system of linear equations,
the root-finding polynomial.

I. INTRODUCTION
Array processing has been extensively applied to the diverse
engineering applications including radar, sonar, wireless
communication and seismic prospecting and so forth. The
target of array processing is to extract the desired parame-
ters or properties of the incident sources from sensor data.
The DoA (Direction-of-arrival) estimation has been a repre-
sentative and central problem in array processing.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chengpeng Hao .

Array processing is physically model-based. The sensors
are artificially and orderly setup in space and comprise var-
ious array geometries such as the one-dimensional (1-D)
ULA (Uniform linear array), 2-D rectangular and 3-D cuboid
arrays and so on. The orderly setup of sensors has induced
regular change of the phase and phase-difference of the
external sources incident upon the array, which is a common
physical phenomenon. More specifically, for the extensively-
studied azimuth-only ULA, under the narrow-band far-field
condition, phase-difference of the incident source is the
constant and simplified as an explicit function of azimuth
angle, sensor interspacing, and carrier frequency after sensor
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calibration. The phase is proportional to the correspond-
ing phase-difference. In contrast, for the multi-dimensional
(M-D) array or near-field source, function form of the
phase becomes highly complicated due to the introduction of
azimuth, elevation angles and propagation distance.

Meanwhile, array processing is signal model-based, which
is reflected by the statistical property of source signals and
sensor noises. In practice, the well-known concepts such as
non-stationary/stationary, deterministic/stachastic, indepen-
dent/correlated/coherent, narrow-band and wide-band and so
forth have been frequently introduced to reflect signal prop-
erties of source and noise and impacted on array processing
including the DoA estimation in theory and method.

Physical and signal properties have formed a pair to fully
describe the incident sources. In this sense, array processing
can be taken as a problem of both physics and signal process-
ing. It is beneficial and meaningful to study array processing
from the fused perspective of physical and signal properties
of the incident sources.

In past, various popular DoA estimation methods had
been proposed from signal perspective of the incident
sources and noises and mainly classified into beam-
forming technique [1]–[3], linear prediction (LP) [4]–[6],
the subspace-based methods such as the conventional
MUSIC (Multiple signal classification) and ESPRIT (Esti-
mation of signal parameters via rotational invariance
techniques) [7]–[12], Maximum likelihood (ML) [13] and
their variants and combinations. The reviews could be found
in [14]–[16].

It was noted that a well-known concept was the so-called
subspace in the DoA estimation, in particularly the signal
subspace that stemmed from the partition of data covariance
matrix. Signal subspace was proved to be spanned both by
the implicit steering vectors of the ULA representation and
by signal eigenvectors after eigenvalue decomposition (EVD)
on data covariance matrix, which showed signal subspace in
effect had played a role of bridge connecting steering vector
and the ULA data. After considering the one-to-onemap from
steering vector to azimuth angle, azimuth angles could be
estimated from the ULA data via signal subspace in theory.
The DoA estimation of the azimuth-only ULA had been
elegantly accomplished by theMUSIC and ESPRITmethods,
which also resulted in the popularity of the subspace-based
methods in array processing.

In the recent years, the sparsity of the incident source
signals in the spatial domain has drawn growing attention,
spare signal processing techniques based on CS (Compressed
sensing) theory [17] have been extensively introduced and
exploited for the DoA estimation of array processing.
Under the CS frame, the DoA estimation had been for-
mulated as a sparse signal representation problem after
discretizing angular area and formulating an overcomplete
dictionary and then performed by the convex optimization
problems of the l1-norm penalty [18] or lp-norm penalty
with p ≤ 1 [19], [20] and the sparse Bayesian Learning
(SBL) [21]–[23]. The CS-based DoA estimation methods

exhibited some advantages including the increased resolu-
tion, improved robustness to noise and limitations in data
quantity, as well as not requiring an accurate initialization.
On the other hand, the accuracy and performance of the above
methods relied on the exact-alignment requirement of the true
DoAs of the incident sources with the discretized grids and
the tuning of regularization parameter balancing the sparsity
of the spectrum and the residual norm, which have been the
focuses in study and also resulted in the promising off-grid
models based on the Taylor series expansion method and the
linear interpolation method.

Physical properties of the incident sources induced by the
orderly-setup of sensors has been more-or-less exploited in
some estimation methods. The noted one was the rotational-
invariance structure of array manifold developed in the
ESPRIT. The propagators of all the sources were wholly
extracted out from array manifolds of the displaced or par-
titioned subarrays and explicitly formed a diagonal unitary
matrix. Owing to avoiding array calibration and reducing
computational complexity, the ESPRIT had been the other
representative subspace method, the successive methods such
as MPM (Matrix pencil method) [24], [25], PM (Propaga-
tor method) [26]–[28], and SUMWE (The subspace-based
method without eigen-decomposition) method [29] as well
as CODE (The cross-correlation based 2-D DOA estima-
tion) method [30] had borrowed ESPRIT idea. The rota-
tional transformation was a whole operation acting on the
displaced or partitioned subarrays. Analogous to the MUSIC,
the estimation of propagators still required to make the
connection with the ULA data, which was completed by
exploiting the rotational invariance of the underlying signal
subspace.

Array processing is an interdisciplinary problem of both
physics and signal processing. As a physical parameter con-
taining the unknownDoAs, phase-difference can be treated as
a result of difference operation on phases of the same source
impinging upon the adjacent sensors. Once such a connection
is made, except for the rotational-invariance structure of array
manifold, by making use of difference operation on phases,
phase-difference also can be individually extracted out from
the ULA representation and explicitly expressed for the sub-
sequent estimation. By fusing difference operation on phases
with the appropriate signal assumption on source and noise,
here we take the azimuth-only ULA as an object and probe
the DoA estimation in theory and method.

Indeed, the more deep and significant insight into the DoA
estimation benefits from the fused perspective. It is from the
fused perspective that the MYW system of linear equations
and the root-finding polynomial are first derived for the
azimuth-only ULA. Signal model of the incident sources is
revealed as a degenerate spatial ARMA process (Autoregres-
sive moving-average process), neither AR (Autoregressive)
nor MA (Moving-average) models. Furthermore, the ARMA
process is not arbitrary, but explicit in function forms of
model coefficients. The degenerate ARMA process constrains
the DoA estimation to possess its own distinctive method.
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By contrast, in past signal model had been uncertain in prin-
ciple, which led various AR processes or LP equations to be
introduced into the DoA estimation [4]–[6], [8].

The paper is structured as follows: The extraction man-
ners of phase-difference are described in Section II. The
systems of linear equations and the root-finding polynomial
are derived for the azimuth-only ULA, respectively, with
the forward and backward difference operations (FDO and
BDO) in Section III. A degenerate spatial ARMA process
of the incident sources is developed and further analyzed
from the standpoints of physics and signal processing in
Section IV. The properties of the MYW system of linear
equations are discussed in Section V. The implementation
of the DoA estimation is described in Section VI. Numeri-
cal analysis and experimental verification are performed in
Section VII and VIII.

II. THE EXTRACTION OF PHASE-DIFFERENCE UNDER THE
AZIMUTH-ONLY ULA
A. THE AZIMUTH-ONLY ULA MODEL
Consider a typical one-dimensional azimuth-only ULA com-
prising the M identical and omnidirectional sensors, the K
far-field narrow-band sources {sk (t)}Kk=1 with azimuth angles
{θk}

K
k=1 are impinging upon the array. The azimuth angle θk is

defined as the one between the incident direction of the k-th
source and the normal of the ULA. The representation of the
azimuth-only ULA is expressed in matrix notation as [14]

X(t) = A(θ )S(t)+W (t), (1)

where the column vectors of sensor data, source signals and
sensor noises are X(t) = [x1(t), x2(t), · · · , xM (t)]T , S(t) =
[s1(t), s2(t), · · · , sK (t)]T and W (t) = [w1(t),w2(t), · · · ,
wM (t)]T with t as time variable, (·)T denotes transpose oper-
ator. The statistical property of source signal is reflected via
sk (t). A(θ ) stands for array manifold or array steering matrix
with θ = [θ1, θ2, · · · , θK ]T .
Array manifold A(θ ) of the azimuth-only ULA is a Van-

dermonde matrix given by

A(θ ) = [a(θ1), · · · , a(θk ), · · · , a(θK )], (2)

where steering vector a(θk ) = [ejϕ1(θk ), · · · , ejϕm(θk ),
· · · , ejϕM (θk )]T with j as imaginary unit.
Steering vector a(θk ) of array manifoldA(θ ) in (2) contains

the two physical parameters, one is the phase ϕ(θ ), the other is
phase-difference1ϕ(θ ). Suppose ϕm(θk ) in a(θk ) is the phase
of the k-th source impinging upon the m-th sensor after the
first sensor is calibrated as the zero-phase sensor, then

ϕm(θk ) = (m− 1)1ϕ(θk ), m = 0, · · · ,M − 1, (3)

where 1ϕ(θk ) is the corresponding k-th phase-difference.
For the far-field narrow-band source, the k-th phase-

difference 1ϕ(θk ) is simplified as

1ϕ(θk ) = 2π fd sin θk/c, (4)

In (4) the k-th phase-difference 1ϕ(θk ) is a function of
azimuth angle θk , sensor interspacing d , carrier frequency f

and propagation velocity c. The corresponding propagator vk
is defined as

vk = ej1ϕ(θk ), (5)

It is shown in (3) that the phase ϕm(θ ) is the product of
phase-difference 1ϕ(θ ) and the index (m − 1) after sensor
calibration (To simplify the notation, here we omit the index
k of ϕm(θk ) and1ϕ(θk ); we will reinstate the index k later on,
when needed.). For the azimuth-only ULA, only one phase-
difference1ϕ(θ ) appearing in the phase ϕm(θ ) guarantees the
one-to-one map from the propagator v to azimuth angle θ ,
while the index (m − 1) in (3) describes sensor position and
is linearly-varied. The function form of the phase ϕm(θ ) is
induced by the artificial and orderly setup of sensors.

In contrast to the phase ϕm(θ ), owing to independent of
position index of sensor and also containing the DoAs, phase-
difference 1ϕ(θ ) is the more essential parameter in physics.
The DoA estimation of the azimuth-only ULA in effect
has been viewed as the estimation of propagator or phase-
difference from the noise-contaminated ULA data.

B. THE EXTRACTION OF PHASE-DIFFERENCE WITH
DIFFERENCE OPERATION
Except for the rotational-invariance structure of array man-
ifold proposed by the ESPRIT which was used to wholly
extract the propagators of the incident sources, in accordance
with the above definition, here we provide the other manner
of explicit extraction of phase-difference.

The proportional relation between the phase and phase-
difference in (3) yields

1ϕ(θ ) = ϕm(θ )− ϕm−1(θ ), (6)

and also

1ϕ(θ ) = [−ϕm−1(θ )]− [−ϕm(θ )], (7)

For comparison, with positive phase ϕm(θ ), phase-
difference1ϕ(θ ) is extracted by using the forward difference
operation (FDO) in (6), while with negative phase −ϕm(θ ),
1ϕ(θ ) obtained by using the backward difference operation
(BDO) in (7). The BDO can be implemented after conjugate
preprocessing of the ULA data, which will be discussed next.

Here we probe the DoA estimation of the azimuth-only
ULA in theory andmethod via implementing difference oper-
ation on phases and explicitly extracting phase-difference.
Apparently the implementation of difference operation
requires the appropriate condition on source signals and
noises since the phases {ϕm(θ )}Mm=1 and the signals {sk (t)}

K
k=1

and the noises {wm(t)}Mm=1 coexist into the representation of
the azimuth-only ULA in (1).

III. THE SYSTEMS OF LINEAR EQUATIONS AND THE
ROOT-FINDING POLYNOMIAL WITH THE FDO AND BDO
A. THE CONSTRUCTION OF CORRELATION SEQUENCE OF
THE ULA DATA
In order to study the DoA estimation via performing the
FDO, a raw sequence S f0 composed of correlation functions
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of sensor data {xm(t)}Mm=1 is first constructed and given by

S f0 = (Rx1xn ,Rx2xn , · · · ,Rxmxn , · · · ,RxM xn ), (8)

where them-th element Rxmxn = E{xm(t)xHn (t)}. E{·} and (·)H

denote the expectation operation and conjugate transpose,
respectively. For the sake of convenience, the data xn(t) used
in Rxmxn is called reference signal and can be chosen from
sensor data as needed.

After the first sensor is calibrated as the zero-phase sensor,
the m-th element Rxmxn is expanded as

Rxmxn = vm−11 Rs1xn + · · · + v
m−1
K RsK xn + Rwmxn , (9)

where Rskxn = E{sk (t)xHn (t)} denotes the correlation function
between the k-th source signal sk (t) and xn(t), Rwmxn =
E{wm(t)xHn (t)} is the one between the m-th noise wm(t)
and xn(t).
The property of Rskxn and Rwmxn in Rxmxn are usually

unknown. However, under the stationary assumption on
source signals and noises, Rskxn and Rwmxn become the time-
independent constants.

B. THE SYSTEM OF LINEAR EQUATIONS WITH THE FDO
For the first element Rx1xn in S

f
0 , we have

Rs1xn = Rx1xn − Rs2xn − · · · − RsK xn − Rw1xn , (10)

Similarly, for the second element Rx2xn ,

v1Rs1xn = Rx2xn − v2Rs2xn − · · · − vKRsK xn − Rw2xn , (11)

Dividing the right-side and left-side hands of (11) by the
corresponding sides of (10), we preform the FDO on the
phases of s1(t) incident on the first and second sensors.
To guarantee the implementation of the FDO, the involved
correlation functionRs1xn is required to be a time-independent
constant, which implies that source signals and noises are
stationary. After the FDO, we get

R1x1xn = R1s2xn + · · · + R
1
skxn + · · · + R

1
sK xn + R

1
w1xn , (12)

where R1x1xn = Rx2xn − v1Rx1xn , R
1
w1xn = Rw2xn − v1Rw1xn .

R1skxn = (vk − v1)Rskxn (k ≥ 2).
It is shown in (12) that the unknown correlation function

Rs1xn appearing in (10) and (11) is eliminated by the FDO
under the stationary assumption on source signals and noises.

For the m-th and (m+ 1)-th sensors, it follows (12) that

R1xmxn = vm−12 R1s2xn + · · · + v
m−1
k R1skxn

+ · · · + vm−1K R1sK xn + R
1
wmxn , (13)

where R1xmxn = Rxm+1xn − v1Rxmxn , R
1
wmxn = Rwm+1xn −

v1Rwmxn .
For the convenience next,R1xmxn (m = 1, · · · ,M−1) in (13)

is named as the compound correlation function in respect to
the index m after the first FDO.

After the first FDO, it is noted that the original sequence
S f0 in (8) changes as S f1 = (R1x1xn ,R

1
x2xn , · · · ,R

1
xM−1xn ).

The compound correlation function R1xmxn in (13) remains
the similar function structure asRxmxn in (9), which shows that

the FDO can be performed on the phases of R1s2xn in R
1
xm−1xn

and R1xmxn .
After the k-th FDO, by derivation, the correlation functions

Rs1xn ,Rs2xn , · · · ,Rskxn are shown to be orderly eliminated
under the stationary assumption on source signals and sensor
noises, the compound correlation function Rkxmxn is derived as

Rkxmxn = vm−1k+1 R
k
sk+1xn + · · · + v

m−1
K RksK xn + R

k
wmxn , (14)

where the involved recurrence formulas satisfy

Rkxixn = Rk−1xi+1xn − vkR
k−1
xixn , (15)

Rksk′xn = (vk ′ − vk )R
k−1
sk′xn

, (k ′ ≥ k + 1), (16)

Rkwixn = Rk−1wi+1xn − vkR
k−1
wixn , (17)

The sequence after the k-th FDO is given by S fk =
(Rkx1xn ,R

k
x2xn , · · · ,R

k
xM−kxn ), which similarly shows that the

FDO can continue to be performed for the elements in S fk .
After the K -th FDO, all the K correlation functions
{Rskxn}

K
k=1 are eliminated in derivation, the compound cor-

relation function RKxmxn in respect to the index m contains no
signal correlations {Rskxn}

K
k=1 and satisfies

RKxmxn = RKwmxn , m = 1, · · · ,M − K , (18)

The sequence after theK -th FDO is S fK = (R
K
x1xn ,R

K
x2xn , · · · ,

RKxM−K xn ).
Employing recurrence formulas in (15), (16), and (17),

Equation (18) in respect to the index m is expanded as

−(Rxm+K xn − Rwm+K xn ) = b1(Rxm+K−1xn − Rwm+K−1xn )

+ b2(Rxm+K−2xn − Rwm+K−2xn )

+ · · ·

+ bK (Rxmxn − Rwmxn ), (19)

where the unknown coefficients {bk}Kk=1 denote the elemen-
tary power-sum symmetric functions of the propagators and
have the following distinctive forms

b1 = (−1)1(v1 + v2 + · · · + vK ),
b2 = (−1)2(v1v2 + · · · + v1vK + v2v3 + · · · + vivj
+ · · · + vK−1vK ), (i 6= j),

...

bK = (−1)K v1v2 · · · vK ,

(20)

Equation (19) is a difference equation satisfied by the
propagators of the K sources impinging upon the azimuth-
only ULA under the stationary assumption on source signals
and noises.
Writing (19) for the indices m = 1, · · · ,M − K gives the

following system of linear equations in matrix notation

H f b = rf , (21)
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where H f , b and rf denote coefficient matrix, the vectors of
the unknowns and constant terms and are given by

H f = [hf 1, hf 2, · · · , hfm, · · · , hf (M−K )]T ,
b = [bK , bK−1, · · · , b1]T ,
rf = −[hf (K+1), hf (K+2), · · · , hfM ]T ,

(22)

where the 1 × K vector hfm = [hfm, · · · , hf (m+K−1)]. The
element hfl (l = 1, · · · ,M ) in H f and rf denotes hfl =
Rxlxn − Rwlxn . It is shown that coefficient matrix H f is a
standard block-Hankel matrix.

In order to solve the K unknowns {bk}Kk=1, in accordance
with the concrete form of (22), the relation betweenM and K
is required to satisfy K ≤ M

2 . As K =
M
2 , the system of the

K equations in K unknowns is obtained and all the sensors of
the ULA are employed for estimation.

Although the azimuth-only ULA has the highly com-
plicated representation and array manifold A(θ ) contains
no explicit propagator and phase-difference, by fusing the
FDO with the stationary assumption on source signals and
noises, it is proven by theoretical derivation that the azimuth-
only ULA model has a system of linear equations with the
block-Hankel matrix as coefficient matrix and the elementary
power-sum symmetric functions of the propagators as the
unknowns.

Matrix equation (21) and the corresponding derivation
manner are based on the equal-interspacing azimuth-only
ULA model. Since any ULA is always one-dimensional,
the linearly-combined relation between the phase and its
component phase-difference still holds, no matter how com-
plicated function forms of the phase and phase-difference are,
therefore the derivation manner for the azimuth-only ULA
including difference operation can be extended to anyULA of
the M-D array and further used to investigate the complicated
2-D DoA estimation problem.

If {hfm}Mm=1 are known, the unknowns {bk}Kk=1 can be
estimated and explicitly visualized by solving the system of
linear equations in (21).

C. THE SYSTEM OF LINEAR EQUATIONS WITH THE BDO
As shown in (7), phase-differences {1ϕ(θk )}Kk=1 also can
be explicitly extracted out by making using of the BDO
on the negative phase. To generate the negative phase, here
correlation function Rxnxm between reference signal xn(t) and
xm(t) (m = 1, · · · ,M ) are proposed to constitute the other
sequence Sb0 .

Sb0 = (Rxnx1 ,Rxnx2 , · · · ,Rxnxm , · · · ,RxnxM ), (23)

where the m-th correlation function Rxnxm = E{xn(t)xHm (t)}.
The correlation function Rxnxm is expanded as

Rxnxm = v−(m−1)1 Rxns1 + · · · + v
−(m−1)
K RxnsK + Rxnwm , (24)

where Rxnsk = E{xn(t)sHk (t)} (k = 1, · · · ,K ) and Rxnwm =
E{xn(t)wHm (t)}.
In (24) the phase ϕm(θk ) of the k-th signal sk (t) incident

on the m-th sensor is negative and equal to −(m− 1)1ϕ(θk ).

Owing to the introduction of negative phase, the BDO can be
performed on the elements of the sequence Sb0 . Under the sta-
tionary assumption on source signals and noises, by making
use of the similar derivation manner as used for the system of
linear equations in (21), the difference equation in respect to
m (m = M , · · · ,K + 1) is given by

−(Rxnxm−K − Rxnwm−K ) = b1(Rxnxm−K+1 − Rxnwm−K+1 )

+ b2(Rxnxm−K+2 − Rxnwm−K+2 )

+ · · ·

+ bK (Rxnxm − Rxnwm ), (25)

Equation (25) is the other difference equation satisfied
by the propagator of the incident source with the BDO on
negative phase. Similarly, writing (25) for the indices m =
M , · · · ,K + 1 gives the other system of linear equations

Hbb = rb, (26)
Hb = [hbM , hb(M−1), · · · , hbm, · · · , hb(K+1)]T ,
b = [bK , bK−1, · · · , b1]T ,
rb = −[hb(M−K ), hb(M−K+1), · · · , hb1]T ,

(27)

where the vector hbm = [hbm, hb(m−1), · · · , hb(m−K+1)].
The element hbl (l = 1, · · · ,M ) in Hb and rb denotes hbl =
Rxnxl − Rxnwl .

D. THE ROOT-FINDING POLYNOMIAL OF THE
AZIMUTH-ONLY ULA
After {bk}Kk=1 are estimated and known by solving
(21) or (26), there still requires one step to obtain the propaga-
tors {vk}Kk=1 from the known {bk}Kk=1. In accordance with the
distinctive function forms of {bk}Kk=1 in (20), we construct the
following K -degree monic polynomial in propagator variable
v as

f (v) = vK + b1vK−1 + · · · + bkvK−k + · · · + bK , (28)

It is not difficult to show that f (v) is factored as follows:

f (v) = (v− v1)(v− v2) · · · (v− vK ), (29)

Thus the propagators {vk}Kk=1 are proven as the roots of
the polynomial f (v). With the known propagators {vk}Kk=1,
the individual azimuth angle θk is straightforward calculated
via

θk = arcsin
[c ln vk
j2π fd

], k = 1, · · · ,K (30)

Hence the DoA estimation of the azimuth-only ULA is
taken as a root-finding problem of the higher-order monic
polynomial with {bk}Kk=1 as the explicit polynomial coeffi-
cients and the propagators {vk}Kk=1 as the roots.

As a simple example, let the number of sources K = 2,
from (20), the coefficients b1 and b2 have the following
simple and explicit forms as

b1 = −(v1 + v2), b2 = v1v2,
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After b1 and b2 are estimated from theULAdata, the 2-degree
monic polynomial f (v) is constructed as

f (v) = v2 + b1v+ b2,

The closed-form solutions of two propagators are

v1,2 =
−b1 ±

√
b21 − 4b2

2
.

IV. THE DEGENERATE SPATIAL ARMA PROCESS OF THE
INCIDENT SOURCES
A. DIMENSIONAL ANALYSIS ON DIFFERENCE
EQUATIONS (19) AND (25)
Difference equations (19) and (25) can be analyzed from the
standpoint of physics.

An evident difference in function forms of (19) and (25)
lies in the arrangements of {hfm}Mm=1 and {hbm}Mm=1. The
elements {hfi}

(m+K )
i=m in (19) are paired and multiplied by the

corresponding coefficients b1, b2, · · · , bK in the descending
order from the indexm+K−1 tom. By contrast, {hbi}mi=m−K
in (25) are arranged in the ascending order from m − K + 1
to m. The reason for the above difference is simple to explain
from the dimensional analysis on two difference equations.

In effect, after noise correlation Rwmxn is subtracted from
Rxmxn , the m-th element hfm is given by

hfm = Rxmxn − Rwmxn = vm−11 Rs1xn + · · · + v
m−1
K RsK xn , (31)

Then hfm is contributed only by source correlations
{Rskxn}

K
k=1, similarly, hbm contributed by {Rxnsk }

K
k=1.

Difference equations (19) and (25) should physically obey
the dimensional homogeneity principle (DHP) in which the
propagator in each term of the same equation remains identi-
cal in dimension.

The dimension of propagator is reflected by the corre-
sponding power. For example, the dimension of bk (k =
1, · · · ,K ) is equal to k . Similarly, for hfm in (31), without
considering xn(t) appearing in all the K terms, the dimension
of propagator in each term is equal to (m− 1), while for hbm,
is equal to −(m− 1).

Now we perform the dimensional analysis on difference
equation (19). The dimension of propagator in the left-hand
term hf (m+K ) is equal to m + K − 1, each of the right-hand
terms is the product of bi and hf (m+K−i) (i = 1, · · · ,K ), then
the dimension of propagator in each of right-hand terms is
the sum of i and K + m − i − 1 and equal to m + K − 1.
Hence difference equation (19) physically obeys the DHP
with the arrangement of {hfi}

(m+K )
i=m in the descending order.

Meanwhile, difference equation (25) obeys the DHP with the
dimensions of the K terms all equal to −(m+ K − 1).
The dimension of propagator reflects the equation-

independent property. By the similar analysis, all the
equations in (21) and (26) obey the DHP with the dif-
ferent dimensions of propagator and are the independent
equations.

B. SIGNAL MODEL OF THE INCIDENT SOURCES OF THE
AZIMUTH-ONLY ULA
Difference equations (19) and (25) also can be analyzed from
the standpoint of signal processing.

Let cm+K = Rxm+K xn and em+K = Rwm+K xn , cm+K−k =
Rxm+K−kxn and em+K−k = Rwm+K−kxn , then (19) is rewritten as

cm+K +
K∑
k=1

bkcm+K−k = em+K +
K∑
k=1

bkem+K−k

(m = 1, · · · ,M − K ), (32)

Similarly, difference equation (25) is rewritten as

c∗m−K +
K∑
k=1

bkc∗m−K+k = e∗m +
K∑
k=1

bke∗m−K+k ,

(m = M , · · · ,K + 1), (33)

As shown in (32) and (33), under the stationary assumption,
via the FDO or BDO, signal model of the external sources
impinging upon the azimuth-only ULA is definitely revealed
as the so-called degenerate spatial ARMA(K ,K ) process
subject to the identical autoregressive and moving average
parameters. The definition of degenerate ARMA(K ,K ) pro-
cess can be found in [31].

As the stationary assumption is narrowed as the conven-
tional one in which source signals and noises are uncorrelated
and the noises are supposed as the GWN (Gaussian white
noise) with zero mean and identical variance σ 2, then (32)
is further simplified by reasonably choosing reference signal.
For example, let reference index n = m + K , then only
em+K = σ 2, other em+K−1, · · · , em are equal to zero, from
(32) we get

cm+K +
K∑
k=1

bkcm+K−k = em+K , (34)

The degenerate ARMA(K ,K ) process is shown as the AR(K )
process with the following power spectral density

P(ω) =
σ 2

|vK + b1vK−1 + · · · + bkvK−k + · · · + bK |2
, (35)

In contrast to (35), indeed, theMUSICwas the spatial pseudo-
spectral method.

In general, signal model of the incident sources is the
degenerate spatial ARMA process under stationary assump-
tion on source signals and noises. Meanwhile, it should be
stressed that such an ARMA process is not a common one.
Model coefficients {bk}Kk=1 are required to remain the explicit
and distinctive function forms and satisfy the DHP.

For convenience next, Equations (21) is called the mod-
ified Yule-Walker (MYW) system of linear equations with
the FDO.

C. THE DISCUSSION OF THE ROOT-FINDING
POLYNOMIALS IN THE DoA ESTIMATION
The various root-finding polynomials for the DoA estima-
tion had been developed in the Root-Music [11], Min-norm
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method [8], IQML (Iterative quadratic maximum likelihood)
algorithm [32], [33], Root-WSF (Weighted subspace fitting)
and MODE (Method of direction estimation) [13], [34]. The
Root-WSF algorithm had been recognized as ’a strong can-
didate for the best method for ULAs’ [14].

It was an ordinary operation to prespecify the propagators
as the roots of the polynomial. However, a key problem
was how to construct the reasonable root-finding polynomial.
There mainly existed two constructing manners.

In the Root-MUSIC and Min-norm method, the root-
finding polynomials stemmed from noise eigenvectors,
the propagators and noise zeroes became the roots of the
polynomial in accordance with the orthogonality between
steering vectors and noise eigenvectors. Therefore the poly-
nomials in the Root-MUSIC and Min-norm method were not
the pure one in propagator. In estimation, the roots distributed
in and on the unit circle, it was required to separate the
propagators from noise zeroes. Otherwise, when noise zeroes
got closer to the unit circle, the spurious DoA estimates
arose.

In the IQML, Root-WSF and MODE, the ML criteri-
ons in terms of angles were parameterised in terms of
another parameter vector whose elements were set as poly-
nomial coefficients, which was the other constructing man-
ner. To guarantee the roots on the unit circle, polynomial
coefficients were imposed to satisfy the conjugate symmetry
constraint.

The diverse constructing manners, nonuniform polynomial
forms and the attached constraints all showed that the root-
finding polynomial still deserved further study, even for the
simple azimuth-only ULA. In addition, from the standpoint
of physics, the propagator is a physical parameter, one source
corresponds to one propagator. Once the K propagators are
prespecified as the roots of polynomial, the dimensions of
propagator in all the terms of the root-finding polynomial
are required to be equal in accordance with the DHP, which
is a sound way of checking the validity of the root-finding
polynomial.

Different from the root-finding polynomials mentioned
above, the proposed polynomial shown in (23) is derived from
the fused perspective of physics and signal processing. From
the signal perspective, polynomial coefficients are explicit
and distinctive in form. The propagators are clearly proved
as the roots of the proposed polynomial. No other extraneous
roots are involved and no conjugate symmetry constraint is
imposed on polynomial coefficients. Meanwhile, the propa-
gators are both the poles and zeroes of the so-called degener-
ate spatial ARMA(K ,K ) process that are only distributed on
the unit circle. From the standpoint of physics, it is shown
that the proposed polynomial obeys the DHP in which the
dimensions of all the terms of f (v) are equal to the number K
of sources.

In addition, for the simple azimuth-only ULA modle,
the reason on the different function forms of the root-finding
polynomials induced by difference operation and ML param-
eterization is an interesting problem.

V. THE PROPERTIES OF THE MYW SYSTEM
OF LINEAR EQUATIONS
A. THE DoA ESTIMATION UNDER MULTIPATH SCENARIO
Multipath propagation due to various reflections was fre-
quently encountered in the DoA estimation. Similar to
the unknown DoAs, the uncorrelated/coherent properties
of source signals reflecting multipath propagation are also
unknown to the processor.

Rank deficiency of source covariance matrix induced by
the presence of multipath propagation was main reason for
performance degradation and the failure of the subspace-
based methods. Considerable efforts had been spent to handle
the DoA estimation of the highly correlated and coherent
sources.

The spatial smoothing operation had been recognized as
an effective preprocessing technique in which the total array
was partitioned into the subarrays and generated the average
of covariance matrices of subarray data, however, which still
depended on the uncorrelated condition between source sig-
nals and noises.

By contrast, the proposed difference operation on phases
can protect the applicability of the DoA estimation to multi-
path propagation under the more looser stationary condition
on source signals and noises.

As an illustration, suppose the k-th source signal sk (t) is
rewritten as sk (t) = αkisi(t), where the coefficient αki denotes
the complex-valued attenuation of the k-th sk (t) with respect
to the i-th signal si(t), (i, k = 1, · · · ,K ), then correlation
function Rskxn changes as Rskxn = αkiE{si(t)xHn (t)}, under
the stationary assumption on source signals and noises, Rskxn
containing αki is still a time-independent constant and can be
eliminated by difference operation as we use above. Hence
Multipath propagation do not pose a problem and is unneces-
sary to be considered in estimation.

B. THE MAXIMUM NUMBER OF DETECTABLE SOURCES
WITH THE COMBINED SYSTEM OF LINEAR EQUATIONS
To solve the MYW system of linear equations in (21), coef-
ficient matrix Hf and the vector rf are required to be known.
However, owing to the presence of the unknown noise corre-
lation Rwmxn (m = 1, · · · ,M ) in the corresponding element
hfm, Hf and rf comprising {hfm}Mm=1 in effect are unknown,
the MYW system of linear equations in effect is unsolvable.

The more concrete signal property of sources and noises
is desirable or needed. When the stationary source signals
and noises are further assumed to be uncorrelated and sup-
pose the noises are the spatially GWNs with zero mean and
unequal variances {σ 2

m}
M
m=1, the DoA estimation is readily

implemented by constructing and solving the eligible MYW
system of linear equations without the presence of noise
variance (PNV).

1) THE MAXIMUM NUMBER OF DETECTABLE SOURCES
WITH THE MYW SYSTEM OF LINEAR EQUATIONS
Under the above assumption, the construction of the eligible
MYW system of linear equations depends on the chosen
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reference signal. When the first sensor is chosen as reference
one, namely n = 1, the unknownRw1x1 is equal to the nonzero
σ 2
1 . Except for the first element hf 1 containing Rw1x1 , other
M − 1 elements {hfm}Mm=2 without PNV can be employed to
construct the eligible MYW system of linear equations. Sim-
ilarly, when n = M , the elements without PNV are {hfm}

M−1
m=1 .

For other sensors chosen as reference sensor, the number of
the elements without PNV is less than M − 1.
By analysis, the number nc of the elements without PNV,

the number ne of the equations without PNV and the number
K satisfy

ne = nc − K (36)

As reference index n = 1 or n = M , nc = M − 1.
With the single FDO, as n = 1, owing to noise variance

σ 2
1 only appearing into hf 1, in the system of linear equations

in (21), only the first equation containing hf 1 is not eligible.
However, the first equation can be replaced by the counterpart
with the M -th sensor chosen as reference sensor. Thus there
have a total of ne+ 1 equations without PNV. As ne+ 1 = K
and nc = M − 1, the maximum number Kmax of detectable
sources is reached, then

(nc − K )+ 1 = K , (37)

After nc = M − 1 is substituted into (37), the maximum
number Kmax of detectable sources is obtained and equal to
int(M )/2. The same Kmax can be reached with the BDO.

2) THE MAXIMUM NUMBER OF DETECTABLE SOURCES
WITH THE COMBINED SYSTEM OF LINEAR EQUATIONS
Each equation of the systems of linear equations in (21)
and (26) has the different dimension of propagator, then
all the equations without PNV are independent and readily
combined to increase the number of detectable sources. The
eligible combined system of linear equations is given by

Hb = r, (38)

whereH and r stand for the combined coefficient matrix and
the vector of constant terms without PNV.

As an example, the first sensor is chosen as reference sen-
sor to investigate the maximum number of detectable sources
with the combined system of linear equations. The number nc
of the elements without PNV is equal to 2(M − 1). In accor-
dance to the construction of (21) and (26), the 2(M−1)−2K
equations without PNV are constructed by the 2(M − 1) eli-
gible elements, namely, ne = 2(M−1)−2K . After including
the two counterpart equations with n = M to replace the
first equations of (21) and (26) with n = 1, respectively,
the number of the equations without PNV becomes ne + 2.
To estimate the K sources requires ne + 2 ≥ K , then

2(M − 1)− 2K + 2 ≥ K , (39)

The maximum numberKmax of detectable sources is given by

Kmax = floor[
2M
3

], (40)

It is shown that the maximum number Kmax is equal to that
by making use of the subspace-based method based on the
FSBB, however, is completed by the portion of the elements
of data covariance matrix in the proposed method.

C. THE CALCULATION OF NOISE VARIANCES
Signal model of the external sources impinging upon the
azimuth-only ULA is revealed as the degenerate spatial
ARMA(K ,K ) process. As source signals and noises are
assumed to be uncorrelated and suppose the noises are the
spatially GWNs with unequal variances {σ 2

m}
M
m=1, by reason-

ably choosing reference sensors, the DoA estimation and the
calculation of noise variances are performed separately. Noise
variances of all the sensors are calculated from the ULA data
with the known {bk}Kk=1.

When the first sensor x1(t) is chosen as reference one,
the unknown noise variance σ 2

1 only appears in the first
equation of the MYW system of linear equations in (21) and
given by

−RxK+1x1 = b1RxK x1 + b2RxK−1x1 + · · · + bK (Rx1x1 − σ
2
1 ),

(41)

Once {bk}Kk=1 are determined, the variance σ 2
1 is calculated

as

σ 2
1 =

RxK+1x1+b1RxK x1 + b2RxK−1x1 + · · · + bKRx1x1
bK

, (42)

Similarly, as the M -th sensor is chosen as reference one,
the variance σ 2

M can be extracted from the last equation and
is given by

σ 2
M = RxM xM + b1RxM−1xM + · · · + bKRxM−K xM , (43)

With the similar manner, we choose other sensors as ref-
erence sensor, respectively, and calculate the corresponding
noise variance from the corresponding equation. Each of
noise variances has the different calculation formula.

It is a distinct advantage of the proposed method to extract
more parameters including the DoAs and noise variances
from the ULA data.

VI. THE IMPLEMENTATION OF THE DoA ESTIMATION OF
THE AZIMUTH-ONLY ULA
A. THE TLS ESTIMATION FOR THE COMBINED SYSTEM OF
LINEAR EQUATIONS
In practice, the true data correlations {Rxmxn}

M
m=1 are usu-

ally unavailable and replaced by the finite sampling ones
{R̂xmxn}

M
m=1 given by

R̂xmxn =
1
P

P∑
p=1

xm(p)x∗n (p), (44)

where P is the number of snapshots, (·)∗ denotes conjugate
operation. xm(p) and xn(p) are the sampling data with p as the
discreted time index.

After noise correlation is removed from the corresponding
data correlation, the combined system of linear equations
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in (38) is still subject to various unknown ’residual’ errors.
Hence the determination of {bk}Kk=1 is a classical total least
squares (TLS) problem. Central to the TLS is stated as
perturbing both H and r in a minimal fashion to obtain a
consistent matrix equation.

(H + E)b = (r+ δ), (45)

where E and δ are the minimal TLS perturbations.
Equation (48) is rewritten as

(B+ D)z = 0, (46)

where augmented matrix B = [−r,H], perturbation matrix

D = [−δ,E] and z=
[
1
b

]
.

The TLS aims to solve the following constrained mini-
mization problem

min
D,x
‖D‖2F

subject to (r+ δ) ∈ range(H + E) (47)

where ‖·‖F denotes the Frobenius norm.
The TLS property does not depend on the distribution

of ’residual’ errors. The TLS estimates can be obtained
from the SVD of augmented matrix, which was discussed
in [31], [35]–[37].

B. THE IMPLEMENTATION OF THE DoA ESTIMATION AND
THE CALCULATION OF NOISE VARIANCES
Here the uncorrelated assumption on source signals and
noises is considered and the noises are preset as the GWNs
with zero mean and unequal variances {σ 2

m}
M
m=1. As the

degenerate spatial ARMA(K ,K ) process, the construction of
the combined system of linear equations without PNV is read-
ily realized by flexibly choosing reference signals, especially
for the ULA with the large number of sensors.

To implement the DoA estimation, it is first assumed that
the number K of incident sources is known or estimated by
the existing enumeration techniques in advance.

The step-by-step description of the proposed method is
summarized as follows:
Step 1. Construct and solve the sampling combined sys-

tem of linear equations without PNV to obtain the estimates
of {b̂k}Kk=1.
Step 2. Substitute the estimates {b̂k}Kk=1 into the equa-

tion containing the single σ 2
m (m = 1, · · · ,M ), obtain the

estimated σ̂ 2
m by direct calculation.

Step 3. Construct the root-finding polynomial with the
known {b̂k}Kk=1, obtain the estimates of {v̂k}Kk=1 and {θ̂k}Kk=1
via the formulas of roots of polynomial or the numerical root-
finding algorithm.

If only the DoAs need to be estimated, Step 2 can be
cancelled.

VII. NUMERICAL ANALYSIS
The validity and performance of the proposedmethod are first
evaluated by several numerical examples. We consider four

far-field narrow-band sources (K = 4) impinging upon an
azimuth-only ULA comprising seven sensors (M = 7) with
sensor separation of half the wavelength of signal. Azimuth
angles [θ1, θ2, θ3, θ4] are preset as [−600, −400, 200, 350].
The ULA are corrupted by the so-called spatially colored
noise. For simplicity, here the sources are supposed to have
zero mean and unitary power, while sensor noises have the
unequal powers {σ 2

m}
7
m=1. In simulation, source signals and

noises all are generated by the complex-valued zero-mean
Gaussian white random process. The number of snapshots is
equal to 1000.

For the seven-sensor ULA, only three DoAs can be esti-
mated by the single system of linear equations with the
FDO or BDO. However, in accordance with (40), the number
of the detectable DoAs can be up to four with the combined
system of linear equations.

In simulation, following Step1, by means of the first
sensor as the reference sensor, a total of six correlation ele-
ments {h1fm}

7
m=2 and the corresponding conjugate counter-

parts {h1bm}
7
m=2 without PNV in data covariance matrix are

chosen to construct the four independent equations in which
the superscript 1 is used to describe the first sensor data as
reference data. The four independent equations are enough
to form the eligible combined system of linear equations to
estimate the unknowns {bk}4k=1. So the equations with the
seven-th sensor as reference sensor are not considered.

The concrete form of the used combined system of linear
equations in simulation is constructed as

h1f 2 h1f 3 h1f 4 h1f 5
h1f 3 h1f 4 h1f 5 h1f 6
h1b6 h1b5 h1b4 h1b3
h1b7 h1b6 h1b5 h1b4



b4
b3
b2
b1

 = −

h1f 6
h1f 7
h1b2
h1b3

 , (48)

where h1fm = Rxmx1 − Rwmx1 and h
1
bm = Rx1xm − Rx1wm with

the first sensor data x1(t) as reference data. According to (20),
the unknowns {bk}4k=1 is given by

b1 = −(v1 + v2 + v3 + v4),
b2 = v1v2 + v1v3 + v1v4 + v2v3 + v2v4

+ v3v4,
b3 = −(v1v2v3 + v1v2v4 + v1v3v4 + v2v3v4),
b4 = v1v2v3v4,

(49)

Under the uncorrelated assumption between source signals
and noises and further suppose the noises are the GWNs,
theoretically, Rwmx1 and Rx1wm are all equal to zero as m 6= 1,
then the used elements {h1fm}

7
m=2 and {h

1
bm}

7
m=2 in (48) contain

no noise variances so that the unknowns {bk}4k=1 is separately
solved from (48) without considering the unknowns noise
variances {σ 2

m}
7
m=1.

Once the estimates {b̂k}4k=1 are obtained, following Step2,
constructing the corresponding equations with PNV yields
the estimates {σ̂ 2

m}
M
m=1 by the direction calculation.

Azimuth angles are obtained from the 4-order root-finding
polynomial proposed in Step3. For example, in one Monte
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FIGURE 1. The azimuth-searching results of the uncorrelated and coherent sources and the calculation of
noise variances under the background of the spatially-homogeneous white noise. (a) and (b) the
azimuth-searching results of the uncorrelated and coherent sources; (c) and (d) the calculated noise
variances of the uncorrelated and coherent sources with the proposed method.

FIGURE 2. The azimuth-searching results of the uncorrelated and coherent sources and the calculation
values of noise variances under the unequal SNRs. (a) and (b) the azimuth-searching results of the
uncorrelated and coherent sources; (c) and (d) the calculated noise variances of the uncorrelated and
coherent sources with the proposed method.

Carlo trial, with the known {b̂k}4k=1, the root-finding polyno-
mial is given by

f (v) = v4 + b̂1v3 + b̂2v2 + b̂3v+ b̂4

= v4 + (1.09+ 0.57j)v3 + (1.09+ 1.58j)v2

+ (0.15+ 1.22j)v+ (−0.35+ 0.93j).

Here numerical approach in which the root-finding prob-
lem of the complex-valued propagator is converted into the
real-valued angle-searching operation is proposed. We con-
struct the cost function h(v) = 1/ log10[|f (v)|] and plot its
amplitude for points versus θ in the interval of [−π/2, π/2]
and pick peak positions as the estimated angles. In angle-
searching process, in order to obtain more accurate estimates,
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FIGURE 3. The RMSEs of θ̂ for the four combined cases of the incident sources versus the SNR with two
coherent lengths of noises under the equal SNR. (a) and (b) the FBSS-MUSIC and the proposed method
under the coherent length of noises equal to 3 with the last three noises being coherent. (c) and (d) the
FBSS-MUSIC and the proposed method under the coherent length of noises equal to 4 with the last four
noises being coherent. ’Uncorrelated’: Four sources are uncorrelated; ’Mix1’: The first two sources are
coherent, others uncorrelated; ’Mix2’: The first three sources are coherent; ’Coherent’: Four sources are
coherent.

FIGURE 4. The azimuth-searching results of the uncorrelated and coherent sources under the coherent
length of six noises. All the sensors but the first are coherent. (a) and (b) uncorrelated and coherent cases
under the condition of equal SNR that is same as in Fig.1. (c) and (d) are uncorrelated and coherent cases
under unequal SNRs preset as same as in Fig.2.

the effective off-gird searching algorithms are highly recom-
mended [38], [39].

A. THE UNCORRELATED CASES OF SENSOR NOISES
Example 1: We first assume that sensor noises are uncorre-
lated with one another and have an identical noise variance,

which is termed the so-called spatially white. In simulation,
noise variance is preset via the unitary signal power and
SNR = 2dB. Since the FBSS (Forward and backward spatial
smoothing) had been recognized as an effective preprocessing
technique to combat multipath scenario, the comparison is
focused on the proposed method and the MUSIC based on

VOLUME 8, 2020 221881



G. Yao et al.: Degenerate Spatial ARMA Process of External Sources Impinging

the FBSS (FBSS-MUSIC). The DoAs of the uncorrelated
and coherent sources can be well estimated by two methods
in Fig.1(a) and (b). Besides the estimatedDoAs, {σ̂ 2

m}
7
m=1 also

can be directly calculated by the proposed method and shown
in Fig.1(c) and (d).
Example 2: Sensor noises are still assumed to be uncorre-

lated but with unequal variances {σ 2
m}

M
m=1, which is the sim-

ple spatially-colored noise background. In simulation, noise
variances are preset via the unitary power of signal and the
SNR vector randomly generated by computer programwithin
a prespecified range [−5dB, 5dB]. The azimuth-searching
results of the uncorrelated and coherent sources are plotted
in Fig.2(a) and (b), the calculated noise variances with the
proposed method are in Fig.2(c) and (d).

As shown in Fig.1 and 2, the estimates of azimuth angles,
regardless of under the equal or unequal SNRs, all can be
obtained by the proposed method and FBSS-MUSIC, which
shows that the spatially homogeneous or colored noises in
effect have the less impact on the DoA estimation when the
noises are uncorrelated with one another. The extraction of
noise variances from the ULA data is an advantage of the
proposed method.

B. THE COHERENT CASES OF SENSOR NOISES
Example 3: The proposed method can be applied to the
background in which the noises are correlated/coherent with
a ’correlated/coherent length’ [40], [41] when source signals
and noises are still uncorrelated. In simulation, sensor noises
are assumed to have an identical variance under equal SNR
with two coherent lengths. Owing to employing the different
elements and amounts of data, the RMSEs of θ̂ are separately
plotted to show the behaviors of two methods. As shown
in Fig.4(a) and (c), as the coherent length increases from
3 to 4, estimation performance gradually degrades, which
spreads from the low to moderate SNR. By contrast, the pro-
posed method performs more stable.
Example 4: The azimuth-searching results with the coher-

ent length of six noises under equal SNR and unequal SNRs
are obtained and plotted in Fig.4. As source signals are
uncorrelated or coherent, the FBSS-MUSIC all breaks down,
regardless of equal or unequal SNRs. It is shown that the
coherent length of noises has a significant impact on the
FBSS-MUSIC. By contrast, the proposed method still pro-
vides the correct DoA estimation even with one independent
noises. Hence the proposed method also can be applicable to
the so-called partly calibrated arrays in spatially correlated
noise fields in which the noise in the calibrated sensors is
uncorrelated with the noise in the other sensors [42].

VIII. EXPERIMENTAL VERIFICATION OF THE PROPOSED
DoA ESTIMATION METHOD
The proposed DoA estimation method is verified by a simple
sound experiment. Fig.5 shows the schematic diagram of the
experimental set-up comprising three microphones and one
sound source. Cellphone 2 is taken as one source emitting a
sinusoidal waveform. The Cellphone 1 is added to align with

FIGURE 5. The schematic diagram of the experimental set-up.

FIGURE 6. The signals received by three microphones.

three microphones for time synchronization. The frequency
of sinusoidal waveform f = 1.0kHz and microphone inter-
spacing d = 0.17m. With time synchronization, the DoA is
determined by the proposed method after the received wave-
forms of the microphones are transformed into the complex
data with the Hilbert transform. Meanwhile, the differences
between time-of-arrivals (DToAs) of three received wave-
forms also can be readily marked to calculate the DoA. The
two types of the DoA results are compared to analyze and
verify the proposed method.

Fig.6 shows the signals received by three microphones in
one experiment in which the signals emitted by Cellphone
1 is employed for time synchronization. After time synchro-
nization, the used waveforms and the corresponding results
of three experiments are displayed in Fig.7. The source
has the different incident angle in each experiment. For
the first experiment, the starting waveforms are intention-
ally chosen and plotted in Fig.7(a). For other experiments,
the non-starting waveforms are plotted in Fig.7(c) and (e),
respectively.

We take Fig.7(a) for an example to show the DToAs
method, the time ti (i = 1, 2, 3) of the first peak of the
waveform received by the i-th sensor is marked as the cor-
responding time-of-arrival, so1tim = ti− tm (i > m) denotes
time-difference between the i-th and m-th sensors, then the
angle θ tim is determined via1tim from ti and tm. Each concrete
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FIGURE 7. The used waveforms and the corresponding results of three different incident angles.

θ tim is calculated as described above. Here the averaging value
θ̄ t of the corresponding θ t32, θ

t
21 and θ

t
31 is used to describe the

DoA estimate with the DToAs.
In the proposedmethod, data covariancematrix is first con-

structed by windowing three received waveform. the lengths
of the windowed waveform increase from 200 points to
1000 points with the increment of 20 points and the zero
starting point. Employing (21) and (22), each windowing
operation provides one result for each concrete angle θaim with
the following expression

θaim = Re{

c ln
R̂
xhi x

h
n

R̂
xhmx

h
n

j2π f (i− m)d
}, i > m, (50)

where xhi (p) denotes the Hilbert transform of the i-th sam-
pling data xi(p), the correlation function R̂xhi xhn is obtained by

making use of (44) with xhn (p) as the reference signal and
n 6= i, n 6= m. Re{.} stands for real part.
The results of θa32, θ

a
21 and θ

a
31 of each incident angle versus

the windowing times are plotted in Fig.7(b), (d) and (f),

TABLE 1. The angle results with DToAs and the proposed method for
three experiments.

respectively. Because the non-signals before the received
waveforms in Fig.7(a) are included in the windowing oper-
ations and result in the inaccurate and unstable results in
calculation, only as the windowing times is larger than 12,
the impact of the non-signals disappears in Fig.7(b). It is
shown that all the results of each concrete angle θaim are almost
equal and nearly form the straight line with the averaging
value θ̄aim. Similarly, the total averaging value θ̄a of the corre-
sponding θ̄a32, θ̄

a
21 and θ̄

a
31 is taken as the DoA estimate with

the proposed method. The angle results with the DToAs and
the proposed method are listed in TABLE 1. It is shown that
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each concrete θ̄a is well consistent with the corresponding θ̄ t ,
which verifies the effectiveness of the proposed method.

As shown in TABLE 1, an interesting phenomenon is
observed for Source 2, the large value difference arises
between θ t32 and θ̄

a
32, and also between θ

t
21 and θ̄

a
21. However,

qualitatively and quantitatively, the values of θ̄a32 and θ̄a21
in Fig.7(d) are observed to be more consistent with the corre-
sponding time-of-arrivals of the received waveforms shown
in Fig.7(c). The main reason lies in that the time-of-arrival of
the waveform of sensor 2 is slightly varied in propagation in
the practical experiment and become more closer to that of
sensor 3 and away from that of sensor 1 in Fig.7(c), which is
well reflected by θ̄a32 and θ̄

a
21 with the proposed method.

IX. CONCLUSION
The DoA estimation of the azimuth-only ULA is investigated
in theory and method from the fused perspective of physical
and signal properties of the incident sources induced by the
orderly-setup of array sensors.

Under the mild stationary assumption on source signals
and noises, it is theoretically proved that signal model of
the external sources incident on the azimuth-only ULA is
a degenerate spatial ARMA process subject to the identical
autoregressive and moving average parameters. The azimuth-
only ULA has its own distinctive MYW system of linear
equations and the root-finding polynomial. The DoAs of the
azimuth-only ULA are estimated directly from the ULA data
via the chain comprising theMYWsystem of linear equations
and the root-finding polynomial. The EVD is not involved.

The proposed method can be applied to multipath scenario.
The DoAs estimation and the calculation of noise variances
are separately performed under the backgrounds of spatially
white and colored noises. The maximum number of the
detectable sources is equal to floor[ 2M3 ] by making use of
the combined system of linear equations with the FDO and
BDO, where M is the number of sensors.
The MYW system of linear equations and the root-finding

polynomial are analyzed to obey the DHP, which manifests
that the conclusion of the degenerate spatial ARMA process
is self-consistent both in physics and signal processing.
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