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ABSTRACT The Cramer-Rao bound (CRB) offers insights into the inherent performance benchmark of
any unbiased estimator developed for a specific parametric model, which is an important tool to evaluate
the performance of direction-of-arrival (DOA) estimation algorithms. In this paper, a closed-form stochastic
CRB for a mixture of circular and noncircular uncorrelated Gaussian signals is derived. As a general one,
it can be transformed into some existing representative results. The existence condition of the CRB is also
analysed based on sparse arrays, which allows the number of signals to be more than the number of physical
sensors. Finally, numerical comparisons are conducted in various scenarios to demonstrate the validity of
the derived CRB.

INDEX TERMS Cramer-Rao bound, direction of arrival, circular and noncircular, sparse arrays.

I. INTRODUCTION
Direction of arrival (DOA) estimation based on sensor arrays
has been of great interest in many applications, such as
radar, sonar, and wireless communications. A common tool to
assess the performance of DOA estimation algorithms is the
Cramer-Rao bound (CRB), which provides a lower bound on
the estimation error (mean squared error) of an unbiasedDOA
estimator. According to the probability model of the source
signals, the CRB can be classified into the deterministic
CRB [1] and the stochastic one [2].

Although the CRB for all unknown parameters can be
obtained from the inverse of the Fisher information matrix
(FIM), this process tends to involve complicated matrix
manipulations. In many cases, we are only interested in
the CRB for DOA estimation, and a closed-form CRB
for DOA estimation not only avoids calculation of the
nuisance parameters, but also provides analytical insights
into the dependence of the array performance on different
parameters [1]–[20].
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In the past years, various sparse array structures
have been investigated extensively, as they can pro-
vide much more degrees of freedom (DOFs) than tradi-
tional uniform linear arrays (ULAs). Two representative
sparse array structures are the co-prime arrays [21]–[23]
and nested arrays [24], [25]. Many methods have been pro-
posed for DOA estimation based on such arrays, which can
estimate more sources than the number of physical sensors
by exploiting the difference coarrays [21], [22], [26]–[32].
At the same time, the CRB especially applied to sparse arrays
has also been derived [3]–[6], and the existence conditions
of these CRBs imply that more sources than the number of
physical sensors can be identified by using sparse arrays.

However, most of the studies based on sparse arrays do
not consider the possible noncircularity of the impinging
signals. In practice, noncircular signals are frequently used,
and some representative examples include signals generated
by the following modulation schemes: binary phase shift key-
ing (BPSK), amplitude shift keying (ASK), pulse amplitude
modulation (PAM) and unbalanced quadrature phase shift
keying (UQPSK). The second-order statistical properties of
circular signals are characterized by the covariance matrix,
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while those of noncircular signals are determined by both the
covariance and pseudo covariance matrices.

For traditional arrays, many efforts have been made to
explicitly exploit the noncircularity of the signals to improve
the performance of parameter estimation [31], [33]–[43],
some of which also examined the CRB for noncircular
signals in various scenarios. For Gaussian noncircular sig-
nals, the stochastic CRB has been derived in different noise
fields [7]–[9]. In particular, for discrete BPSK and quadrature
phase shift keying (QPSK) signals, the stochastic CRB was
derived in [10]. For strictly noncircular (rectilinear) signals,
the stochastic CRB was derived in [11], while the determin-
istic one was investigated in [40]. Moreover, for a mixture of
circular and noncircular signals, only the deterministic CRB
has been studied in [12], [13], whereas the stochastic one is
unavailable in the literature.

Most recently, several algorithms were proposed to deal
with the DOA estimation problem for a mixture of circu-
lar and noncircular signals [31], [44]. Benefiting from the
enhanced DOFs of sparse arrays, these algorithms make use
of the a priori knowledge of uncorrelated sources, and are
able to identify much more sources than the number of phys-
ical sensors. When assessing the performance of these algo-
rithms, existing results on the stochastic noncircular CRBs
are not applicable, because they are either restricted by the
condition that the number of sources is strictly less than that
of physical sensors [7], [8], or derived for strictly noncircular
signals only [11]. Moreover, in the derivation of these results,
all the unknown entries in the source covariance matrix are
considered as part of the unknown parameters. However,
under such parameterization, the role of those parameters
associated with noncircularity are not highlighted.

As the deterministic model is independent of the noncir-
cularity of signals [7], [9], and the corresponding CRB does
not exist in the underdetermined case [3], we shall focus
on the stochastic model, based on which all the underde-
termined DOA estimation methods are developed. In this
work, a closed-form stochastic CRB for a mixture of circular
and noncircular signals is derived for the first time, and in
particular its application to sparse arrays is discussed. The
main contributions of our work are stated in the following.

1) The derived stochastic CRB is applicable to various
array geometries, such as ULAs, sparse arrays, and
circular arrays, as long as there is only one unknown
parameter associated with each source. Since a mix-
ture of circular and noncircular signals is assumed,
the derived CRB can be easily modified to fit some
existing ones derived for circular/noncircular signals
only as special cases. Moreover, our CRB expression is
applicable to cases with more sources than the number
of physical sensors, whereas the traditional noncircular
CRBs in [7], [8] turn out to be invalid.

2) Based on a general signal model for arbitrary second-
order noncircularity, a different parameterization is
used to derive the CRB. Compared with the traditional
parameterization in [7], [8], ours highlights the roles

of the noncircularity phase and the noncircularity rate,
which further improves the DOA estimation accuracy.

3) Considering practical applications of sparse arrays,
the existence condition of the derived CRB is exam-
ined, and themaximum number of resolvable sources is
deduced. We show that much more noncircular Gaus-
sian sources than sensors can be resolved due to the
enhanced DOFs provided by sparse arrays. For a given
sparse array, the upper bound on the number of resolv-
able circular sources can be exceeded when noncircu-
larity is considered.

The rest of this paper is organized as follows. The general
data model and the sensor array signal model are introduced
in Sec. II. The closed-form stochastic CRB expression is
derived in Sec. III. The existence condition of the CRB is
presented in Sec. IV. Numerical results are provided in Sec. V
and conclusions are drawn in Sec. VI.

II. DATA MODEL
A. GENERAL SOURCE MODEL WITH ARBITRARY
SECOND-ORDER NONCIRCULARITY
First, a quick review of a general signal model for arbitrary
second-order noncircularity is provided.

Denote si(k) as the ith (i = 1, 2, . . . ,N ) narrowband
source signal corresponding to the kth (k = 1, 2, . . . ,K ) time
instant. In linear digital modulation schemes, the in-phase
component sIi (k) and the quadrature component sQi (k) of the
complex-valued signal si(k) are often uncorrelated, leading to
E{sIi (k)sQi (k)} = 0 [45].
Consider a normalised version of the signal, i.e.

E{si(k)s∗i (k)} = 1, (1)

and in general, we have

E{s2i (k)} = ρie
jψi , (2)

where E{·} is the expectation operation, ψi is referred to as
the noncircularity phase, and ρi the noncircularity rate.
According to different choices of the noncircularity rate ρi,

we have the following three types of signals.
1) Circular signals: ρi = 0. As a result, the pseudo

covariance becomes E{s2i (k)} = 0. One example for
this case is the QPSK signal.

2) Strictly noncircular signals: ρi = 1. The pseudo covari-
ance becomes E{s2i (k)} = ejψi . Three examples are
BPSK, PAM and ASK signals.

3) Nonstrictly noncircular signals: 0 < ρi < 1. The
pseudo covariance becomes E{s2i (k)} = ρiejψi . One
example for this case is the UQPSK signal.

B. SENSOR ARRAY SIGNAL MODEL
Consider an array consisting of M sensors receiving
N stationary narrowband source signals in the far-field.
The sources are located at distinct directions θ =

[θ1, θ2, . . . , θN ]T with (·)T denoting the transpose operation.
The source powers are denoted by µ = [µ1, µ2, . . . , µN ]T .
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The kth snapshot of the output signal at the mth sen-
sor corresponding to the ith source can be expressed
as [27], [28], [31]

ym(k) =
N∑
i=1

am(θi)si(k)+ nm(k), m = 1, 2, . . . ,M . (3)

where am(θi) is the response of the mth sensor to the ith
source, nm(k) denotes the noise at the mth sensor, which is
uncorrelated with the sources signals.

The received array signal vector is given by

y(k) =
N∑
i=1

a(θi)si(k)+ n(k) = A(θ )s(k)+ n(k), (4)

with

s(k) = [s1(k), s2(k), . . . , sN (k)]T ,

n(k) = [n1(k), n2(k), . . . , nM (k)]T ,

A(θ ) = [a(θ1), a(θ2), . . . , a(θN )],

a(θi) = [a1(θi), a2(θi), . . . , aM (θi)]T , (5)

where s(k) is the source signal vector, and n(k) is the noise
vector. A(θ ) and a(θi) represent the array steering matrix and
the steering vector of the ith source, respectively.

The source signals are assumed to be a mixture of circular
and noncircular ones, mutually uncorrelated. The first Nnc
ones are noncircular Gaussian distributed with zero mean,
while the remaining Nnc ones are circular Gaussian dis-
tributed with zero mean (such information can be available
and has been used by some algorithms, e.g., [46]). The noise
is assumed to be spatially uncorrelated, circular Gaussian
distributed with zero mean, with its power denoted by σ 2.
From (1), the covariance matrix and pseudo covariance

matrix of the received array signals are respectively given by

Rd = E{y(k)yH (k)}

=

N∑
i=1

E{si(k)s∗i (k)}a(θi)a
H (θi)+ σ 2IM

=

N∑
i=1

µia(θi)aH (θi)+ σ 2IM ,

Rs = E{y(k)yT (k)} =
N∑
i=1

E{s2i (k)}a(θi)a
T (θi)

=

Nnc∑
i=1

µiρiejψia(θi)aT (θi). (6)

where (·)H denotes the Hermitian transpose operation and IM
is an M ×M identity matrix.

III. STOCHASTIC CRB FOR A MIXTURE OF CIRCULAR
AND NONCIRCULAR GAUSSIAN SIGNALS
A. DERIVATION OF THE STOCHASTIC CRB
By definition, the CRB is obtained from the inverse of the
Fisher information matrix (FIM). For Gaussian distributed

data, the FIM can be conveniently calculated from the
Slepian-Bangs formula [47], [48]. The most popular version
is derived for circular Gaussian signals, according to which
the (p, q)th entry of the FIM is expressed as [2], [4], [5][

Fd(ξd)
]
p,q = Ktr

(
R−1d

∂Rd

∂[ξd]p
R−1d

∂Rd

∂[ξd]q

)
. (7)

where

ξd = [θT ,µT , σ 2]T . (8)

Here, ξd is the vector holding all real-valued unknown param-
eters, and tr(·) stands for the trace operation.
Taking into account noncircular signals, the conjugate of

the received array signals also contains useful information.
Let Re denote the covariance matrix of the augmented array
signal vector ye(k) = [yT (k), yH (k)]T , and then Re can be
constructed by Rd and Rs in (6) as follows

Re =

[
Rd Rs
R∗s R∗d

]
. (9)

Let ξ e denote the extended unknown parameter vector which
includes not only the DOAs, the source powers and the noise
power, but also the noncircularity phase and the noncircular-
ity rate:

ξ e = [θT ,µT ,ψT , ρT , σ 2]
T
,

θ = [θTnc, θ
T
c ]
T
, µ = [µTnc,µ

T
c ]
T
,

θnc = [θ1, θ2 . . . , θNnc ]
T ,

θc = [θNnc+1, θNnc+2 . . . , θN ]
T ,

µnc = [µ1, µ2 . . . , µNnc ]
T ,

µc = [µNnc+1, µNnc+2 . . . , µN ]
T ,

ψ = [ψ1, ψ2, . . . , ψNnc ]
T ,

ρ = [ρ1, ρ2, . . . , ρNnc ]
T . (10)

Remark 1: If we adopt the parameterization in [7], [8],
the unknown parameter vector should be written as

ξDel =
[
θT ,µT ,Re(pTs ), Im(pTs ), σ

2
]T
, (11)

where ps is a column vector collecting the diagonal entries
of the pseudo covariance matrix of the noncircular source
signals, and Re(·) and Im(·) are the real and imaginary parts of
the input argument, respectively. Note that the total number of
unknowns in ξ e and ξDel are both 2N+2Nnc+1. Compared to
ξDel, the advantage of ξ e is that the roles of the noncircularity
phase and the noncircularity rate (ψ and ρ) can be highlighted
in the derivation and analysis of CRB, as will be shown next.

Since the boundary of the probability density function
(p.d.f.) of ye(k) is independent of ξ e, the following regularity
condition holds true

E

{
∂lnf [ye(k); ξ e]

∂ξTe

}
= 0, (12)

where lnf [ye(k); ξ e] is the log-p.d.f. of ye(k), and ∂f /∂ξTe
represents the derivatives of a function f with respect
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to ξTe . According to the extended Slepian-Bangs formula
for the noncircular complex Gaussian distribution with zero
mean [8], we can write the (p, q)th entry of the FIM as[
Fe(ξ e)

]
p,q

=
K
2
tr
(
R−1e

∂Re

∂[ξ e]p
R−1e

∂Re

∂[ξ e]q

)
=

K
2

[
(RT

e ⊗ Re)−
1
2
∂re
∂[ξ e]p

]H [
(RT

e ⊗ Re)−
1
2
∂re
∂[ξ e]q

]
,

(13)

where ⊗ denotes the Kronecker product, and

re = vec(Re), (14)

with vec(·) denoting the vectorization operation.
Introduce the following notations

We = (RT
e ⊗ Re)−

1
2 , Ge =We

∂re
∂θT

,

Qe = We

[
∂re
∂µT

,
∂re
∂ψT ,

∂re
∂ρT

,
∂re
∂σ 2

]
. (15)

The dimensions ofGe andQe are 4M2
×N and 4M2

× (N +
2Nnc + 1), receptively. Therefore, we can rewrite Fe(ξ e) as

Fe(ξ e) =
K
2

[
GH

e Ge GH
e Qe

QH
e Ge QH

e Qe

]
. (16)

To facilitate the calculation of Ge and Qe, we write re as

re = P[rTd , r
H
s , r

T
s , r

H
d ]

T , (17)

where

P =

I2 ⊗
 M∑
m=1

2∑
j=1

Bm,j ⊗ BTm,j

⊗ IM

−1 ,
rd = vec(Rd) = Td(θ )µ+ σ 2vec(IM ),

rs = vec(Rs) = Ts(θnc)diag(µnc)diag(ρ)ψe,

Td(θ ) = A∗(θ )� A(θ ),

Ts(θnc) = A(θnc)� A(θnc),

ψe =

[
ejψ1 , ejψ2 , . . . , ejψNnc

]
. (18)

Here, Bm,j is an M × 2 matrix with one at the (m, j)th posi-
tion and zeros elsewhere, � denotes the Khatri-Rao product
(column-wise Kronecker product), and diag(·) refers to a
diagonal matrix whose diagonal entries are given by the input
vector.

Substituting (17) into (15), we can rewrite Ge and Qe as

Ge = WeP

[(
∂rd
∂θT

)T
,

(
∂r∗s
∂θT

)T
,

(
∂rs
∂θT

)T
,

(
∂r∗d
∂θT

)T]T
,

Qe = WeP



∂rd
∂µT

∂rd
∂ψT

∂rd
∂ρT

∂rd
∂σ 2

∂r∗s
∂µT

∂r∗s
∂ψT

∂r∗s
∂ρT

∂r∗s
∂σ 2

∂rs
∂µT

∂rs
∂ψT

∂rs
∂ρT

∂rs
∂σ 2

∂r∗d
∂µT

∂r∗d
∂ψT

∂r∗d
∂ρT

∂r∗d
∂σ 2


. (19)

Using (18), we can compute the derivatives in (19), and the
results are listed below.

∂rd
∂θT
= [T′d(θnc)diag(µnc),T

′

d(θc)diag(µc)],

∂rd
∂µT

= [Td(θnc),Td(θc)],
∂rd
∂ψT = 0M2×Nnc

,

∂rd
∂ρT
= 0M2×Nnc

,
∂rd
∂σ 2 = vec(IM ),

∂rs
∂θT
=
[
T′s(θnc)diag(µnc)diag(ρ)diag(ψe), 0M2×Nc

]
,

∂rs
∂µT

=
[
Ts(θnc)diag(ρ)diag(ψe), 0M2×Nc

]
,

∂rs
∂ψT = jTs(θnc)diag(µ)diag(ρ)diag(ψe),

∂rs
∂ρT
= Ts(θnc)diag(µ)diag(ψe),

∂rs
∂σ 2 = 0M2×1, (20)

where

T′d(θ ) = A′∗(θ )� A(θ )+ A∗(θ )� A′(θ ),

T′s(θnc) = A′(θnc)� A(θnc)+ A(θnc)� A′(θnc),

A′(θ ) =
[
∂a(θ1)
∂θ1

,
∂a(θ2)
∂θ2

. . . ,
∂a(θN )
∂θN

]
. (21)

Assume that Fe(ξ e) is positive definite. Since we are only
interested in the CRB for DOA estimation, the DOA-related
block of the CRB matrix can be expressed as

CRBe(θ ) =
2
K
(GH

e 5
⊥

Qe
Ge)−1, (22)

with

5⊥Qe
= I4M2 −Qe(QH

e Qe)−1QH
e . (23)

B. DISCUSSION ON SPECIAL CASES
The stochastic CRB expression in (22) is a general one suit-
able for various array geometries, as long as there is only one
parameter to be estimated for each source. Moreover, it can
be easily modified to fit the following special cases.

1) All the source signals are known to be circular. In this
case, Rs = 0, and then (13) degenerates to (7). From
this point of view, the circular CRB can be seen as
a special case of the noncircular CRB. Specifically,
the newly constructed Gd and Qd can be written as

Gd = (RT
d ⊗ Rd)−

1
2
∂rd
∂θT

,

Qd = (RT
d ⊗ Rd)−

1
2

[
∂rd
∂µT

,
∂rd
∂σ 2

]
. (24)
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The dimensions of Gd and Qd are M2
× N and M2

×

(N + 1), respectively. Then, the CRB for θ can be
expressed as

CRBd(θ ) =
1
K
(GH

d 5
⊥

Qd
Gd)−1, (25)

with

5⊥Qd
= IM2 −Qd(QH

d Qd)−1QH
d . (26)

Equation (25) coincides with those derived in [4], [5].
2) All the source signals are known to be noncircular

(possibly strictly noncircular). In this case,Nc = 0, and
Nnc = N . Therefore, ψ and ρ in (10) are augmented,
so that the newQe2 has a dimension of 4M2

×(3N+1).
Substituting Qe2 into (22) instead of Qe leads to a
closed-form CRB expression for noncircular signals
only.

3) The sources signals are known to be a mixture of
circular and strictly noncircular ones. For strictly non-
circular signals, ρi = 1, i = 1, 2, . . . ,Nnc. Therefore,
∂re/∂ρ can be removed from Qe, and the newly con-
structed Qe3 is

Qe3 = (RT
e ⊗ Re)−

1
2

[
∂re
∂µT

,
∂re
∂ψT ,

∂re
∂σ 2

]
. (27)

whose dimension is Qe3 is 4M2
× (N + Nnc + 1).

Substitute Qe3 into (22) instead of Qe, and then the
CRB for a mixture of circular and strictly noncircular
signals can be obtained.

4) All the source signals are known to be strictly noncir-
cular. In this case, Nc = 0, Nnc = N , and ρi = 1,
i = 1, 2, . . . ,N . Hence, ∂re/∂ρ can be removed from
Qe, and now the newly constructed Qe3 in (27) has
a dimension of 4M2

× (2N + 1). Note that another
closed-form expression for the stochastic CRB in this
case has been derived in [11, Theorem 2]. This CRB
expression and its many related notations will not be
shown here, but it is worth noting that this result is
derived from a general expression [11, Eq. (10)], which
is the same as in (22). Although the CRB expression
in [11, Theorem 2] is more explicit than that in (22),
it only applies to cases where K<2M , due to the usage
of certain algebra results that only holds true in this
region.

For some noncircular signals that do not follow the Gaus-
sian distribution, the corresponding CRB should be derived
based on the true p.d.f. rather than the Gaussian one, see,
e.g., [10], [14], [15], [15], [15]. Fortunately, as proved in [10],
the circular and noncircular Gaussian CRBs are tight upper
bound on the CRBs for discrete QPSK and BPSK signals,
respectively, at very low and very high signal-to-noise ratios
(SNRs). Therefore, the above derived results can still provide
a meaningful reference for nonGaussian signals.

IV. EXISTENCE OF THE DERIVED CRB BASED
ON SPARSE ARRAYS
The existence of the derived CRB depends on the positive
definiteness ofQH

e Qe andGH
e 5
⊥

Qe
Ge, which further depends

on the steering vector a(θi). Since we aim to derive a bound
for assessing the performance of some newly proposed algo-
rithms based on sparse arrays, we shall focus on the applica-
tion involving sparse arrays.

Consider a sparse array consisting of M sensors whose
positions are represented by {p1d, p2d, . . . , pMd}, with
pm, m = 1, 2, . . . ,M being an integer and d being the unit
inter-element spacing. Typically, d is chosen to be half of
the signal wavelength λ/2. Hereafter, we use the normalized
DOA θ̄i = 2πdsinθi/λ, i = 1, 2, . . . ,N to replace the
original DOA θi. Then, the steering vector corresponding to
the ith source can be written as

a(θ̄i) =
[
ejp1θ̄i , ejp2θ̄i . . . , ejpM θ̄i

]T
. (28)

For a fixed θ̄i, remove the repeated rows in a∗(θ̄i) ⊗ a(θ̄i)
and a(θ̄i) ⊗ a(θ̄i) respectively, and then permute the unique
rows according to an ascending order of the spatial lags. As a
result, we can obtain two virtual steering vectors vd(θ̄i) and
vs(θ̄i). Introduce the following matrices

Vd(θ̄ ) = [vd(θ̄1), vd(θ̄2), . . . , vd(θ̄N )],

Vs(θ̄nc) = [vs(θ̄1), vs(θ̄2), . . . , vs(θ̄Nnc )]. (29)

As such, Vd(θ̄ ) and Vs(θ̄nc) represent the steering matri-
ces of the difference co-array and the sum co-array,
respectively.

Denote the lengths of vd(θ̄i) and vs(θ̄i) as Cd and Cs
respectively, which can be seen as the sensor numbers of the
difference co-array and the sum co-array. Let ld and ls hold the
spatial lags corresponding to vd(θ̄i) and vs(θ̄i), respectively.
Then, we have

vd(θ̄i) =
[
e−j

Cd−1
2 θ̄i , . . . , ej

Cd−1
2 θ̄i

]T
,

vs(θ̄i) =
[
ej1pθ̄i , . . . , ej(1p+Cs−1)θ̄i

]T
,

ld =
[
−
Cd − 1

2
, . . . ,

Cd − 1
2

]T
,

ls = [1p, . . . ,1p+ Cs − 1]T , (30)

where 1p is the smallest spatial lag in vs(θ̄i). Note that the
expressions of ld and ls in (30) are intended to show the
first and last elements rather than implying that they contain
consecutive integers.

The following relationships will be useful

a∗(θ̄i)⊗ a(θ̄i) = Jdvd(θ̄i),

a(θ̄i)⊗ a(θ̄i) = Jsvs(θ̄i), (31)

where Jd and Js areM2
×Cd andM2

×Cs real-valuedmatrices
of full column rank. The construction method of Jd can be
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found in [4, Appendix D], and Js can be constructed similarly.
Therefore, we have

Td(θ̄ ) = JdVd(θ̄ ), T′d(θ̄ ) = jJddiag(ld)Vd(θ̄ ),

Ts(θ̄nc) = JsVs(θ̄nc), T′s(θ̄nc) = jJsdiag(ls)Vs(θ̄nc). (32)

According to [4, Corollary 3],

vec(IM ) = Jdhd, (33)

where hd is a column vector whose pth element is given
by [hd]p = δ[1d ]p,0,∀p ∈ ld, with δ[1d ]p,0 denoting the
Kronecker function.

Using (19), (20), (32), and (33), we can rewrite Ge
and Qe as

Ge = jWePJLU1,

Qe = WePJU2, (34)

where

J =


Jd 0M2×Cs

0M2×Cs
0M2×Cd

0M2×Cd
Js 0M2×Cs

0M2×Cd
0M2×Cd

0M2×Cs
Js 0M2×Cd

0M2×Cd
0M2×Cs

0M2×Cs
Jd

 ,

L =


diag(ld) 0Cs×Cs 0Cs×Cs 0Cd×Cd

0Cd×Cd diag(ls) 0Cs×Cs 0Cd×Cd

0Cd×Cd 0Cs×Cs diag(ls) 0Cd×Cd

0Cd×Cd 0Cs×Cs 0 diag(ld)

 , (35)

while U1 and U2 are given by (36), as shown at the bottom of
the page.

Notice thatGe andQe in (34) are similar to the matricesG
and 1 in [4], and WePJ has full column rank. Following the
proof of [4, Therorem 1], the existence condition of the CRB
can be derived as

1) QH
e Qe is positive definite if and only if U2 has full

column rank, i.e.,

rank(U2) = 3Nnc + Nc + 1. (37)

2) GH
e 5
⊥

Qe
Ge is positive definite if and only if [jLU1,U2]

has full column rank, i.e,

rank(GH
e 5
⊥

Qe
Ge) = 4Nnc + 2Nc + 1. (38)

SinceU2 and [jLU1,U2] both have 2Cd+2Cs rows, the above
rank conditions hold only if

4Nnc + 2Nc + 1 ≤ 2Cd + 2Cs. (39)

which is

2Nnc + Nc ≤ Cd + Cs −
1
2
. (40)

It is well-known that under the Gaussian distribution,
the nonsingularity of the FIM, or the existence of the CRB,
implies local identifiability of the unknown parameters [49].
Thus, (40) implies an upper bound (not guaranteed to be tight)
on the number of (noncircular) signals that can be estimated
by a specific sparse array. From the structure of U1 and U2,
we can see that the DOFs offered by the difference co-array is
shared by both the circular and noncircular signals, whereas
the sum co-array only provides DOFs for the noncircular sig-
nals. Thus, the total number of sources that can be resolved,
N , is related to the length of the difference co-arrayCd. On the
other hand, the number of noncircular sources that can be
resolved, Nnc, is concerned with the length of the sum co-
array Cs. Note that Cd and Cs are determined by the array
structure itself, regardless of the signals. To illustrate more
on this point, we recall the four cases discussed in Sec. III-B.

1) All the source signals are known to be circular. In this
case, Nnc = 0 and Rs = 0, so that the sum co-array
is not utilized. Accordingly, the blocks in U1 and U2
that are associated with Vs(θ̄nc) should be removed.
Moreover, since the spatial lags in Vd(θ̄nc) and Vd(θ̄d)
are symmetric with respect to zero, and thus the number
of linearly independent rows in the newly constructed
U1 and U2 reduces from 2Cd to Cd. As a result, (40)
degenerates to Nc ≤ (Cd − 1)/2, which is the well-
known result in [3], [4].

2) All the source signals are known to be noncircular
(possibly strictly noncircular). In this case,Nc = 0, and
(40) changes to N ≤ (Cd + Cs)/2 − 1/4. Considering
(Cd + Cs)/2− 1/4 should be an integer, we have N ≤
(Cd + Cs)/2 − 1 with Cs set to be (Cs − 1) when it
is even. This is the maximum number of noncircular
source signals distinguishable by a sparse array, and it
coincides with the conclusion in [31]. Thus, the exis-
tence of the sum co-array can significantly increase the
number of resolvable sources. This also indicates that

U1 =


Vd(θ̄nc)diag(µnc) Vd(θ̄c)diag(µc)

−V∗s (θ̄nc)diag(µnc)diag(ρ)diag(ψ
∗
e ) 0Cs×Nc

Vs(θ̄nc)diag(µnc)diag(ρ)diag(ψe) 0Cs×Nc

−V∗d(θ̄nc)diag(µnc) −V∗d(θ̄c)diag(µc)

 ,

U2 =


Vd(θ̄nc) Vd(θ̄c) 0Cd×Nnc 0Cd×Nnc hd

V∗s (θ̄nc)diag(ρ)diag(ψ
∗
e ) 0Cd×Nc

− jV∗s (θ̄nc)diag(µnc)diag(ρ)diag(ψ
∗
e ) V∗s (θ̄nc)diag(µnc)diag(ψ

∗
e ) 0Cs×1

Vs(θ̄nc)diag(ρ)diag(ψe), 0Cd×Nc
jVs(θ̄nc)diag(µnc)diag(ρ)diag(ψe) Vs(θ̄nc)diag(µnc)diag(ψe) 0Cs×1

V∗d(θ̄nc) V∗d(θ̄c) 0Cd×Nnc 0Cd×Nnc hd

 .
(36)
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the CRB expression derived in this paper is applicable
to cases where M ≤ N , whereas the CRB expressions
in [7], [8] are not.

3) The sources signals are known to be a mixture of cir-
cular and strictly noncircular ones. In this case, ∂re/∂ρ
is removed from Qe, and the rank condition becomes
rank(U2) = 2Nnc + Nc + 1 and rank(GH

e 5
⊥

Qe
Ge) =

3Nnc + 2Nc + 1. Thus, these rank conditions hold only
if 3Nnc + 2Nc + 1 ≤ 2Cd + 2Cs.

4) All the source signals are known to be strictly noncir-
cular. In this case, ∂re/∂ρ is removed from Qe, with
Nc = 0 and Nnc = N . Therefore, the rank conditions
hold only if N ≤ (2Cd+ 2Cs− 1)/3, which means that
more strictly noncircular sources can be resolved than
the general all-noncircular case.

V. NUMERICAL RESULTS
In this section, results for the derived CRBe in (23), the exist-
ing CRB for circular signals CRBd in (26), and the CRB
proposed by Delmas CRBDel [10] are presented for com-
parison. All three types of signals are considered: circular
signal (ρi = 0 and ψi = 0), strictly noncircular signal
(ρi = 1 and ψi = 0), and nonstrictly noncircular signal
(ρi = 0.6 and ψi = 0). The source powers of all the signals
µi are equal. Symbols C, Ns and Nn are used in the rest of
this section to represent circular signals, strictly noncircular
signals, and nonstrictly noncircular signals, separately, and
the number in front of the signal-type symbol represents the
number of signals. For example, 1Ns2C means a mixture
of one strictly noncircular and two circular signals. A six-
sensor two-level nested array is employed, whose locations
are {1, 2, 3, 4, 8, 12}d . The average CRB of all the impinging
angles in degrees is recorded in every simulation.

FIGURE 1. CRB results for different noncircular signal mixtures with a
varying SNR at 5000 snapshots.

First, the CRBs of noncircular signals are studied using
CRBe and CRBDel. There are two signals from θ1 = −4◦

and θ2 = 4◦, and they are divided into three scenarios: 2Ns,
1Ns1Nn and 2Nn. The number of snapshots is set to 5000,
and SNR varies from −20dB to 20dB. The results for CRBe
and CRBDel are shown in Fig. 1. Then, we fix SNR to 5dB

FIGURE 2. CRB results for different noncircular signal mixtures with a
varying number of snapshots at 5dB SNR.

and change the number of snapshots from 50 to 15000. The
corresponding results are shown in Fig. 2.

From the two figures, we can see that, for the three scenar-
ios using CRBDel, the CRB of 1Ns1Nn is the lowest while
the CRB of 2Nn is the highest, but for CRBe, the CRB
of 2Nn is the lowest while the CRB of 2Ns is the highest.
This is because CRBDel and CRBe are derived based on
different parameterizations, as mentioned in Remark 1. In the
same scenario, CRBe is always lower than CRBDel, and in
particular, CRBe and CRBDel are almost the same in the 2Ns
scenario. Compared with CRBDel, CRBe highlights the roles
of the noncircularity phase and the noncircularity rate, and
improves the potential estimation accuracy.

FIGURE 3. CRB results for different circular and noncircular signal
mixtures with a varying SNR at 5000 snapshots.

In the second set of results, the CRBs for a mixture of
circular and noncircular signals calculated from CRBe and
the CRB of circular signals calculated fromCRBd are studied.
Still using the angles θ1 = −4◦ and θ2 = 4◦ as the mixture
of circular and noncircular signals, and they are divided into
two scenarios: 1Ns1C and 1Nn1C. The number of snapshots
is also set to 5000, and the CRB results with SNR varying
from−20dB to 20dB are shown in Fig. 3. Then, SNR is fixed
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FIGURE 4. CRB results for different circular and noncircular signal
mixtures with a varying number of snapshots at 5dB SNR.

at 5dB, and the CRB results with the number of snapshots
changing from 50 to 15000 are shown in Fig. 4.

From these two figures, we can see that the curve of CRBd
is always higher than the other curves, and the CRB of 1Nn1C
is lower than the CRB of 1Ns1C. Overall, the results confirm
that the estimation accuracy of nonstrictly noncircular signals
is better than that of strictly noncircular signals even in the
case of a mixture of circular and noncircular signals situation.

In the third set of results, different numbers of mix-
ture signals are considered, where one is circular and the
rest are nonstrictly noncircular. The sparse array can esti-
mate at most a mixture of 14 circular and noncircular
signals using the estimation algorithms proposed in [31],
while the maximum number of circular signals can be
estimated is 11 [24]. Then, three scenarios are examined:
9Ns1C, 11Ns1C and 13Ns1C. The DOAs are chosen as
{. . . ,−12◦,−4◦, 4◦, 12◦, . . . }with 8◦ interval. For example,
the set of DOAs is {−20◦,−12◦,−4◦, 4◦, 12◦, 20◦} for 6
signals. The circular signal is always located at the largest
DOA. The number of snapshots is also set to 5000 when
SNR varies from −20dB to 20dB, and the results is shown
in Fig. 5. Then, the SNR is also fixed at 5dB, and the number
of snapshots varies from 50 to 15000, and the results is shown
in Fig. 6.

From these two figures, we can see that CRBe increases
when the number of signals increases. Note that the numbers
of sources are all set to be larger than that of physical sensors,
which is referred to as the underdetermined case. In this
situation, CRBe will finally become almost a constant as SNR
increases. The proposed CRBe can handle the underdeter-
mined situation, whereas CRBDel cannot. Moreover, CRBe
exists even when the number of signals is greater than 11,
which falls into the invalid range of CRBd. That means more
noncircular signals can be resolved based on a given array,
compared with the all-circular case [6].

In the fourth set of results, the total number of signals
is fixed and underdetermined, while the number of circu-
lar signals varies. Three scenarios are examined: 8Ns2C,

FIGURE 5. CRB results for different number of signals with a varying SNR
at 5000 snapshots.

FIGURE 6. CRB results for different number of signals with a varying
number of snapshots at 5dB SNR.

FIGURE 7. CRB results for different number of circular signals in the
mixture with a varying SNR at 5000 snapshots.

7Ns3C and 6Ns4C. The DOAs are chosen as {−36◦,−28◦,
−20◦,−12◦,−4◦, 4◦, 12◦, 20◦, 28◦, 36◦}. The settings of
SNR and the number of snapshots are the same as before,
and the results are shown in Figs. 7 and 8.
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FIGURE 8. CRB results for different number of circular signals in the
mixture with a varying number of snapshots at 5dB SNR.

From these two figures, we can see that CRBe increases
when the number of circular signals in the mixture increase,
which confirms that the estimation accuracy of noncircular
signals is better than that of circular ones even in the under-
determined situation. Moreover, as before, CRBe decreases
as the number of snapshots and SNR increase, and it reaches
a constant state after SNR becomes higher than some value.

VI. CONCLUSION
In this paper, the stochastic CRB for a mixture of circular and
noncircular uncorrelated Gaussian signals has been derived
for the first time. Taking into account different a priori
knowledge about noncircularity, the derived CRB can be
transformed to cover several special cases, including the CRB
for ULAs, CRB for noncircular signals only, CRB for a mix-
ture of circular and strictly noncircular signals, and CRB for
circular signals only. The existence condition of the CRBwas
examined in detail based on sparse arrays, with the number of
resolvable sources discussed. Simulations were conducted in
different scenarios, and the proposed CRB which considers
the noncircularity property would lead to a lower value than
those without. Furthermore, the proposed CRB was shown to
be applicable to cases with more sources than the number of
physical sensors.
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