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ABSTRACT This research designed an energy management system involving a battery-supercapacitor
Hybrid Energy Storage System (HESS) for electric vehicles (EV). The objective is to improve the per-
formance of the HESS by combining battery and supercapacitor features, accounting for topographical
information to guarantee continuous hybridization during the drive cycle. Contour Positioning System (CPS)
was used to determine the slope of the rode travelled by the vehicle. Two adaptive algorithms were designed
for a rule-based controller to control the energy shared between the battery and the supercapacitor; an optimal
adaptive controller and fuzzy adaptive controller. The HESS model, electric vehicle and controllers were
tested using MATLAB/Simulink with three real drive cycles, namely, uphill, downhill and city tour, in three
different speeds 50Km/h, 60Km/h and 70Km/h. The results proved the controllers managed to extend battery
life-cycle by reducing the stress on the battery for the drive cycles. The results were compared in terms of
energy consumption for the optimal adaptive rule-based controller and fuzzy adaptive rule-based controller.
The optimal adaptive rule-based controller guaranteed the HESSwas able to operate continuously and extend
the number of drive cycles in a wide range of speeds and road slopes.

INDEX TERMS Electric vehicles, energy storage, energy management, navigation.

I. INTRODUCTION
The large interest surrounding Energy Storage Systems
(ESSs) is motivated by the need to employ renewable energy
resources instead of relying on fossil fuels. This need is
related to two main concerns: the depletion in petroleum
reservoirs and the threat of global warming. The needs
to reduce air pollution and harmful emissions by conven-
tional vehicles have promoted the development of electric
vehicles (EVs). EVs remain to face issues that need to
be resolved [1]–[3]. Batteries are among the most common
energy storage devices, and they represent a large promise for
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clean energy [4]. Limited life-time and low power density are
the main defects in Pure Battery Electric Vehicles (PBEVs).
Hybrid energy storage system (HESS) is a practical solution
that can be implemented for EV applications [5]–[7]. HESS
is a combination of two different types or more of energy stor-
age devices such as batteries, fuel cells, flywheels or superca-
pacitors. In HESS, the main storage device with high energy
density such as batteries or fuel cells are used to provide a
constant power load, while an auxiliary storage device with
a high power density such as supercapacitors or flywheels
is used to provide a fast dynamic response for load power
change [8], [9]. The driving performance and cost of EVs
essentially rely on the efficiency of the ESS and its capability,
which can deliver a large amount of energy and respond
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FIGURE 1. Common HESS architectures [11].

quickly to load demands [10]. This research incorporated
a battery-supercapacitor HESS in an EV. Batteries remain
the main energy storage device due to their high energy
density. On the other hand, a supercapacitor has low energy
density but high power density. The supercapacitor possesses
unique properties that can complement other energy storage
technologies. Generally, HESS is designed by interfacing the
supercapacitor and battery via a bidirectional DC-DC con-
verter to take advantage of the two, and in turn mitigate their
limitations. Among the primary challenges in HESS design is
assessing the configuration of the supercapacitor and battery
with the DC bus. Many topologies for battery-supercapacitor
interfaces have been attempted, each with its own advantages
and disadvantages. Numerous studies in the literature have
attempted to design battery-supercapacitor hybrid energy
storage systems for EVs, with various topologies to inter-
face between the battery and the supercapacitor [10]–[13].
Figure 1 illustrates different topologies of HESS. Further-
more, different types of bidirectional DC-DC converters have
been used in an HESS for EV applications [14]. Among
the most popular topologies is the semi-active HESS shown
in Figure 1(b). Here, the DC-DC converter is used to control
the power flow from the supercapacitor to the DC bus, and the
systemwill not be affected by failure of the DC-DC converter.

A new topology to connect the battery and supercapacitor
was investigated in [13], with the aim of reducing the overall
size of the DC-DC converter in the HESS. The load in the
HESSwas controlled using four different modes. The simula-
tion and experimental results showed improved performance
of the proposed HESS. On the other hand, managing the
power flow between the battery and supercapacitor in HESS
remains a critical challenge. The energy management control
scheme used to control the semi-active topology of the HESS,
taking into account the regenerative energy of the electric
vehicle, was presented in [15]–[17]. Furthermore, a fuzzy
logic controller was used to split the load power between
the battery and supercapacitors of HESS in [18]. The output
of the fuzzy logic control affected the power for the battery
and the supercapacitor, while the other two controllers drove
the two DC-DC converters in the HESS. The high-precision

digital elevation model [19] was used to measure the ele-
vation of the road considered. Another work investigated a
new energy management system for HESS for six standard
drive cycles using a neural network [20]. The characteristic
parameters were taken in real-time from the different drive
cycles by the using slide time window to determine the load
distributed components between the battery and superca-
pacitor. Other researchers attempted to improve the HESS
and improve battery life in the EVs by formulating real-
time energy problems. This helped to determine the optimal
current split point between the battery and supercapacitor.
A cost objective function was derived to minimize the bat-
tery current variations and amplitude, and reduce the error
between the supercapacitor current and the reference current.
A neural network-based strategy was used to split the load
current between the battery and supercapacitor [21]. In [22],
the researcher designed a fuzzy logic controller to manage the
power distributed between the battery and supercapacitor.
The total vehicle load demand, supercapacitor SOC and bat-
tery SOC were used as the controller’s input. The ADVISOR
platform was used to implement the model vehicle’s control
strategy. Another study compared the responses of three dif-
ferent control schemes to control a semi-active HESS in [23].
The main contribution was to improve vehicle performance
by including an auxiliary ESS to support the main ESS. The
system was tested via a simulation and experiment involving
a real drive cycle for an EV model. It showed that a simple
control can produce high performance. A more complex con-
trol scheme was designed to split the load power between
the battery and supercapacitor to increase the efficiency of
the HESS and overall battery life in [24]. The predictive con-
troller was used to manipulate the duty cycle of the DC-DC
converter to control the current of the supercapacitor during
operations. Furthermore, the predictive controller reduced the
frequent variation of battery load in the EV’s HESS. A non-
uniform sampling time approach was investigated in [25].
An adaptive power split strategy was used to split the load
between the battery and the supercapacitor in the HESS for
EVs in [26]. The controller drove the interleaved DC-DC
converter in the semi-active HESS, and the Zero Voltage
Switching method minimized the switching losses in the
converter. The system was evaluated over four drive cycles in
an EV. A new control strategy was proposed in [27] based on
driving pattern recognition. The driving cycle was classified
into different patterns based on the historical driving data.
An adaptive wavelet transform was used to assign the high
power demand to the supercapacitor, while the low frequency
power demand was supplied by a battery. This strategy was
implemented in a standard drive cycle and decreased themax-
imum charge/discharge current of the battery, improved the
battery lifetime, and extended the vehicle range. A Markov
chain method cooperated with a Monte Carlo method to
propose a stochastic model from the history of the driving
cycle in [28]. The predictive drive cycle was used to update
the equivalent consumption minimization strategy in real-
time to manage the energy flow in the HEV successfully.
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The control strategy was implemented to drive the switch-
ing bi-directional buck-boost converter for vehicles- to-grid
systems [29]. A state-space averaging approach was used
to test the system stability. The controller considered the
SOC of HESS to regulate the power flow in the system. The
experimental results for laboratory prototypes were presented
to verify the design. A real-time control strategy based on
a Lyapunov-based nonlinear approach was proposed in [30]
for energy management of the battery-Supercapacitor HESS
for EV. The proposed controller was tested to consider the
speed of two standard drive cycles and the slope of a city
road drive cycle. In [31], a genetic algorithm multi-objective
optimization was applied to reduce the HESS sizing and
extend the drive range of the EV. A fuzzy control strategy was
used to split the power between the front and rear HESS to
achieve improved performance. The proposed configuration
was tested in three standard drive cycles and was successful
to increase the driving range and reduce the HESS total
weight. The sizing and optimization of energy management
for an electric bus with dual motors and a clutch vehicle
was presented in [32]. A novel convex programming-based
approach was developed to maximize the vehicle electric-
drive efficiency. The results proved optimized energy effi-
ciency concerning the size of the two motors, the size of
the battery, and the power flow control achieved by the pro-
posed method. A comparative study was done to compare
the control response of a non-linear model predictive control
(NMPC), rule-base control and linear model predictive con-
trol (LMPC) for the battery supercapacitor HESS in EVs [33].
A Toyota Rav4EV model was tested and showed improved
response ofNMPC compared to LMPC.Different control was
applied in HESS for EV in [34]. A two-stage neural network
was used to control the SOC of the supercapacitor. This
control strategywas used to extend the supercapacitor life and
guarantee continuous hybridization. This concept was tested
for three standard drive cycles and underwent both a simu-
lation and an experiment. The performance of a rule-based
and a fuzzy adaptive controller was compared and the results
showed improvements in battery life. A fuzzy logic controller
was used to control the HESS for EVs [35]. The aim of the
controller was to split the load power between the battery
and supercapacitor, regulate the DC bus voltage and monitor
the SOC of the supercapacitor. The results showed that the
proposed controller improved battery life by supplying the
load energy from battery at a steady state and from the super-
capacitor during the transients. Another work looked into the
efficiency of recovery braking energy for HESS in EV [5].
The efficiency of the DC-DC converters was studied under
two different control strategies. The proposed HESS supplied
fast load current to the system, resulting in increased EV
performance and efficiency of regenerative energy. A real-
time control strategy for HESS was studied in [36]. The
optimization strategy was used to tackle three main problems,
namely, power loss, load ripple and the stability of DC link
voltage. The no-preference and weighted methods were used
to handle the multi-objective problem in HESS. The HESS

model and controller algorithm was tested using ADVISOR.
The results showed smooth battery current flow and stable
DC link voltage for both the simulation and experiment.
Terrain information was explored to reduce fuel consumption
of hybrid EVs in [37]. Fuel consumption improved depending
on vehicle speed, control algorithm, road slope and battery
size.

The above review reveals a research gap in terms of the
effect of road slopes and traffic information on the design of
the energy storage system in EVs. Ignoring road conditions
can lead to incorrect estimation of the total energy demand in
a drive cycle. An uphill drive consumesmore energywhen the
vehicle accelerates, while less energy is usedwhen the vehicle
goes downhill. There are several methods used to measure a
road’s elevation and slope such as DEM, GPS and CPS [19],
[38]. Vehicle-to-vehicle communications can also be used to
collect information regarding a road’s slope [39]. A Contour
Positioning System (CPS) can be used to determine the con-
tours, slope and angles of a road based on the road contour
distance and elevation [38]. The information gathered using
CPS can be used to estimate the quantity of energy needed to
operate an EV to reach a particular destination. The CPS can
be used to control the HESS of the EV on the road, instead of
being used for monitoring purposes only.

This research looked into a semi-active HESS for use
in EVs. The proposed control algorithm aimed to split the
vehicle demand current between battery and supercapaci-
tor optimally to extend battery life and ensure continuous
HESS hybridization. The battery provides low traction cur-
rent, while the supercapacitor supplies peak traction current
and absorbs the regenerated current during braking. The
CPS was used to determine the slope of the road for three
different real drive cycles. The proposed control algorithm
increased the number of possible repeated drive cycles for
any real drive cycle compared with the online adaptive energy
management system in the literature. The effect of the road
slope the power demand was presented in this work. The
energy management strategy contains three control layers to
manage the power flow between the battery and superca-
pacitor. The first layer is an adaptive control that aims to
obtain the optimal energy sharing percentage, R, between
the battery and supercapacitor offline, before the vehicle
moves for any selected drive cycle, depending on the road
slope and vehicle speed. The second layer is a rule-based
controller that aims to determine the optimal reference cur-
rent for the supercapacitor during the journey online. The
third layer is the LQR control to drive the bidirectional
DC-DC converter by changing the duty cycle of the PWM
online.

This research article is organized as follows: section II
contains the system’s modeling and configuration. Section III
discusses the Contour Positioning System (CPS) and cal-
culations for slopes in the road for an uphill, downhill and
city tour drive cycle. Section IV discusses the design of the
adaptive rule-based controller and the tuning methods. The
simulation results and the controller’s responses are explained
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FIGURE 2. Architecture of HESS for Electric Vehicle in this research.

TABLE 1. The parameters of battery model.

in section V, while section VI provides a summary and con-
cludes this research.

II. SYSTEM MODELING AND CONFIGURATION
The semi-active HESS shown in Figure 1(b) was used in this
work to deliver the required energy for the EV. The con-
troller was designed to split the demand power between the
battery and supercapacitor, and in turn limit battery current.
The battery provides low traction and a steady state load
current, while the supercapacitor supplies the peak demand
current and absorbs the regenerative energy during braking.
The adaptive rule-based controller was designed to manage
the power flow from the supercapacitor by tuning the drive
cycle of the DC-DC converter. Figure 2 shows the HESS
architecture for the EV.

A. BATTERY MODEL
The behavior of a battery has been heavily researched.
Among the most popular models is the equivalent circuit
model. This model is based on one of the following: runtime
basedmodel, impedancemodel, or thevenin model [40]–[42].
The non-linear dynamic model was investigated in terms of
the battery’s state-of-charge and electrolyte temperature [43].
Different research identified the parameter values for the
equivalent circuit model by using the parameter estimation
strategy [44]. The MATLAB/Simulink/-SimPowerSystems
library shows the embedded model of the battery, and the
relationship between its parameters as per Equation (1).
Table 1 shows the main parameters of the battery model used
in this study.

Vb (t) = Eb (t)− rb.ib (t)

SOC (t)= 100

SOC (0)−
1
Q

t∫
0

i (t) dt

 (1)

TABLE 2. The parameters of supercapacitor model.

FIGURE 3. The Forces affect the vehicle during movement.

B. SUPERCAPACITOR MODEL
In energy management systems, mathematical models of the
energy storage devices must involve the dynamics of the
energy storage device, and have high robustness. Many stud-
ies have surveyed supercapacitor models [45]. The model
is usually composed of an equivalent electrical circuit, and
the terminal measurements for charging and discharging
the supercapacitor used to estimate the parameter of a
supercapacitor model [46], [47]. MATLAB/Simulink/Sim-
PowerSystems was used to model the supercapacitor in this
research. Table 2 lists the parameters of the supercapacitor
module used in this study. The terminal voltage Vsc and
the total capacity Csc of the supercapacitor module can be
calculated as per Equation 2.Csc =

Ccell.Nparallel

Nseries
Vsc = Vcell.Nseries

(2)

C. DC-DC CONVERTER MODEL
The state-space average model is among the techniques to
model the DC-DC converter. This method is used to find
the linearization of the non-linear behavior of the DC-DC
converter [48], [49]. The system identification technique
is another method used to identify the equivalent transfer
function of the DC-DC converter [50]. The components of
the DC-DC converter model can be identified using the
MATLAB/Simulink/SimPowerSystems library [51]. To sim-
plify the DC-DC converter model and decrease the simulation
time, the switching elements (IGBT) in the DC-DC converter
model can be replaced by current and voltage sources [52],
[53]. The ON and OFF states matrices of the DC/DC con-
verter can be derived using Equation 3. as shown at the bottom
of the next pahe, While, X =

[
IL VC

]T
≡ State Vector
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TABLE 3. The parameters of electric vehicle model.

D. ELECTRIC VEHICLE MODEL
A proper model representing the EV’s performance is
required to estimate better energy consumption. Many
researchers used MATLAB/Simulink to develop the model
for EVs, while others used ADVISOR or other similar soft-
ware to perform comprehensive performance analyses of a
wide range of vehicles [54]–[59]. The dynamic system of the
vehicle was explained clearly in [1], [60], [61]. In terms of the
fundamentals of the vehicle dynamics, the total forces affect-
ing the vehicle’s momentum are aerodynamic force (Faero),
rolling force (Froll), grading force (Fgr) and acceleration force
(Faccel), as defined in Equation 4.∑

F
Total
= Faero + Froll + Fgrad + Faccel (4)

where:

Faero = 0.5.ρ.Af.Cd.V
2

Froll = µrr.MV.g.cosθ

Fgrad = MV.g.sinθ

Faccel = MV.
∂V
∂t

MATLAB/Simulink/Vehicle Component library was used to
model the behavior of the EV. Table 3 shows the main coef-
ficients of the EV model. Figure 4 shows the completed
model of the EV’s HESS using MATLAB/Simulink. The
inverter and the induction motor were used for the inner loop
intelligent controller, as in [62], [63].

III. CONTOUR POSITIONING SYSTEM
Road elevation is an important factor which affects energy
consumption in EVs. Total energy consumption in EVs are
affected by 15% to 20% when slopes in a road are taken
into account [64]. There are many available data sources
for deriving road information such as Google Maps, Inter-
map and Google Earth. Contour Positioning Systems (CPSs)

FIGURE 4. The HESS model for EV in MATLAB/Simulink.

use road information (i.e. elevation and distance) to calculate
slopes in a road, as Equation 5.

6 θ =
|1E|
1E
× sin−1

|1E|
1D

1D (k)= D (k)−D(k− 1)
1E (k)= E (k)−E(k− 1)

(5)

While:



D (k)= Distance
D (k− 1)= Previous Distance
1D = Distance Difference
E (k) = Elevation
E (k− 1) = Previous Elevation
1E = ElevationDifference

For this research, the driver needs to set the desired desti-
nation before starting the journey in the EV. The automated
CPS obtains the road slope in terms of elevation, and uses
this data to estimate the total energy consumption for the
drive cycle. Google Earth was used as a source of topography
information to obtain the road elevation. This study uses three
real routes, namely, uphill, downhill and city tour, to investi-
gate the influence of slopes of the road on the EV’s energy
consumption. Figure 5 shows the road’s elevation profile
against the distance for uphill, downhill and city tour used
in this research. The CPS and the vehicle speed were used
to control and estimate the required energy consumption for
each drive cycle.

The uphill data was obtained for the drive from Berin-
chang (4◦29’30.16’’N 101◦23’15.65’’E) to Equatorial Hotel
(4◦30’17.64’’N 101◦24’31.18’’E) in Cameron Highlands,
Malaysia. The distance covered was five kilometers, and the
elevation at the starting and destination points were 1496 m


X̄ =


R.rC (d− 1)− rL(R+rC)

L(R+rC)
R.(d− 1)
L(R+rC)

R.(1− d)
C(R+rC)

−
1

C(R+rC)

X+

 1
L
0

VSC

VCO =

[
R.(d− 1)
(R+rC)

R
(R+rC)

]
X

(3)
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FIGURE 5. The road elevation for uphill, downhill and city tour.

FIGURE 6. The road slope for uphill, downhill and city tour.

and 1627 m, respectively, which were measured every ten
meters. CPS was used to obtain the data and calculate the
road’s slope along the journey. Meanwhile, the downhill
elevation started from 1615 m, going down to 1496m. The
total distance travelled was five kilometers, and the elevation
was measured every ten meters. Meanwhile, the city tour
involved traveling from University Tunku Abdul Rahman
(UTAR) old campus in Setapak, Kuala Lumpur, to Technol-
ogy Park Malaysia (TPM) in Bukit Jalil. Here, the elevation
levels at the starting and destination points were 61 m and
66 m respectively. The total distance for the city tour was
15.85 kilometers, and the elevation was measured every ten
meters. The elevation profile of the three journeys was used to
measure the road slope, which was calculated by CPS using
Equation 5. Figure 6 shows the road slope angles measured
in degrees for the uphill, downhill and city tour.

IV. CONTROL STRATAGEY
This study aims to extend the battery life-cycle for EVs
by reducing operational stress for any type of drive cycle.
An adaptive rule-based controller was used to distribute the

total operational current of an EV between theHESS’s battery
and supercapacitor. The output current of the DC-DC con-
verter Ico(t) was controlled by the adaptive rule-based con-
troller to manage the energy output of the supercapacitor. The
total vehicle load current It (t) is defined as per Equation 6.

It(t) = Ib(t)+Ico(t) (6)

The adaptive rule-based controller allocated the HESS’s cur-
rent instantaneously for different drive cycles. The controller
limited the battery current Ib(t) to a desired value Ib_max,
and split the current between the battery and supercapacitor
during any drive cycle. The road’s slope and the vehicle speed
are important factors that affect an EV’s energy consumption.
The controller was designed to manage the HESS’s energy
flow under various conditions, accounting for total demand
load current It(t), supercapacitor state of charge SCsoc and
the direction of the energy flow. The controller’s working
conditions were defined as per Equation 7. as shown at the
bottom of the next page, The rule-based controller allows the
HESS to supply the EV with current from the battery when
the total load current of the EV is less than the maximum
value of battery current Ib_max. The controller also limits the
battery current to Ib_max during a high load drive cycle. On the
other hand, the supercapacitor absorbs all the regenerative
energy during the drive cycle. The total regenerative energy
that could be absorbed by the supercapacitor from the initial
voltage to the final voltage is defined as per Equation 8. The
state of the charge condition for the supercapacitor is defined
as per Equation 9.

1EnSC =
C0

2
(Vsc (0)− Vsc(t)) (8)

SOCsc_max ≥ SOCsc > SOCsc_min (9)

Asmentioned above, the EV’s destinationwas selected before
the journey initiated. The adaptive algorithm estimates the
total current demand needed for the drive cycle and the
regenerative current depending on the road’s slope, vehicle
speed and the parameters of the EV model. The percentage
power split between the battery and supercapacitor (R) in
HESS can be determined in several independent ways. Two
methods were investigated to adapt the rule-based controller
in terms of energy split between battery and supercapacitor.
The first is the optimal method that compares the total current
demand and regenerative current of the electric vehicle during
the drive cycle. The second is a fuzzy adaptive rule-based
controller using a fuzzy logic controller. The sharing percent-
age (R) was used to regulate the controller to save energy
during the drive cycle. The adaptive rule-based controller is
defined as per Equation 10. as shown at the bottom of the next
page.

A. OPTIMAL ADAPTIVE RULE-BASE CONTROLLER
In this method, the percentage of current shared between
the battery and supercapacitor in HESS is tuned on time
for the distance of the specific drive cycle. After setting
the destination and the road’s slope calculated by CPS,
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the system estimates the total energy required for the drive
cycle. The road slope and the vehicle’s approximated speed
are considered along the journey to the desired destina-
tion. The accumulation method for the positive supplied
current Itp and the regenerative current Ireg during the drive
cycle was applied. The split percentage was set by com-
paring the total current demand and regenerative current of
the EV during the drive cycle. The positive supplied cur-
rent Itp and the regenerative current Ireg are defined as per
Equation 11. 

Ireg =
t∑
0

It(t) It< 0

Itp =
t∑
0

It(t) It> 0

(11)

This method reduces battery stress and saves energy inside
the HESS. The system predicts the approximate amount
of the regenerative energy, depending on the road’s slope.
Then, the percentage of power split between the battery
and the supercapacitor (R) is set to ensure that the HESS
is working properly and the supercapacitor is able to
absorb all the regenerative energy during the drive cycle.
Figure 7 presents the flowchart of optimal adaptive rule-base
controller.

B. FUZZY ADAPTIVE RULE-BASE CONTROLLER
Most research in the literature on road terrain information
takes the instant effect of the road slope in the control action.
In thismethod, the value of current shared between the battery
and supercapacitor in HESS varies during the drive cycle.
A fuzzy logic controller was used to manipulate the percent-
age of current shared between the battery and supercapacitor
during the journey. The road’s slope and vehicle speed are
inputs for the fuzzy logic controller in controlling the journey.
Figure 8 shows the surface plot of the fuzzy logic controller
which represents the relationship between the inputs (road
slope and vehicle speed) and the percentage of power shared
between the battery and supercapacitor, R. Here, the super-
capacitors assist the battery to deliver the load current con-
tinuously with different percentages along the drive cycle.
Furthermore, the operation effect of this controller is shown
in Figure 9.

FIGURE 7. Flowchart of optimal adaptive rule-base controller.

C. LINEAR QUADRATIC REGULATOR (LQR)
LQR is a control method that depends on generated feedback
gains to improve the system response by controlling one state
of the model. Equation 12 represents the cost function for a


If (It> 0) and (It < Ib_max) then Ico = 0
If (It > 0)and

(
It > Ib_max

)
and (SOCsc > SOCsc_min) then Ico = (It−Ib_max)

If (It< 0) and (SOCsc < SOCsc_max) then Ico = It

(7)


If (It> 0)and

(
(1− R) It<Ibmax

)
and (SOCsc>SOCsc_min) then Ico=It∗R

If (It> 0)and
(
(1− R) It>Ibmax

)
and (SOCsc>SOCscmin) then Ico = (It−Ib_max)

If (It< 0)and (SOCsc<SOCsc_max) then Ico = It

(10)
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FIGURE 8. The fuzzy logic controller surface.

FIGURE 9. Flowchart of Fuzzy adaptive rule-base controller.

continuous-time linear.

J (u) =
∫
∞

0

(
xTQx + uTRu+ 2xTNu

)
dt (12)

In this research, the objective of LQR is to drive the DC-DC
converter to supply the desired current from the superca-
pacitor module. The output power of the DC-DC converter
is controlled by varying the duty cycle of the Pulse Width
Modulation (PWM). LQR was selected due to its simplicity
and easy implementation, and the feedback gains can be
directly obtained from the matrices of the DC-DC converter
model. Moreover, the close-loop response of LQR is stable
and is insensitive to external disturbances [65]. The modeling
of the DC-DC converter considered switching states of the
IGBT as follows:

ẋ = [dAON+(1−d)AOFF ]X + ddBON+(1−d)BOFFeVsc
(13)

where: 
d = The switching period
Aon.off = State matrices
Bon.off = Control matrices

The following matrices represent the state and control matri-
ces of the DC-DC converter in ON and OFF states:

X =
[
IL Vc

]T
= state vector

AON =

−
rL
L

0

0
−1

C . (R+ rC )

 ,B
ON

=

[ 1
L
0

]
,

AOFF =


−R.rC − R.rL−rC .rL

L (R+ rC )
−

R
L (R+ rC )

R
C (Ro + Rc)

−
1

C (Ro + Rc)

 ,
BOFF =

[ 1
L
0

]
The state-space model of the DC/DC converter is represented
by the following equations [66]:

d
dt

[
iL
Vc

]

=


R.rC . (d − 1)− rL(R+ rC )

L (R+ rC )
R.(d−1)
L (R+ rC )

R.(1−d)
C (R+ rC )

−
1

C (R+ rC )


×

[
iL
Vc

]
+

[ 1
L
0

]
Vsc (14)

Vco =
[
R.(d−1)
(R+ rC )

R
(R+ rC )

] [
iL
vc

]
(15)

As = A = dAON + (1− d)AOFF
Bd = (AON − AOFF)X − (BON − BOFF)Vsc
Bs =

[
Bd B

] (16)

Bd =


R.rC

L (R+ rC )
.iL +

R.rC
L (R+ rC )

.Vc

−
R

C . (R+ rC )
.iL

 (17)

V. RESULTS AND DISCUSSION
This research work designed an HESS to manage and con-
trol the energy flow in EVs. Figure 4 shows the model
that integrates the HESS model, controllers and the EV
model considering CPS. The system was modeled using
MATLAB/Simulink to investigate the HESS’s response and
performance of an adaptive rule-based controller involving
three real-life journeys with various road slopes and three dif-
ferent speeds. First, the effect of a road’s slope in pure battery
EVwas investigated. The comparison was presented between
the battery state of charge considering a road’s slope (mea-
sured using CPS) against the battery state of charge ignoring
the slope for the same working condition, and drive cycle in a
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TABLE 4. The effect of including road slope for battery SOC in EV.

pure battery EV. Table 4 shows the initial values of the state of
charge for battery SOCb (0), final values of state of charge for
battery ignoring a road’s slope SOCb (t)slope=0, final values of
state of charge for battery considering the road’s slope CPS
SOCb (t)slope=CPS and the Energy Variance (EnVar) for three
different drive cycles and speeds. The results demonstrate
that the EV (using CPS) consumed more energy going uphill,
taking up to 0.9% of the total energy. On the other hand,
the EV (using CPS) earned energy going downhill, taking up
to 0.79% of the total energy. Meanwhile, a small difference
in energy consumption was recorded for the city tour (using
CPS). The energy variance was calculated as per Equation 18.
as shown at the bottom of the page, In order to investigate,
analyze and validate the proposed design of the optimal
adaptive rule-based controller and the fuzzy adaptive rule-
based controller for HESS, simulations were run for uphill,
downhill and city tour drive cycles, at three different speeds
(50Km/h, 60Km/h and 70 Km/h). The results of uphill, down-
hill and city tour with a speed of 50Km/h were presented and
explained in details, while the results of speeds 60Km/h and
70 Km/h were summarized in the tables. The state of charge
for the HESS’s battery and supercapacitor were compared
for both controllers for different journeys, to validate their
performance and the energy savings in each scenario. The
value of initial state of charge for the battery SOCb (0) and
supercapacitor SOCSC (0) was 0.95 and 0.9224 respectively.
The final value of state of charge for the battery SOCb (t)CPS
and supercapacitor SOCSC (t)CPS were measured at the end
of the journeys and the percentage of energy consumption
for both was given by Equation 19. as shown at the bottom
of the page, In the uphill drive cycle, the EV consumed
more energy to maintain its acceleration. Here, the optimal
algorithm adapts the rule-base controller before the vehicle
starts moving, considering the desired destination and CPS.

FIGURE 10. HESS current for EV based on 50Km/h Uphill journey.
(a) Optimal adaptive. (b) Fuzzy adaptive.

The fuzzy adaptive rule-based calculated the HESS’s percent-
age share of current between the battery and supercapacitor
instantaneously during the drive. Figure 10 shows the HESS’s
current allocation in the EV during the uphill journey for both
controllers. The battery current was smooth and limited by
Ib_max, while the regenerative current was absorbed by the
supercapacitor.

In the 50Km/h Uphill drive cycle, the optimal adaptive
rule-based controller for HESS consumed 1.43% of the
total stored energy of the battery, and 11.35% of the total
energy of the supercapacitor. Meanwhile, the fuzzy adap-
tive rule-based controller for HESS consumed 1.09% of the
total stored energy of the battery, and 20.70% of the total
energy of the supercapacitor, for the same journey and con-
ditions. Figure 11(a) represents the battery SOC for both
controllers, and the battery SOC in pure battery EV for
equivalent drive cycle and speed. Figure 11(b) illustrates
the changes in supercapacitor SOC during the uphill drive
cycle.

For the 50Km/h downhill drive cycle, the EV can regener-
ate energy when the vehicle brakes. The adaptive rule-based
controller stores the energy in the supercapacitor. Figure 12

EnVar =

(
SOCb (0)− SOCb (t)slope=CPS

)
−
(
SOCb (0)− SOCb (t)slope=0

)
SOCb(0)

×100 (18)


Battery Consumption =

SOCb (0)− SOCb (t)CPS
SOCb (0)

× 100

Supercapacitor Consumption =
SOCSC (0)− SOCSC (t)CPS

SOCSC (0)
× 100

(19)
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FIGURE 11. HESS SOC based on 50Km/h Uphill journey (a)Battery. (b)
Supercapacitor.

FIGURE 12. HESS current for EV based on 50Km/h Downhill journey
(a) Optimal adaptive. (b) Fuzzy adaptive.

shows the HESS’s current consumption in the EV based on
the downhill journey for both controllers.

In the 50Km/h downhill drive cycle, the optimal adaptive
rule-based controller for HESS consumed 0.3% of the total
stored energy of the battery, and gained 2.6% of the total
energy for the supercapacitor.

Meanwhile, the fuzzy adaptive rule-based controller for
HESS consumed 0.31% of the total stored energy of the bat-
tery, and gained 3% of the total energy for the supercapacitor,

FIGURE 13. HESS SOC based on 50Km/h Downhill journey (a)Battery.
(b) Supercapacitor.

FIGURE 14. HESS current for EV based on 50Km/h City tour journey
(a) Optimal adaptive. (b) Fuzzy adaptive.

for the same journey and conditions. Figure 13 shows the
changes in battery and supercapacitor SOC during the down-
hill drive cycle.

For 50Km/h city tour drive cycle, the HESS’s performance
(usingCPS) did not witness anymajor effect. Figure 14 shows
the HESS’s current consumption in the EV during the city
tour for both controllers.

The optimal adaptive rule-based controller for HESS con-
sumed 3.03% of the total stored energy of the battery, and
gained 0.95% of the total energy of the supercapacitor.
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FIGURE 15. HESS SOC based on 50Km/h Downhill journey (a)Battery.
(b) Supercapacitor.

Meanwhile, the fuzzy adaptive rule-based controller for
HESS consumed 2.55% of the total stored energy of the
battery, and 10.89% of the total energy of the supercapacitor,
for the identical conditions. Figure 15 shows the changes in
battery and supercapacitor SOC during the city tour drive
cycle.

Table 5 presents the values of final state of charge for the
battery and supercapacitors of HESS by using optimal and
fuzzy adaptive controllers in the various drive cycles at a
speed of 50Km/h. The total percentage of energy consump-
tion for the battery and supercapacitor and the number of
possible repeated drive cycles in every case were presented.
The results of the energy consumption for HESS show that
both controllers were successful to reduce the battery stress
during EV acceleration and deceleration, as compared to
using a pure battery electric vehicle.

Furthermore, the results of optimal adaptive controller
show that it manages the energy of supercapacitor better
than the fuzzy adaptive controller in terms of continuous
hybridization for a higher number of drive cycles. In addition,
Tables 6 and 7 present the results of the optimal adaptive
r and the fuzzy adaptive controllers for HESS for 60 Km/h
and 70 Km/h respectively. The results demonstrate that the
proposed optimal adaptive controller effectively enhanced the
performance of the HESS for the EV in a wide range of cycles
and speeds.

The current limitation of the proposed design is that it
requires the driver to define the destination and the driv-
ing speed before the vehicle starts. However, there is dif-
ficulty in determining the appropriate vehicle speed for
the selected journey by the driver. Furthermore, chang-
ing the destination path or the vehicle speed during the
journey leads to change in the total energy consumption
of the drive cycle, which requires a new calculation for

TABLE 5. The SOC of Battery and supercapacitor in speed 50 Km/h.

TABLE 6. The SOC of Battery and supercapacitor in speed 60 Km/h.

TABLE 7. The SOC of Battery and supercapacitor in speed 70 Km/h.

the energy sharing percentage R between the battery and
supercapacitor.

In future work, an algorithm to automatically estimate the
proper speed of the selected journey will be proposed. On the
other hand, in case of changing the destination or the vehicle
speed during the journey, the Adaptive algorithm will be
improved to update the value of the sharing percentage R for
the controller. In addition, to validate whether the proposed
method is suitable to perform practically, experimental work
for HESS and electric vehicle emulators will be implemented.
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VI. CONCLUSION
Total energy consumption of an EV affected by topographical
conditions was tested in three real drive cycles with different
characteristics and speeds. The results of the simulations
proved that an uphill drive consumed more energy, while
regenerative energy increased going downhill. Meanwhile,
it was found that a road’s slope has a limited effect for a city
tour drive cycle. The CPS was used to measure the road’s
slope along the drive cycles. The proposed HESS optimal
adaptive rule-based and fuzzy adaptive rule-based controllers
were successful in extending the battery life-cycle by limiting
battery current during high load operations. Furthermore,
the final state of charge for battery and supercapacitor were
compared for three different drive cycles and speeds. The
optimal adaptive rule-based controller performed better than
the fuzzy adaptive rule-based controller in terms of continu-
ous hybridization during more drive cycles.
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