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ABSTRACT Constrained optimization problems (COPs) are common in many fields, and the search
algorithm and constraint handling technique play important roles in the constrained evolution algorithms.
In this article, we propose a new optimization algorithm named CETDE based on ensemble differential
evolution (DE) and a two-level epsilon-constrained method. In the ensemble DE variant, some promising
parameters and mutation strategies constitute the candidate pool, and each element in the pool coexists
throughout the search process and competes to generate new solutions. The two-level epsilon method is
proposed by incorporating a generation and a population comparison level to retain more promising solutions
without degrading the solution quality. Moreover, a diversity promotion scheme is developed to improve the
population distribution when the search becomes trapped in a small region. The superior performance of
CETDE is validated by comparison with some state-of-the-art COEAs over two sets of artificial benchmarks
and five real-world problems. The competitive results show that CETDE is an effective method for solving
COPs.

INDEX TERMS Evolutionary algorithms, differential evolution, constrained optimization, ensemble, two-
level-based comparison.

I. INTRODUCTION
Constrained optimization problems (COPs) are frequently
encountered in many real-world design domains. Without
loss of generality, a COP can be written as [1], [2]:

min f (Ex), Ex = [x1, · · · , xn]T

s.t. gj(Ex) ≤ 0, (j = 1, 2, · · · , p)

hj(Ex) = 0, (j = p+ 1, · · · , q)

ai ≤ xi ≤ bi, (i = 1, 2, · · · , n) (1)

where n is the number of the dimensions of the decision
variable x, Ea = [a1, · · · , an]T and Eb = [b1, · · · , bn]T are
the lower and upper bounds, respectively, f (Ex) is the objective
function to be optimized, and g(Ex) and h(Ex) are the p inequal-
ity and q − p equality constraints, respectively. For COPs,
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the constraint violation of solution Ex is defined as:

φ (Ex) =
p∑
j=1

max
{
0, gj (Ex)

}
+

q∑
j=p+1

max
{
0,
∣∣hj (Ex)∣∣− δ}

(2)

where δ is a positive tolerance value for transforming the
equality constraints into inequality constraints. We say that
Ex is feasible if φ(Ex) = 0, otherwise, Ex is infeasible.
Currently, evolutionary algorithms (EAs) are frequently

adopted to solve optimization problems in various domains
because of their advantages over traditional mathematical
methods [3]–[8]. However, we should be aware that EAs
were originally proposed for unconstrained global numerical
optimization problems, and the main goal of constrained
optimization algorithms is finding the global optimal solu-
tion in the feasible domain. Thus, to solve COPs effectively,
the powerful EAs should be combined with suitable con-
straint handling techniques (CHTs) in a proper way [9]–[11].

To date, many CHTs have been designed for nature-
inspired search algorithms, and each has its own
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merits [12], [13]. Based on the methods used to treat the con-
straints, we can group the existing CHTs into three different
categories, i.e., penalty function (PF)-based methods, supe-
riority of feasibility-based methods and multiobjective-based
methods.

The main idea of the PF-based methods is to first transform
the original problem into an unconstrained problem by adding
a penalized constraint violation to the objective function so
that any existing search algorithm can be adopted to solve
the unconstrained problems. These methods are easy to use
but have also been criticized because the overall performance
depends strongly on the associated penalty factor. To avoid
this limitation, advanced PF-based methods have been exten-
sively studied. For example, Runarsson and Yao proposed
stochastic ranking method which does not require a priori
information about COPs and also does not use any additional
penalty factors [14]. Gan et al adopted a dynamic expo-
nential function-like penalty factor setting to convert COPs
into unconstrained ones and then the simplex crossover-based
EA was used as the search algorithm [15]. Wang and Cai
proposed an adaptive trade-off model, which the feasible
rate of the main population is utilized [9]. Tessema and
Yen proposed an adaptive PF method to exploit infeasi-
ble solutions with low objective value and low constraint
violation [16].

The main principle of the superiority of feasibility-based
methods is to prefer the feasible solutions to the infeasible
solution. These methods usually do not require any addi-
tional parameters, making them quite simple and easy to use
[17]. However, these methods often display heavy selection
pressure, which is likely to lead to premature convergence,
particularly for COPs with complex constraints. To avoid
this problem, some improvements have been proposed to
alleviate the selection pressure. For example, Takahama and
Sakai introduced new CHT named ε-constrained methods by
using a relax comparison level in feasibility rule. This method
treats some solutionwith low constrained violation as feasible
ones [18]. Fan et al proposed a feasible ratio based epsilon
level control method. This method is then incorporated into
decomposition-based multiobjective EA to solve constrained
multiobjective problems [19]. Zhang et al proposed a adaptive
ε-method based on the knowledge of constraint violation in
the main population. Meanwhile, a more simpler heuristic
rule is designed control the comparison level instead of tra-
ditional exponential function-based methods [20]. To solve
COPs effectively, Wang et al first adopted the common feasi-
bility rule during the selection procedure and then applied an
individual replacement technique to preserve some infeasible
solutions with low objective values [21]. Xu et al proposed
a cluster-replacement-based feasibility rule to alleviate the
selection pressure behind the ordinary feasibility rule [22].
Wang et al proposed an individual-dependent feasibility rule
to alleviate the preference from both the objective function
and constrained violation [11].

The multiobjective-based methods usually introduce some
additional objective function to form a new problem and

then employ the concept in the multiobjective optimization
community to solve it [23]–[25]. However, the application
of these methods still faces some challenges because solving
multiobjective optimization problems is still quite challeng-
ing in and of itself. For this kind of method, the key issue is
how to use the multiobjective concept to balance the search
between objective functions and constraints. For example,
Cai andWang tried to combine the original objective function
and constrained violation together to form a bi-objective
problem, i.e. [f (Ex),G(Ex)] and then the domination concept in
multiobjective optimization community is applied to tackle
the new problem [23], [24]. Deb and Datta combined the
elitist non-dominated sorting genetic algorithm with PF
method and proposed a hybrid EA-cum-CHT in a manner
complementary to each other [26]. In addition to using static
bi-objective structures, some dynamic constrained multiob-
jective framework is also proposed. Zeng et al converted
COP into an equivalent dynamic constrained multiobjective
optimization problem with 3 objectives [27], i.e. original
objective, constrained violation and niche-count objective.
During the search process, the constraint boundary and niche
size are dynamically reduced. The new framework is incor-
porated into Pareto ranking-, decomposition- and hypervol-
ume indicator-based multiobjective evolutionary algorithms,
showing some advantages. Later, Jiao et al proposed an
improved dynamic constrained multiobjective framework by
the Pareto dominance and a new feasible-ratio control mecha-
nism [28]. One remarkable superiority of this new framework
is allowing the search from both feasible and infeasible
domains. Zeng et al proposed Pareto front transformation
model to retain some promising dominated feasible vectors
and nondominated infeasible ones with worse objective. Thus
the search within both the feasible and infeasible region is
allowed [25].

In addition to designing effective CHTs, study of powerful
search algorithms is another important issue in the devel-
opment of competitive COEAs. Many search algorithm are
available to the EA community, such as the genetic algo-
rithm (GA), particle swarm optimization (PSO), artificial
bee colony algorithm (ABC), and teaching–learning-based
optimization (TLBO). Among these types of algorithms,
differential evolution (DE) is a simple yet effective search
algorithm over a continuous space, and a large number of
DE-based methods have been proposed to handle COPs [29],
[30]. The simplest approach for the use of DE for COPs is
to directly combine basic DE with various CHTs. However,
the performance of DE strongly depends on the mutation and
crossover strategies and the associated control parameters,
i.e., the population size N , scale factor F and crossover rate
CR. Thus, these strategies and parameters must be determined
carefully and be appropriate for a specific COP. As men-
tioned above, DE was originally proposed for unconstrained
problems. To enhance the search ability of DE when solving
complex COPs, various kinds of approaches were proposed,
such as the design of new mutation operator [10], [31]–[33],
study of advanced parameter control strategies [10], [22],
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[34], [35], and introduction of additional diversity schemes
[11], [21], [36].

In fact, there has been increasing interest in enhancing the
search ability of DE by using multiple strategies and parame-
ters. For these multi-strategy-based variants, each has its own
features, For example, Wang et al proposed a composite DE
variant by using three different offspring generation strategies
and three control parameter settings according to some other
researchers’ studies [37]. One distinguishing feature of this
method is three trial vectors are generated by three different
trial vector generation strategies for each target vector in
the main population and the best among the three will be
used to update the corresponding parent vector during the
selection process. Inspired by this framework, Wang et al
proposed a constrained composite DE variant to solve COPs
[38]. Xu et al proposed a cooperative ranking-based mutation
strategy in DE for COPs [33]. Although the commonly used
DE/rand/1 mutation strategy is adopted, it uses two differ-
ent selection technique to determine parent vectors at two
different situations. Sun et al proposed new DE variant by
adopting two mutation strategies with different features [39].
One strategy is focusing on global exploration while the other
on local exploitation. Among all these multi-strategy-based
DE variants, ensemble of parameters and mutation strategies
is a simple, yet powerful DE variant for global numerical
optimization [40]. This approach attempts to provide a sys-
tematic framework that combines multiple mutation strate-
gies with some parameter values. In this DE variant, some
candidate pools are provided beforehand, and learning infor-
mation is extracted for further processing. This scheme has
been proved to be very effective when solving unconstrained
global numerical optimization. How to extend it for COPs
needs to be further studied.

The ε-constrained method proposed by Takahama and
Sakai [18] seeks to relax the comparison in the feasibility rule
and introduces a new comparison level, ε. If the constrained
violation values of solutions are less than the ε level, they are
considered to be feasible, and the comparison is based solely
on the objective function values. Otherwise, the solutions
are treated as infeasible, and the solution with the small
constrained violation is deemed to be better. By introducing
this relaxed ε level, the search algorithms will have more
opportunities to explore the infeasible region around the fea-
sible domain, which will be very helpful in the case where the
feasible optimal solution lies at the boundary of constraints.
However, the original ε-constrained method shares the same
comparison level for all solutions in the main population.
If the ε level is too large, the search will focus on minimizing
the objective functions, degrading the exploitation around
the feasible solution. By contrast, if the ε level is too small,
more attention will be focused on decreasing the constraint
violation.

Motivated by the above considerations, in this article,
we propose a new constrained DE algorithm named CETDE
by combining an ensemble DE variant with a new two-
level-based ε method to solve COPs. In CETDE, some

well-studied mutation strategies and parameter values based
on previous studies performed by other researchers are col-
lected to form some candidate pools. If a combination of
strategy and parameter can generate promising solutions in a
previous search, it will have a greater likelihood to be used in
the subsequent evolution process stage. Moreover, a diversity
promotion scheme is used to improve the population diversity
when the search is trapped into a narrow domain.

The remainder of this article is organized as follows.
Section II briefly introduces the basic DE algorithm and
the ε-constrained method. Section III presents our pro-
posed CETDE algorithm in detail. Section IV presents the
experimental results and performance comparisons. Finally,
Section VI draws conclusions

II. DIFFERENTIAL EVOLUTION AND
EPSILON-CONSTRAINED METHOD
A. DIFFERENTIAL EVOLUTION
The traditional DE begins with randomly initializing a popu-
lationwithN n-dimensional vectors, i.e.,Xg

= {Exg1 , · · · , Ex
g
N },

where Exgi = [Exgi,1, · · · , Ex
g
i,n]

g is the ith target vector and g is the
generation number. Then, DE employs mutation, crossover
and selection operators sequentially and iteratively until a
termination condition is met [29], [41].
The mutation operator generates a mutant vector for every

target vector. The following three operators are used in this
article:
(1) DE/rand/2

Evgi = Ex
g
r1 + F(Ex

g
r2 − Ex

g
r3 )+ F(Ex

g
r4 − Ex

g
r5 ) (3)

(2) DE/current-to-rand/1

Evgi = Ex
g
i + K (Exgr1 − Ex

g
i )+ F(Ex

g
r2 − Ex

g
r3 ) (4)

(3) DE/current-to-best/1

Evgi = Ex
g
i + F(Ex

g
best − Ex

g
i )+ F(Ex

g
r1 − Ex

g
r2 ) (5)

where indices r1, r2, r3, r4 and r5 are mutually exclusive inte-
gers randomly generated within [1,N ] that are also different
from index i, Exbest is the current found best solution, F is the
scale factor lying between 0 and 1, andK is a random number
in [0,1].
The crossover operator generates a trial vector Eugi using the

target vector Exgi and mutant vector Evgi . The most frequently
used binomial crossover strategy is described by:

Eugi,j =

{
Evgi,j, if (rand ≤ CR) or (j = sn)

Exgi,j, otherwise.
(6)

where sn = rndint(1, n) is an arbitrary number in
{1, 2, · · · , n} and Eugi,j is the jth element of the ith trial vector.
Parameter CR is called the crossover rate and is a real number
between 0 and 1.
After generating Eugi , DE uses a greedy selection strategy to

form the target vector Exg+1i at generation g+ 1:

Ex t+1i =

{
Eugi , if f (Eugi ) ≤ f (Ex

g
i ),

Exgi , otherwise.
(7)
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B. THE EPSILON-CONSTRAINED METHOD
The ε constrained method is a commonly used CHT. The
main idea of this method is to treat some infeasible solutions
as feasible solutions during the early stage based on a prede-
fined comparison level ε controlled by Eq. (8). Meanwhile,
the value of ε is gradually decreased until the generation
number reaches Tc.

ε0 = φ(Exθ )

εg =

{
ε0(1− g/Tc)cp, 0 < g < Tc
0, g ≥ Tc

(8)

where ε0 is the initial comparison level, Exθ is the top θ vector
and θ = 0.2N , and cp ∈ [2, 10] is used to control the
decreasing speed.

Let f1(f2) and φ1(φ2) be the objective value and constraint
violation at solution Ex1(Ex2). Then, the ε-level comparison,
denoted as ≤ε, between Ex1 and Ex2 is given by:

(f1, φ1) ≤ε (f2, φ2)⇔


f1 ≤ f2, if φ1, φ2 ≤ ε
f1 ≤ f2, if φ1 = φ2
φ1 ≤ φ2, otherwise

(9)

It can be observed fromEq. (9) that for ε = 0,≤0 is equivalent
to the feasibility rule [17]; by contrast, for ε = ∞, ≤∞
becomes the pure comparisons between the objective values.

III. PROPOSED CETDE
A. BASIC IDEA OF CETDE
Many researchers have pointed out that the search algorithm
and constraint handling technique (CHT) are highly impor-
tant for solving COPs [9]–[11], [33], [42]. Thus, improve-
ment in the search ability and development of effective
CHTs are commonly considered when solving COPs. In our
CETDE, DE with the ensemble of mutation strategies and
parameters is adopted as the main search engine, and the
proposed two-level ε-constrained method is used as the main
CHT. Moreover, a diversity promotion scheme is used to
improve the population diversity. The framework of CETDE
is given in Algorithm 1. Next, we will describe these three
key components of CETDE in detail.

B. ENSEMBLE DIFFERENTIAL EVOLUTION FOR COPs
The effectiveness of DE in solving a given problem strongly
depends on the mutation strategy and its associated param-
eter values. While many mutation strategies are available,
none of them can achieve high overall performance for
all problems with different characteristics. Thus, DE with
multiple mutation strategies and parameters is popular. To
exploit the concept of multiple strategies, ensemble DE [40]
is applied to design the search algorithm when solving the
COPs. The main idea of ensemble DE is that three candi-
date pools, i.e., the mutation strategy pool (Mpool), scale
factor pool (Fpool) and crossover rate pool (CRpool), are
introduced. Generally, we expect that the elements presented
in the each pool should have distinct characteristics and

Algorithm 1 Pseudocode of CETDE Algorithm
1: Set the parameters: population size N , mutation strat-

egy pool Mpool, scale factor pool Fpool, crossover rate
pool CRpool, the maximize fitness evaluation number
MaxFES.

2: Set the generation number g = 1 and randomly gen-
erate a population with N vectors uniformly in the
search space, i.e. X t

= {Exg1 , · · · , Ex
g
N }, with Exgi =

[xgi,1, · · · , x
g
i,n]

T , i = 1, · · · ,N .
3: Evaluate the objective function f (Exgi ) and constraint vio-

lation φ(Exgi ), i = 1, 2, · · · ,N ; Let FES = N .
4: Calculate the initial ε level: ε0 = maxNk=1

(
φ(Exk )

)
.

5: Randomly select a mutation strategy Mg
i , a scale factor

Fgi and a crossover rate CRgi from the corresponding
candidate pool for Exgi , i = 1, · · · ,N .

6: while FES <MaxFES do
7: for i = 1 : N do
8: Generate the trial vector Eugi for Ex

g
i using the combi-

nation [Mg
i ,F

g
i ,CR

g
i ] associated with Exgi .

9: Evaluate the objective function f (Euti ) and constraint
violation φ(Euti ).

10: FES = FES + 1.
11: end for
12: for i = 1 : N do
13: Get the ranking value r(i) for ith vector.
14: Calculate the εgi comparison level for ith vector at

gth generation using Algorithm 2.
15: if

((
(f (Eugi ), φ(Eu

g
i )
)
<εgi

(
(f (Exgi ), φ(Ex

g
i )
))

then

16: Replace Exgi by Eugi .
17: end if
18: if f (Eugi ) < f (Exgi ) then
19: Store the combination [Mg

i ,F
g
i ,CR

g
i ] into the

successful combination pool.
20: end if
21: Randomly select Mg

i , F
g
i and CRgi from the corre-

sponding candidate pools or a combination from the
stored successful combination pool.

22: end for
23: Perform the diversity promotion scheme using Algo-

rithm 3.
24: g = g+ 1.
25: end while
26: Out put the best vector as the final result.

therefore can be effectively applied to solve different kinds
of problems.

In view of the above analysis and results obtained in previ-
ous studies, three mutation strategies named ‘‘DE/rand/2’’,
‘‘DE/current-to-rand/1’’ and ‘‘DE/current-to-best/1’’ in
Section II-A are used in Mpool. For the control parameter
pools, Fpool = [0.6 0.8 1.0] and CRpool = [0.1 0.4 1.0] are
selected to balance the exploration and exploitation abilities
of the search algorithm while solving particular problems
with different characteristics.
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During the evolution stage, little learning information is
available at the first stage, and much information can be
used at the later stage. Thus, we randomly select the muta-
tion strategy and parameters from the candidate pools for
every vector at g = 0. Suppose that the mutation strategy,
scale factor and crossover rate associated with vector Exgi are
Mg
i , F

g
i and CRgi , respectively. Based on the comparison

results during the selection process, we keep [Mg
i ,F

g
i ,CR

g
i ]

unchanged at generation g + 1 and store the combination of
[Mg

i ,F
g
i ,CR

g
i ] into a successful combination pool when Exgi

has a better objective value than that of the trial vector Eugi .
By contrast, when Eugi is worse than Exgi , the current Mg

i , F
g
i

and CRgi may be not suitable, and they can be re-selected.
In this case, we randomly select the mutation strategy and
parameters from the corresponding candidate pools or from
the successful combination pool with equal probability.

C. TWO-LEVEL EPSILON-CONSTRAINED METHOD
For the ordinary ε-constrained method, all of the vectors
in the main population share the same comparison level at
generation g. This configuration will introduce some more
infeasible vectors to promote the diversity of main popula-
tion, but it will be highly likely to reduce the convergence
speed and degenerate the current feasible optimal solution.
It will also most likely cause the search to become trapped
in the infeasible region so that no feasible solutions will be
obtained at the end of the search.

To overcome these drawbacks to some extent, we proposed
a new two-level ε method. The main idea of this method is
that two comparison levels, named the generation level and
population level here, are introduced. The generation level
functions as the ordinary ε method. For the population level,
we hope that different vectors have different comparison
levels. To achieve this goal, we first sort all the vector from
the best to worst according to the following criteria:

(1) Feasible vectors are better than infeasible ones;
(2) Ranking feasible vectors according to their function val-

ues;
(3) Ranking infeasible solutions based on their constraint

violations.

Based on the sorting values, we can obtain the ranking value
for each vector Exgi as r(i) = N − i, i = 1, 2, . . . ,N . And
then the combined level can be calculated using a calculation
model [33]. Many models are available, and the simplest
linear model is described by:

ε
g
i = ε

g r(i)− 1
N − 1

(10)

where εg is the generation level calculated by Eq. (8); εgi is
the combined level for ith vector at generation g; r(i) is the
ranking value for the ith vector Exgi in the main population. It
can be observed from Eq. (10) that each vector has its own
comparison level value and the superior ones have rigorous
levels while the inferior ones own some relatively relaxed
level. The main advantage of this idea is that the algorithm

can retain much better solutions with respect to both objec-
tive function and constrained violation around the superior
solutions. It will also make the search to focus on minimizing
objective function values for the inferior vectors. Thus the
combined two-level approach can improve the search algo-
rithm’s exploration and exploitation abilities.

To clearly illustrate the difference between the ordinary
and two-level ε method, Fig. 1 provides some additional
information for these twomethods withN = 10 and Tc = 20.
From the perspective of generation level, both ordinary and
two-level epsilon methods share the same parameter settings,
as shown in Eq. (8) and Fig. 1(a). However, from the per-
spective of population level, these two methods are different.
Supposing that the ith vector at generation g is εgi , for the
ordinary epsilon method, all vectors have equal ε values, i.e.
ε
g
1 = ε

g
2 = · · · ,= ε

g
N , at every generation, as illustrated

in Fig. 1(b). By contrary, the two-level epsilon method allow
each vector to have different ε values, i.e. εg1 6= ε

g
2 6=

· · · , 6= ε
g
N . More specifically, the best vector has lowest

ε value and the worst has the largest value, as illustrated
in Fig. 1(d). When both the population and generation levels
are considered, we get the combined level for ordinary and
two-level ε method, as illustrated in Fig. 1(c) and Fig. 1(e),
respectively. The main procedure of the two-level ε method
is given in Algorithm 2.

Algorithm 2 The Two-Level ε Method
Require: rank of the vector: r(i), the current generation

number g, inital epsilon value ε0.
Ensure: The epsilon value for vector Exgi , i.e. ε

g
i .

1: Calculate the epsilon generation level value εg at gth
generation using Eq. (8). ε

0
= maxNk=1

(
φ(Exk )

)
εg =

{
ε0(1− g/Tc)cp, 0 < g < Tc
0, g ≥ Tc

2: for i = 1 : N do
3: Calculate the epsilon population level εgi for ith vector
Exgi using Eq. (10).

ε
g
i = ε

g r(i)− 1
N − 1

4: end for

D. DIVERSITY PROMOTION SCHEME
For some COPs with extremely complicated objective func-
tion or constraints, the feasible region becomes highly non-
linear and always exhibits a multimodal property. Thus,
the search is highly likely to become trapped in the region
of a local minimum. Introduction of new solutions into the
population to enhance the population diversity is a common
approach to alleviate this problem. Many mechanisms can be
applied to achieve this goal, such as the mutation operator
[9], [21], restart scheme [38], and solution replacement [22]
techniques. To introduce new solutions, three issues must be
considered, i.e., when to introduce new solutions, which solu-
tion should be introduced and how to introduce the solutions.
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FIGURE 1. Comparison between the ordinary and two-level epsilon methods with N = 10 and Tc = 20.

Intuitively, if all of the vectors are located in a very small
search region, we can say that premature trapping occurs, and
we can introduce some new solutions to enhance the popu-
lation diversity. However, the measurement of the similarity
of all of the vectors in the main population is still a tough
problem. Here, a simple indicator, i.e., standard deviations
of both constraint violations and objective values, is used to
evaluate the similarity of a population. Based on the stan-
dard deviation values, some infeasible trial vectors with low
objective functions are conditionally maintained, and then,
a greedy selection strategy is applied to replace some target
vectors in the population. The diversity scheme used in this
article is given in Algorithm 3.

Algorithm 3 Diversity Promotion Scheme

1: if std
(
f (Ex) ≤ η

)
& std

(
φ(Ex) ≤ η

)
then

2: Set pm = pm + 0.001.
3: else
4: Set pm = 0.
5: end if
6: for i = 1 : N do
7: if

(
f (Eugi ) < minNk=1 f (Ex

g
k )
)
&
(
rand < pm

)
then

8: Replace Exgi by Eugi .
9: end if

10: end for

In Algorithm 3, threshold η is applied to decides whether
to use the diversity promotion scheme or not. If the η is
too big, the diversity promotion scheme will be frequently

applied and infeasible region with low objective value will
be located. On the contrary, if η is too small, the diversity
promotion scheme will be called rarely, which will lead
to the failure of increasing population diversity. In fact,
we have made some experiments with different values (i.e.
1× 10−4, 1× 10−5 and 1× 10−6), on problems from IEEE
CEC2006, and we did not notice any significant difference
in results. Therefore, we arbitrarily peak 1 × 10−4 in this
article.

IV. EXPERIMENTAL STUDY
A. TEST PROBLEMS AND EXPERIMENTAL
SETTINGS
To evaluate the performance of CETDE, two well-known
benchmark sets from IEEE CEC2006 and CEC2018 are
selected as the test instances. The first set contains 24 prob-
lems that involve 5 types of objective functions (linear,
nonlinear, polynomial, quadratic, and cubic), with differ-
ent numbers of design variables (between 2 and 24) and
4 kinds of constraints (linear inequalities, linear equalities,
nonlinear inequalities, and nonlinear equalities) with differ-
ent numbers of constraints (between 1 and 38). The second
set contains 28 problems with a wide variety of con-
straints and dimensions. The mathematical formulas and
properties of these functions can be found in [1] and [43],
respectively.

For all experiments, the positive tolerance value δ is set
to 0.0001 to transform the equality constraints into inequal-
ity constraints. For the ε-constrained method, Tc is set to
0.2Tmax, and cp is set to 6.
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TABLE 1. Error Values Obtained When FES = 5× 103, 5× 104 and 5× 105 for Instance G01–G06.

TABLE 2. Error Values Obtained When FES = 5× 103, 5× 104 and 5× 105 for Instance G07–G12.

B. GENERAL PERFORMANCE OF CETDE ON IEEE
CEC2006 PROBLEMS
In this section, the general performance of CETDE is tested
over 24 problems collected in CEC2006. For this experiment,
the population sizeN is set to 50 for all 24 test instances. First,
we execute CETDE 25 times and record the optimal function
error values, i.e., (f (x) − f (x∗)), after 5 × 103, 5 × 104 and
5 × 105 function evaluations, respectively. Then, we calcu-
late some statistical indicators in terms of ‘Best’, ‘Median’,
Worst, c, ‘v’, ‘Mean’ and standard deviation (’Std’), where
c is a sequence of three numbers denoting the number of
violated constraints for the median solution that are greater
than 1.0, between 0.01 to 1.0, and between 0.0001 to 0.1, v
is the mean value of all constraint violations for the median
solution, and the numbers in the parenthesis following ‘Best’,

‘Median’ and ‘Worst’ are the numbers of constraints unable
to satisfy the feasible condition for the best, median and worst
solutions, respectively.

The examination results presented in Tables 1, 2, 3 and 4
shows that the proposed CETDE approach can find feasible
solutions by using 5 × 103 FES for 9 instances(i.e. G02,
G04, G06, G07, G08, G09, G12, G19 and G24) for all
25 runs. As for other instances, CETDE obtains feasible
solutions by using 5 × 103 FES for 4 instances (i.e. G01,
G03, G11 and G16) and using 5 × 105 FES for 10 instances
(i.e. G05, G10, G12, G13, G14, G15, G17, G18, G21 and
G23). CETDE fails to finds any feasible solutions for G20 and
G22 because these two instances are extremely constrained
and no feasible solutions are reported so far. Furthermore,
CETDA finds very close solutions to the known optimal
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TABLE 3. Error Values Obtained When FES = 5× 103, 5× 104 and 5× 105 for Instance G13–G18.

TABLE 4. Error Values Obtained When FES = 5× 103, 5× 104 and 5× 105 for Instance G19–G24.

values for most instances by using 5× 105 FES except G02.
As for this problem, The worst function error is 5.44× 10−3.
However, the best and median values are 1.39 × 10−9 and
1.02 × 10−8, which means they are very close to the known
optimal value.

For this experiment, the optimal function error values after
5× 105 FES over 25 runs are summarized in terms of ‘Best’,
Median, Worst, Std, feasible rate, success rate and success
performance values in Tables 5 and 6. As shown in Tables 5
and 6, the obtained best values for all 24 instances by CETDE
on 25 independent runs are almost equal to the known optimal
value f (Ex∗), except G20 and G22. Since G20 and G22 are
extremely hard and no feasible solutions have been found so
far, we do not report the statistical values in these tables. It is
observed that CETDE obtained a 100% feasible rate on all

22 instances. For the success rate, CETDE achieved 100% on
21 out of 22 instances. In particular, CETDE obtained a 96%
success rate on G02.

The experimental results of the CETDE on 24 instances
from IEEE CEC2006 are shown in Table 6, where the known
optimal value and the achieved Best, Median, Worst, Mean
and Std values according to 25 independent runs are pre-
sented. It is found from the results presented in this table
that CETDE can find the optimal solutions in all 25 runs
consistently for all of the instances, except G02. Although
CETDE cannot consistently achieve the optimal value on
G02, the obtained values in 25 runs are quite close to the
known optimal value, as verified by the small Std value.
Thus, we deduce that the proposed CETDE is an effective
and robust method for COPs.
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TABLE 5. Number of FES to Achieve the Fixed Accuracy Level, Success Rate, Feasible Rate and Success Performance.

TABLE 6. The Experimental Results of CETDE on 24 Instances From IEEE CEC2006.

To provide additional information about the CETDE’s
search ability when solving instances from IEEE CEC2006,
we show the convergence graphs of the function error values,
i.e., lg(f (Ex) − f (Ex∗)), versus fitness evaluations (FES) at the
median run over 25 runs in Figs. 2-5. Since CETDE cannot
find any feasible solutions on G20 and G22 over 25 runs,
we do not show the convergence graphs of these two instances
in the figures. It is observed from these figures that for most
instances, the function error values decrease dramatically at
the early stage and evolve slowly at the later stage. This is
because the obtained values are quite close to the known

optimal value. Based on these figures, we conclude that the
proposed CETDE shows relatively fast convergence for most
instances.

C. COMPARISON TO OTHER STATE-OF-THE-ART COEAs
Table 7 gives the mean and standard deviation of objec-
tive values with respect to CETDE and nine competing
algorithms. Among all nine competitors, the first four are
DE-based methods (i.e., DPDE [31], rank-iMDDE [36], eDE
[44], and FRC-CEA [28]), the next four are non-DE-based
methods (i.e., AIS [45], CMPSOWV [46], I-ABC [47] and
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TABLE 7. Experimental Results of CETDE and 4 Other Algorithms on G01-G24 over 25 Independent Runs.

ITLBO [48]), and the last one is a PSO- and DE-based hybrid
method (i.e., DPD [49]). Since the best feasible optimal val-
ues are known, we compare the mean function values with the

best known optima. If the obtained mean function error value
is less than a predefined threshold, i.e., f (Ex)− f (Ex∗) ≤ 10−4,
we denote it using symbol ? in Table 7. Because the optimal
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FIGURE 2. Convergence graph for G01–G06.

FIGURE 3. Convergence graph for G07–G12.

FIGURE 4. Convergence graph for G13–G18.

feasible solutions of G20 and G22 are unknown, Table 7 does
not contain the statistical information on these two instances.
We note that the maximal function evaluation number for this
experiment is set to 2.4×105 and that theMean and Std values

FIGURE 5. Convergence graph for G19–G24.

provided by all competing algorithms are taken directly from
the corresponding references for fair comparison.

As shown in Table 7, the hybrid DPD method ranks first
on all ten algorithms because it obtained 20 successful runs
out of 22. The proposed CETDE and other three competing
algorithms (i.e., DPDE, eDE and FRC-CEA) rank second
because they only obtained 19 successful runs out of 22.
The non-DE-based algorithms (i.e., AIS, CMPSOWV, I-ABC
and ITLBO) perform slightly worse than the DE-based
approaches, obtaining 15, 16, 7 and 15 successful runs out
of 22, respectively. Based on the results of this experiment,
we conclude that CETDE either outperforms or performs
similarly to most competitors on the 22 test instances from
IEEE CEC2006.

Based on the Mean indicator summarized in Table 7,
the average ranks obtained by applying the Friedman pro-
cedure are shown in Fig. 6. We can find that CETDE ranks
fourth among all ten algorithms, which means that CETDE
performsworse thanDPDE, rank-iMDDE and FCR-CEA and
better than the rest six COEAs on IEEE CEC2006 problems.

D. COMPARISONS WITH COEAs ON IEEE
CEC2018 PROBLEMS
To further test the performance of CETDEwhen solvingmore
challenging instances, in this section 28 instances selected
from IEEECEC2018 are used as test problems. Four different
dimension levels, i.e. 10, 30, 50, 100, are applied in the
experiment. Here we set the population size N to 50, 50,
80 and 100 when the dimension level is 10, 30, 50 and 100,
respectively. Still 25 independent runs are carried out for
every problem at each dimension level. Table 8 summarized
the mean objective values, mean constraint violation values
and feasibility rate for 28 problems over 25 runs.

Similarly, we choose three algorithms, i.e. MAg-ES [50],
IUDE [51] and LSHADE [52], as the competitors because
these algorithms achieved very competitive results in the
IEEE CEC2018 competition. Because the optimal values of
these problems are not provided in [43], we compare the

VOLUME 8, 2020 213991



B. Xu, Z. Zhang: Constrained Optimization Based on Ensemble Differential Evolution and Two-Level-Based Epsilon Method

FIGURE 6. Average ranks obtained by applying the Friedman procedure.

TABLE 8. Mean Objective, Constraint Violation and Feasibility Rate Obtained by CETDE Over 25 Runs on 28 Instances With Four Dimension Levels Over
IEEE CEC2018 Problems.

performance of all algorithms based on the mean objective
values over 25 runs. We obtained the experimental results
regarding to competitors from their corresponding original
references. The multi-problem Friedman’s test is carried out
by the KEEL software [53] and the results are shown in Fig. 7.
It can be found that CETDE performs worse than IUDE
and better than MAg-ES at 4 different dimension levels.
When compared with LSHADE, CETDE performs worse at
D = 100 and performs better at other three dimension lev-
els. Overall, CETDE achieves very competitive results when
solving problems from IEEE CEC2018.

E. APPLICATION TO SOME REAL-WORLD
PROBLEMS
Experiments on artificial benchmarks have shown the com-
petitive performance of CETDE. To further validate the
performance of CETDE when solving real-world problems,
here five commonly used mechanical design problems are
selected to evaluate CETDE. These five real-world problems
are welded beam, tension/compression spring, speed reducer,
three-bar truss and pressure vessel design problems. For
each problem, we run CETDE 30 times and then compare
the ‘Best’, ‘Median’, ‘Worst’, ‘Mean’ and ‘Std’ values with
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FIGURE 7. Ranking of MAg-ES, IUDE, LSHADE and CETDE by Friedman test for IEEE CEC2018 problems with 10D, 30D, 50D and 100D.

TABLE 9. Comparison of CETDE With Other Seven COEAs on the Five Real-World Problems in Terms of the Best, Worst, Mean, Median and Standard
Deviation (SD) Values.

seven competing methods, i.e. DELC [54], COMDE [55],
iMDDE [36], CCiALF [56], NDE [57], MVDE [58] and
PSO-DE [59].

The statistical results for all problems are summarized
in Table 9. Please note that the final results of the competing
methods are directly taken from the corresponding references
and the symbol ‘-’ means the corresponding values are not
available. It can be found fromTable 9 that formost problems,

CETDE obtained very similar results with other competing
methods and CETDE is a potential method to deal with
constrained real-world problems.

V. ADDITIONAL DISCUSSION
In our CETDE, three main components contribute to
obtaining high performance when solving COPs, i.e., the
multistrategy-based DE variant, two-level epsilon method
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TABLE 10. Comparison of Ensemble DE Variant With Single Mutation Strategy-Based DE Variants in Terms of Median Function Error Value, Feasible Rate
and Success Rate.

TABLE 11. Comparison of Two-Level Epsilon-Based DE Variant With Feasibility Rule and Epsilon Method-Based DE Variants in Terms of Median Function
Error Value, Feasible Rate and Success Rate.

and diversity enhancement scheme. To study whether these
components are essential and whether they indeed can
improve the search ability of DE, in this section, we provide
some additional experiments to demonstrate the effectiveness
and rationality of these components in CETDE.

A. EFFECTIVENESS OF THE ENSEMBLE DE METHOD
The proposed CETDE contains three different mutation
operators when solving COPs, and here, we design three
additional methods to test the necessity of using multiple
strategies. To facilitate the experiments, we denote these three
methods as CDE-1, CDE-2 and CDE-3 as follows:

(1) CDE-1: DE using strategy ‘‘DE/rand/2’’;
(2) CDE-2: DE using strategy ‘‘DE/current-to-rand/1’’;
(3) CDE-3: DE using strategy ‘‘DE/current-to-best/1’’;

We also run each method 25 times and compute the
Mean, Std, feasible rate (FR) and success rate (SR) values

after 5× 105 FES. The experimental results are presented
in Table 10. It should be noted that all of themethods obtained
similar results on 11 instances (i.e., G01, G04, G05, G06,
G08, G09, G11, G12, G15, G16 and G24) and could not
find any feasible solutions on two instances (i.e., G20 and
G22), and we do not show the results in Table 10 for these
instances. An examination of the data presented in Table 10
shows that CETDE achieves better results than the other three
methods in terms of most indicators, particularly for FR and
SR. Based on this study, we conclude that constrained DE
with multiple strategies performs better than DEwith a single
mutation strategy.

B. EFFECTIVENESS OF THE TWO-LEVEL EPSILON
METHOD
In CETDE, the two-level ε method is proposed as a CHT
to solve COPs. To determine the effectiveness of this new
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TABLE 12. Experimental Results of Non-Diversity Promotion
Scheme Based Variant and on 22 Instances in Terms of Median Function
Error Value, Feasible Rate and Success Rate.

method, four CHTs, i.e., the feasibility rule [17], ordinary
ε method [18], an improved ε method [19] and adaptive ε
method [20], are combined with the ensemble DE variant to
solve COPs. To facilitate the study, we denote these variants
as CDE-4, CDE-5, CDE-6 and CDE-7 as follows:
(1) CDE-4: ensemble DE variant using feasibility rule;
(2) CDE-5: ensemble DE variant using ordinary ε method
(3) CDE-6: ensemble DE variant using improved ε method;
(4) CDE-7: ensemble DE variant using adaptive ε method.
All algorithms are carried out 25 times, and the Mean, Std,

FR and SR values after 5 × 105 FES are also summarized
in Table 11. Here we do not present the results on 18 instances
(i.e., G01, G04, G05, G07, G08, G09, G11, G12, G14, G15,
G16, G18, G19, G20, G22, G23 and G24) because all meth-
ods achieve similar results. It is found from Table 11 that
CETDE obtains slightly better/comparable results than those
achieved by other three variants, showing that the two-level
epsilon method is an effective CHT for solving COPs.

C. EFFECTIVENESS OF THE DIVERSITY PROMOTION
SCHEME
In CETDE, a diversity scheme is proposed to enhance the
population diversity. To experimentally validate this scheme’s
effectiveness, we implemented a new method by removing
this scheme. We denote this method as CDE-6 and compare
it with CETDE on 24 instances over 25 runs. Table 12 gives
the Mean, Std, FR and SR values after 5× 105 FES. We note
that CDE-8 and CETDE obtained different results on 3 out
of 24 instances. Thus, only these three instances, i.e., G02,
G13 and G17, are summarized. It is found that CETDE
performs better than CDE-6 in term ofmost indicators, partic-
ularly for the SR values. Thus, the proposed diversity scheme
can improve the search ability of DE.

VI. CONCLUSION
The performance of a COEA strongly depends on the search
algorithm and CHT. In this article, we proposed a newCOEA,
denoted as CETDE, to solve COPs by combining an ensem-
ble DE variant and an improved two-level epsilon method.
In CETDE, both the control parameters and mutation strate-
gies with various characteristics are introduced into the DE
algorithm. All the parameters and strategies coexist through-
out the search process and compete to generate new solutions.
We also introduced a generation and a population compar-
ison level into the original epsilon method to retain more

promising solutions without degrading the solution quality.
Moreover, a diversity scheme is proposed to increase the
population diversity when the search becomes trapped in a
local domain.

The proposed CETDE method is compared with some
state-of-the-art COEAs on two sets of artificial benchmarks
and 5 mechanical engineering design problems. Extensive
and systematic studies show that the proposed CETDE
achieved better or comparable results on these selected prob-
lems. The effectiveness and benefits of the ensemble DE
variant, two-level epsilon method and diversity scheme are
experimentally validated by some additional studies. The
experimental results demonstrate the effectiveness of these
components for solving COPs.

In the future, we would like to further enhance the search
ability of CETDE for more complex COPs. Another inter-
esting research direction would be to extend our DE variant,
two-level epsilon method and diversity scheme to constrained
multiobjective optimization problems.
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