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ABSTRACT The traffic state of the bus line is the information basis for the bus company tomake bus dispatch
and travel time prediction. However, the bus GPS data is severely sparse in time and space coverage of traffic
state, due to the long data sampling time interval and low bus departure frequency. Because of ignoring
the severe sparseness of the bus data, the existing traffic state methods cannot reconstruct the traffic state
accurately. To deal with this problem, a new traffic state estimation method for the bus line, named GAN_BS,
is proposed. First, an improved generative adversarial network (GAN-I) is used to generate reasonable bus
data. GAN-I aims to find the probability space of the data distribution under sparse sampling. And to reduce
the size of the latent space of data, the traffic knowledge is introduced as prior information layers. Then,
a traffic adaptive bilateral smoothing method (BS) is used to map discrete bus data into the continuous
traffic state. The BS convolves data with a bilateral kernel, which multiplies the local action kernel with a
mask of traffic state similarity. Therefore, the BS can maintain transitions between different traffic patterns
while separating noise from traffic state. Finally, a set of numerical experiments are performed on the real bus
data set in Changchun. The results show that the GAN-I can accurately reproduce the traffic state when the
missing rate of data exceeds 50%. And the BS can eliminate the noise better compared with other methods.

INDEX TERMS Traffic state estimation, generative adversarial network, bus line, bilateral smoothing.

I. INTRODUCTION
Reasonable real-time bus dispatch and reliable bus travel
time prediction are important means to improve the passenger
travel experience. And the traffic state of bus lines is the
calculation basis for these tasks. However, due to the low
frequency of bus departure and data upload, the sampling
rate of bus GPS data is lower than the social vehicles. The
traffic state sampled from the bus data will be missing in a
large area. It is difficult to infer the real traffic state from the
incomplete bus data. Estimating the traffic state of bus lines
is a challenging task for bus companies.

In general, the bus departure interval is relatively large
(15 minutes in normal situations) and the GPS data sampling
interval is generally about 30 seconds. This makes the miss-
ing rate of bus data in the time and space more than 50%.
Using the extremely sparse data to estimate the traffic state is
more uncertain than using the data with a low missing rate.
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As shown in Fig. 1(a), the social vehicles (driving vehicles
other than buses, such as private cars, taxis, etc.) on the road
are denser than buses. They can provide more samples than
buses can. It is easy to reconstruct the traffic state when the
traffic state is effectively sampled by a valid number of points.
However, as shown in Fig. 1(b), there are only two buses on
the road. The buses have sampled two traffic state patterns
respectively. The distance between the sampling locations is
large. It is difficult to infer the transition position of two traffic
patterns. The goal of this paper is to generate reasonable bus
data at the missing location as shown by the dotted boxes in
Fig. 1(c). Then, the continuous and smooth traffic state can
be reconstructed based on all the bus data shown in Fig. 1(c).

Many methods have been presented to estimate the traffic
state (e.g. Kriging [1], ASM [2], GAN [3], etc.). One of the
popular filtering methods is ASM, which can eliminate the
noise in the data and reconstruct the smooth traffic state.
However, ASM requires complete data to compute. Other-
wise, it has to borrow irrelevant data from remote locations.
Therefore, we need to impute the sparse bus data in advance.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 216127

https://orcid.org/0000-0002-3592-2166
https://orcid.org/0000-0002-7596-5064
https://orcid.org/0000-0001-5497-1206
https://orcid.org/0000-0001-5636-1364
https://orcid.org/0000-0001-6479-7870
https://orcid.org/0000-0001-5985-3970


X. Song et al.: Traffic State Estimation of Bus Line With Sparse Sampled Data

FIGURE 1. Schematic diagram of the traffic state estimation under
different frequency sampling.

There are several statistical learningmethods that have shown
a good ability to deal with low-frequency missing data, such
as KNN [4], tensor decomposition [5], LSTM [6]. But when
large areas of data aremissing, the size of the possibility space
of the unobserved location is large. These methods cannot
find the optimal solution because of their limited general-
ization ability. Recently, GAN [7]–[9] has been widely used
in the traffic imputation field. Due to the introduction of the
discriminator, GAN has an outstanding ability to generate the
data as real as possible. However, to the best of the authors’
knowledge, GAN-based studies that considered the high
missing rate of bus data are very limited. Generating the
complete bus data for traffic state estimation is still a problem
to be solved.

To deal with the problem, a new traffic state estimating
method for the bus line, named GAN_BS, is proposed in
this paper. This model includes two parts: data generation
and traffic state reconstruction. In the data generation part,
a generative adversarial network is used to generate dense
data under severely sparse sampling. This network learns the
traffic states probability distribution to infer the real data.
To reduce the uncertainty of distribution fitting, a conditional
reasoning layer packed with traffic knowledge is introduced.
In the traffic state reconstruction part, a bilateral smoothing
method is proposed to convert discrete bus data points into
the traffic state of the bus line. This method employs the
traffic-adaptive convolution to eliminate the noise of the bus
data via a localized kernel. To prevent the incorrect estimation

of the edge of the traffic pattern, the smoothing method
introduces an additional kernel, which limits the action scope
of the localized kernel when the traffic state changes.

The main contributions of this paper can be summarized as
follows:

1) An improved generative adversarial network is pro-
posed to impute the sparse bus GPS data. This deep
learning network can learn the spatial-temporal prob-
ability distribution of traffic state from historical data.
And the prior knowledge of traffic flow is introduced
to make the generated data of the network can conform
to the actual traffic state. The valid data generated by
the model can provide a data basis for traffic state
estimation.

2) A traffic bilateral adaptive smoothing method is intro-
duced to reconstruct the continuous traffic state from
discrete bus data. This method considers the influence
of intersections and bus stops on the traffic state and
designs a bilateral kernel. This kernel can not only
eliminate noise caused by driving characteristics bus
also retains the edge of traffic state switching. The
model can effectively express the traffic state of the bus
line and provide information for bus management.

3) Several popular traffic state estimation methods are
evaluated on real-world data with a missing rate of
more than 50%. The comparison results provide a com-
prehensive reference for related research.

4) Although there are many traffic state estimation studies
based on multi-source data, data sharing has not been
completely realized in actual operations. GAN_BS can
directly serve bus companies that only have a single
data source.

The rest of this paper is organized as follows. Section II
reviews the studies on traffic state estimation. Section III
presents a traffic state estimation method for bus lines
under the condition that the bus GPS data are pathologi-
cally sparse sampled. Section IV discusses the experimental
results. Finally, Section V concludes the paper.

II. LITERATURE REVIEW
As discussed earlier, traffic state estimation is vital for both
traffic managers and passengers. And to estimate the traffic
state of bus lines, firstly, we need to generate dense sampling
points from sparse data. Then the continuous traffic state is
restored from discrete data points. Therefore, this part will
discuss related research from two parts: traffic state estima-
tion and missing data imputation.

A. TRAFFIC STATE ESTIMATION
There are many studies to estimate the traffic state of the bus
line based on different state metrics (such as speed, travel
time, etc.). From the perspective of model types, these meth-
ods can be divided into two categories: regression methods
and filtering methods.

The regression methods [10], [11] mainly estimate the traf-
fic state of the bus line by fitting the functional relationship
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between some traffic variables and the state variables. For
example, Yu et al. [12] proposed the relevance vectormachine
to estimate the probabilistic bus headway by considering
the travel time of several vehicles ahead and other factors.
Yu et al. [13] used the support vector machine to learn the
relationship between the estimated bus traffic state and the
travel time of the former bus. These methods assume that the
traffic state detected by the former bus is similar to the current
one. This assumption is real in the case of data-intensive
sampling. But it may lead to wrong estimates when the bus
departure interval is large.

The filtering methods directly process the sampled traffic
state data into continuous traffic state data by considering
traffic dynamics. For example, Chen et al. [14] proposed
a self-adaptive exponential smoothing method based on the
Kalman Filter to predict the link bus travel time. And some
studies [15]–[17] improved the accuracy of the Kalman Filter
by introducing traffic flow theory. For example, Duert and
Yuan [18] derived the traffic control law from the Lighthill-
Whitham-Richards model to estimate the traffic state on the
road network. These methods estimated the traffic param-
eters along with the trend of the time series of the traffic
state. Therefore, they are often used when the series has a
single point missing. Some researchers have extended the
traffic state estimation to consider the spatial-temporal cor-
relation, which improves the robustness of the methods to
the lack of more data. One of the popular methods is the
adaptive smoothing method (ASM) [2]. It is based on the
traffic phenomenon that the free flowwave propagates down-
stream and the congested flow wave propagates upstream.
The kernel function of this filtering method [19] is set to
capture the spatial-temporal range of traffic patterns. And
F. Rampe et al. [20] extended the method to the field of traf-
fic state estimation using floating car data and named this
method ars. The ARS is local low-pass filtering, which can
eliminate the noise in the data. But when the data in the
local computing domain is insufficient, ARS needs to borrow
data with less correlation in the distance to estimate. Overall,
the existing methods for traffic state estimation are based on
data with a low missing rate. For highly sparse data (such
as bus GPS data), it is inappropriate to use existing methods
estimate the traffic state.

B. MISSING DATA IMPUTATION
Researchers have proposed various methods for missing data
imputation and we discuss these methods from two parts:
prediction methods and interpolation methods.

The prediction methods are usually filled in the missing
data according to the relationship of the time series or spatial
series of traffic state. Historical average [21], ARIMA [33],
LSTM [6], [23]–[25], and other methods have been proved
to be effective in predicting the data based on the developing
trend of traffic state. And the trend of traffic state is analyzed
by using the observations from the previous steps. However,
there is often no observed samples in the bus line because
the interval of bus departure is large. The bus data may be

missing in large blocks. Although deep learning has shown
great performance in dealing with the problem of missing
data at stationary points for fixed detectors, these methods
have poor resistance to the sparseness of bus data.

The interpolation methods regress the model of traffic
state relationships by analyzing the spatial-temporal distribu-
tion of the traffic. There are several common interpolation
methods for estimating traffic state such as Probabilis-
tic principal component analysis (PPCA) [26], [27], ten-
sor decomposition [28]–[31], Convolutional neural network
(CNN) [32], [33], auto-encoders [34]–[36], Fuzzy neural net-
work [37], Random forest [38]. Li et al. [26] employed the
PPCA to estimate the traffic state by extracting the periodic
spatial-temporal dependencies in traffic flow. Chen et al. [5]
used the Bayesian probabilistic matrix factorization to derive
missing data based on the similarity of spatial-temporal traffic
states. Li et al. [36] used two parallel auto-encoders to capture
the spatial-temporal dependencies of the traffic state. These
methods can deal with the problem of lost data with a low
missing rate. This problem can be viewed from a probabilistic
perspective. And these deep learning methods calculate the
speed vt at the time t by calculating the conditional proba-
bility p

(
vx,t |vm

)
, where vm is the neighboring point in time

and space. These methods select the most likely value in the
probability space composed of all vn and vm. When the num-
ber of observations in the field is too small, the uncertainty
of the data increases. It becomes harder to estimate missing
data accurately.

Recently, generative adversarial networks (GAN) have
gained increasing interest in traffic imputation because of
its excellent capability in generating data [3], [7], [8], [39].
GAN can calculate the joint distribution p(vx,t , vm) based
on sampling points of surrounding locations without an
explicit sequence. And the introduction of the discriminator
has improved the network’s ability to generate data when
the data are severely sparse. For example, Xu et al. [9] used
DEEPWALK technology to embed the road network structure
in GAN and carried out the traffic state estimation based
on the correlation between links. Liang et al. [40] used the
LSTM as the network layer of GAN to capture the correlation
of traffic state in space and time to estimate the traffic flow
and density. However, GAN cannot eliminate the interference
of noise in the data and directly give a continuous traffic state.

As mentioned above, the bus data are sparser than social
vehicle data. Most of the existing methods are difficult to
estimate the traffic state when the data is missing in blocks.
Some advanced methods, such as GAN, can generate data
under sparse sampling, but it is difficult to generate the
continuous traffic state at the same time. To solve the above
problem, a GAN_BS model, which can reconstruct a smooth
and accurate traffic state, is proposed in this study.

III. METHOD
This section aims to propose a traffic state estimate method
for the bus line, which uses the sparse and noisy busGPS data.
To achieve this task, first, the generative adversarial network
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FIGURE 2. Representation of the bus data imputation model using a generative adversarial network. (a)Schematic of the working
principle of GAN-I. (b) Network structure of GAN-I.

is introduced to impute the missing bus data. Then, a bilateral
smoothing method is proposed to construct the continuous
traffic state from the discrete bus data.

A. THE BUS DATA GENERATION BASED ON THE
GENERATIVE ADVERSARIAL NETWORK
1) GRID PROCESSING OF BUS LINES
To make the calculation easy, the bus line is gridded, and the
corresponding traffic state is recorded as a two-dimensional
matrix in this paper. The trajectory of a bus can be written
as a function xbus(t), and the bus speed v(t) is the deriva-
tive of x. We assume that the bus starts from point (x, t)
and travels through a road section of length 1x in the time
interval 1t . And the traffic state in the space-time domain
[x +1x, t +1t] has been sampled as the bus speed v(t).
Considering that the space domain occupied by a bus includes
the length of the bus and the saturation space headway, the
sum xc of these two factors is used to modify the space-
time domain of traffic state collection. Therefore, the Mask
function M marks whether the traffic state information is
observed at point (x, t) and can be expressed as

M (x, t) =

{
1 if xbus(t) ≤ x ≤ xbus(t)+xc
0 otherwise

(1)

As shown in Fig. 2, the input of GAN includes the mask
matrix, noise matrix, and speed matrix. Accordingly, when
the M (x, t) is 1, the speed ṽ(x, t) is equal to the average bus
speed, and when the M (x, t) is 0, the ṽ(x, t) uses the noise

z(x, t) sampled from a specific distribution p (z) to fill in.

ṽ (x, t) =

{
v(x, t) M (x, t) = 1
z(x, t) M (x, t) = 0

(2)

2) GENERATIVE ADVERSARIAL NETWORK WITH TRAFFIC
PRIOR KNOWLEDGE
Due to the large interval of bus departure and GPS data
collection, the missing rate of bus data is high. It requires
that the data imputation algorithm can fit the distribution
of traffic state without dense observations. In this part,
an improved generative adversarial network (GAN-I) is pro-
posed to impute the bus data with a high missing rate.
Fig. 2 shows the overall network architecture included two
parts, a generator G, and a discriminator D. The generator G
attempts to estimate the bus data v̂ that match the real traffic
state as much as possible. And the discriminator D aims to
find the fake ones of v̂ by estimating the Mask M̂ . Writing
M̂ = D

(
v̂
)
, the objective of GAN is the minimax problem

given by

min
G

max
D

E
[
M log

(
M̂
)
+ (1−M) log

(
1− M̂

)]
(3)

The process of solving (3) is similar to the game betweenG
and D. The D is optimized to distinguish the estimated data
by maxing the (3). The G accepts feedback from the D to
improve its generation ability. And the performance of G is
measured by (3).When the result of (3) is reduced, it indicates
that the generated data is closer to truth and confuses the D.
This interaction makes the generation of GAN is better than
ordinary deep learning.

216130 VOLUME 8, 2020



X. Song et al.: Traffic State Estimation of Bus Line With Sparse Sampled Data

As shown in Fig. 2, the generator G regards the bus data
as the sampling points of the traffic state spatial-temporal
distribution P (v, ṽ). Our model is to learn the continuous
traffic state distribution from these sparse sampling points to
produce the matrix v̂. Before learning the patterns of the traf-
fic state, we introduce three prior knowledge of traffic flow to
guide the network to impute the bus data. In this section, these
traffic laws are packaged as a conditional reasoning layer

v̂ = f (ṽ, k) (4)

where ṽ is the input data, k is the prior knowledge set of
traffic, v̂ is the reasoning output and f is the default activation
function.

The application of three traffic prior information in GAN-I
is shown below.

Prior I: There are fewer cars on the road in the early
morning or late at night. But it is easy to know that the traffic
state is in a free flow state. This condition can be expressed as

f (ṽ(x, t)) =

{
vfree t ≤ tmor or t ≥ teve
ṽ tmor ≤ t ≤ teve

(5)

where t is the moment of the traffic state to be estimated,
tmor and teve are the critical values triggered by the Prior I,
respectively representing the end time and the start time of
the free state from midnight to early morning, ṽ is the speed
to be estimated later and vfree is the speed in free flow.
Prior II: The gradually changing traffic state on urban

roads may be interrupted at the intersections and the bus stops
due to signal control and passenger boarding and alighting,
respectively. We regard the road intersections and the bus
stops as the demarcation points of the traffic state and divide
the bus line into several links. A step function S is used as
a coefficient of activation function in the network. The S
controls each neuron as a valve to ensure that each neuron
only processes the link data of its corresponding position.
And the S can be expressed as

S (x) =

{
1 xpre ≤ x ≤ xnext
0 x ≥ xnext or x ≤ xpre

(6)

where x is the position of the traffic state to be estimated,
where xpre and xnext are the locations of the upstream inter-
section (or bus stop) and the downstream intersection (or bus
stop) closest to x.
Prior III: Some areas adopt bus signal priority control

to reduce bus delays at intersections. We assume that the
traffic of the bus line under the signal absolute priority control
keeps flowing. Therefore, a binary variable F is used to mark
whether the intersection performs signal absolute priority.
When F = 1(there is bus priority at the intersection), the traf-
fic state within l meters upstream of the intersection can be
imputed in advance. And the traffic state can be estimated as

f (ṽ(x, t)) =


vfree k ≤ kcre

1
k

k∑
i=1

ṽi k > kcre
(7)

where k is the number of sampled points in the space-time
domain [x − l, x]meters × [t − h, t]minutes and the kcre is
the confidence value of the k .
Data other than the above cases need to be imputed

by the generator. To learn the traffic state spatial-temporal
distribution, we reshape the two-dimensional input matrix
into one-dimensional as GAN-I’s input. And the shared
multi-layer perceptron (MLP) is used in the generator to find
the traffic correlations in space and time. The form of this
hidden layer is

v̂ = fsig (wṽ+ b) (8)

where w and b are weights and biases, the fsig is the activation
function which is considered as the logistic sigmoid function
in this paper.

fsig(ṽ) =
1

1+ e−ṽ
(9)

Then, a batch norm layer is used to normalize the result
v̂ and improve the imputed accuracy of the algorithm. The
normalized speed can be calculated as

vnorm =
v̂− µ√
σ 2
norm + ε

γ + β (10)

where σnorm and µ are the standard deviation and average
of v̂, respectively. ε is a hyper-parameter. γ and β are the
parameters to be learned.

The generator consists of several hidden layers mentioned
above. The output of each layer is utilized as the input of the
next layer. And the last layer maps the traffic feature extracted
by the previous layers to the final imputed bus speed v̂.
As in the GAN framework, discriminator D is used as

an adversary to train generator. As an independent network,
the discriminator is trained separately. As shown in Fig. 2,
the discriminator receives the imputation results of the gen-
erator and estimates the Mask M̂ . Under the supervision
of the real Mask M , the discriminator learns the ability to
distinguish the observed and estimated data. And the discrim-
ination results will in turn prompt the generator to optimize
the generation performance in the next step. To ensure that
the discriminator works well, the discriminator first marks the
positions imputed by the prior conditions. Then the discrim-
inator uses MLPs to find other estimated positions.

3) PARAMETER OPTIMIZATION
The objective function in GAN includes generator loss and
discriminator loss. The generator loss includes the loss for
the reconstructed data and the imputed data according to
different goals. We use the mean squared error (MSE) to
make the reconstructed data as close to the observed data
as possible. And the imputation loss receives feedback from
the discriminator to ensure that the imputed data can fool the
discriminator. Overall, we train the generator end-to-end by
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minimizing the LG

LG = −
h∑
i=1

(1− mi) log
(
m̂i
)
+ α

h∑
i=1

∥∥vi − v̂i∥∥2 (11)

where vi and v̂i represent the observed speed value and esti-
mated one, h is the total number of the training data, α is
a hyper-parameter, mi and m̂i represent the observed mask
value and estimated one.

The discriminator identifies whether the data in the matrix
output by the generator is true or false as a classification
problem. Therefore, the discriminator loss LD is defined as
the cross-entropy loss between the estimated mask and the
real mask

LD =
h∑
i=1

mi log
(
m̂i
)
+ (1− mi) log

(
1− m̂i

)
(12)

In GAN, the generator and discriminator are optimized
alternatively. Since the learning rate of the commonly used
stochastic gradient descent (SGD) method is fixed, using
SGD may fall into a local sub-optimal solution. Recently,
many studies [41]–[43] have used Adam to find optimal
solutions and verified its effectiveness through numerical
examples. Therefore, we use Adam [44] instead of SGD to
optimize the network. The training process is demonstrated in
Algorithm 1. During the testing, GAN generates the bus data
covering the entire bus line when the bus uploads real-time
detection data.

B. THE TRAFFIC STATE RECONSTRUCTION BASED ON THE
ADAPTIVE BILATERAL SMOOTHING METHOD
In this part, we want to average the speed of several sam-
ple buses and get the smoothing traffic state at location x0.
As shown in Fig. 3, there is a set of buses that depart at
a specified time interval. These buses collect the speed of
location x0 at different times, and the obtained speed curve
of the traffic state is fluctuating. However, the final traffic
state estimated result is supposed to vary gradually (like the
dotted line in Fig. 3 (b)). Because the GAN used above cannot
guarantee that the generated traffic state is smooth, a traffic
state smoothing method is needed to eliminate noise and
reconstruct the traffic state of the bus line accurately.

The traffic adaptive bilateral smoothing method aims
to reconstruct the smooth traffic state by performing a
spatial-temporal collaborative filter on sparse and noisy traf-
fic data. It employs the convolution to derive a continuous
speed field via a localized kernel. This smoothing process is
expressed as

V (x, t) =

∫ L
0

∫ T
0 φ (x − xi, t − ti) v (xi, ti) dxdt∫ L
0

∫ T
0 φ (x − xi, t − ti) dxdt

(13)

where the kernel φ (x, t) determines the correlation of the
traffic state in time and space. And the kernel function
designed in this paper takes into account the locality and
similarity of the traffic state.

Algorithm 1 GAN Training Algorithm
Input: Incomplete speed matrix v, mask A/, noise z.
Output: Complete bus speed matrix V
1: Initialize θ,w
2: While θ,w has not converged do
3: Select k samples (v,m, z) from the {(V ,M ,Z )}
4: (1) Discriminator optimization
5: for k steps do
6: ṽ = v× m+ z× (1− m)
7: v̂ = G(ṽ)
8: Update discriminator using Adam optimizer:

9: θ = θ +∇θ
1
k

k∑
i=1

L(i)D
(
m(i),D

(
v̂(i)
))

10: end for
11: (2) Generator optimization
12: for k steps do
13: ṽ = v× m+ z× (1− m)
14: Update generator using Adam optimizer:

15: w = w+∇w 1
k

k∑
i=1

L(i)G
(
v(i),G

(
ṽ(i)
))

16: end for
17: End while

FIGURE 3. Schematic diagram of spatial-temporal superposition of
multiple bus data. Picture (a) shows the trajectory of different buses.
In the picture (b), the color lines represent the speeds collected by
different buses. The dotted line represents the desired smoothly
changing speed curve.

The locality of the traffic state means that the closer
the distance in the time and space, the more similar the
traffic state. And a bivariate Gaussian function is selected
as the local smoothing kernel in this paper, which is sup-
posed to increase when the distance between target location
(x, t) and neighboring location (xi, ti) decreases. To adapt
the traffic dynamics, the BS skews this isotropic kernel
by introducing the characteristic wave speed parameters.
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FIGURE 4. The kernel of traffic adaptive bilateral smoothing method.

The characteristic wave speed means the slope of the line
between the two traffic state points in the flow-density curve
and represents the propagation speed of the traffic state. The
inclined Gaussian kernel is formed as the second term on
the right side of (14) and shown as the kernel of domain
locality in Fig. 4. The action scope of the inclined kernel can
approximate the spatial-temporal propagation plane of the
traffic state.

It is worth noting that the local smoothing’s assumption
of slow variations in traffic state may fail at edges of traffic
pattern transition. There is not a clear separation of different
traffic states in the results of local smoothing, and some
features such as the boundaries of the neighboring free flow
wave may shrink. Therefore, the traffic state similarity is
also considered in the kernel to maintain the dividing line
between different traffic state patterns. The idea of the traf-
fic state smoothing method based on the similarity is to
aggregate the bus speed data with weights that decline with
dissimilarity in a traffic state. The similarity kernel is formed
as the third term on the right side of (14) and shown as
the kernel of traffic similarity in Fig. 4. However, domain
locality is still a necessary concept. Only using the state
similarity to smooth the traffic state make no sense because
the speed far away from point (x, t) should not affect the
value at (x, t). The appropriate solution is to combine the
traffic patterns similarity and domain locality. In the flat area
of the traffic state where the speed changes a few, the cor-
responding weight of the traffic state similarity tends to be
the same. In this situation, the domain weight plays a major
role, which is equivalent to perform the Gaussian filtering
in this area. In the edge area of the traffic pattern, the speed
changes rapidly. The difference in the similarity kernel in this
area becomes larger. Therefore, the edge information can be
maintained.

The typical switching edges of traffic state patterns in the
bus lines are the intersections and bus stops that the bus lines
pass. And the impact of this road structure on the traffic state

FIGURE 5. Map of test bus lines and their shared bus lines.

can be used as prior knowledge to be introduced into the
smoothing method. Therefore, the step function (14) shown
in Fig. 4 is introduced to limit the aggregated range of bus
speed not to exceed the range of the homogeneous state.
Finally, the bilateral kernel is formed as

φb (x − xi, t − ti, v− vi, x)

= S(x) exp

(
−
‖x − xi‖2

2σ 2
x
−
‖t − ti‖2

2σ 2
t

)
exp(−

‖v− vi‖2

2σ 2
s

)

(14)

where the constants σx and σt decide the width of the
spatial-temporal action scope of the kernel, the constants σs
decide the range scope of speed difference.

The traffic state is simply divided into two patterns: the free
flow Vfree and congested flow Vcong. And the traffic state in
any patterns can be seen as a superposition of two speed fields
via a convex combination as follows:

V (x, t) = w (x, t)Vcong (x, t)+ [1− w(x, t)]Vfree (x, t)

(15)

where weight w (x, t) dynamically controls the superposition
ratio of the two speed fields according to the detection infor-
mation. In this paper, w (x, t) is a smooth sigmoid function
which can ensure that w (x, t) is 1 in the congested state and
w (x, t) is 0 in the free flow state.

w(Vfree,Vcong) =
1
2

[
1+ tanh

(
Vc − min(Vfree,Vcong)

1V

)]
(16)

where Vc is threshold between the free flow and congested
flow and 1V is the transition width.
The speed fields in two traffic patterns with corresponding

characteristic wave speed are constructed by

Vfree (x, t)

=

∫ L
0

∫ T
0 φb

(
x − xi, t − ti −

x−xi
cfree

, v− vi
)
v(xi, ti)dxdt∫ L

0

∫ T
0 φb

(
x − xi, t − ti −

x−xi
cfree

, v− vi
)
dxdt

(17)
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TABLE 1. Information about the bus lines used for testing.

Vcong (x, t)

=

∫ L
0

∫ T
0 φb

(
x − xi, t − ti −

x−xi
ccong

, v− vi
)
v (xi, ti)dxdt∫ L

0

∫ T
0 φb

(
x − xi, t − ti −

x−xi
ccong

, v− vi
)
dxdt

(18)

where cfree and ccong are the characteristic wave speed in
free-flow traffic and congested traffic, respectively.

IV. EXPERIMENTS AND RESULTS
In this section, we discuss the performance of GAN_BS.
And we use the real-world bus GPS data to compare the
accuracy of several estimate models under the different traf-
fic state scenarios. This section contains four parts: dataset
introduction, evaluation index for the performance of traffic
state estimation, comparison methods parameter setting, and
methods performance analysis.

A. TEST DATA SET
The numerical examples perform on the bus GPS data col-
lected from the Public Transport Corporation in Changchun,
China. To verify the reliability of GAN_BS for different road
environments, we used two bus routes, Line 6 (the exclusive
bus lane) and Line 13 (the non-exclusive bus lane). The data
missing rate of the two lines is about 50%. So they can
be used to test the model’s ability to process data sparsity.
Moreover, these two lines are the main road of Changchun
City, and their traffic conditions are changeable. So they can
be used to verify the adaptability of the model to different
traffic patterns. At the same time, we also use GPS data
from other lines that overlap with the selected lines. The
experiment uses two sections taken from two bus lines. And
the detailed information of the sections is shown in Table 1.
The geographies of the lines are shown in Fig. 5.

These GPS trajectory data were collected from October 6,
2017, to January 16, 2018, with an updating frequency
of 30 seconds from 06:30 to 19:00. It is worth noting that
how to set the bus GPS data aggregation scale in time and
space. If the aggregation scale is too large, there is a risk
of averaging different traffic states. But, if the scale is too
small, it will increase the computational burden. By referenc-
ing research [2] and [29], these GPS data are aggregated as
spatial-temporal matrix data with a 5-minutes time interval
and a 20-meters space interval. We take the data from the
first 70 days as our training set and the rest as the test set.
In this case, the missing data rate of the prepared dataset is

around 50%. To verify the ability of GAN_BS to process
severely sparse data, we constructed a test set by randomly
removing 20% of the original data. The performance of the
model can be evaluated by comparing the removed data and
estimated data of the corresponding location.

B. MODEL SETTINGS AND INDEX OF PERFORMANCE
The model set contains two parts: the parameters of the GAN
and the parameters of the BS. And the two test data sets use
the same parameters of these two parts.

The parameters of the GAN are set as follows: the gen-
erator and the discriminator both have five hidden layers.
These hidden layers are the fully connected layers and use
the sigmoid function as their activation function. The number
of hidden units in the network layer will affect the accuracy
of estimation. We calculated the error of the estimation result
when the number of units in each layer ranges from 250 to 900
(step size is 50). Finally, we found that the performance
of GAN-I is best when the numbers of units are taken as
750,500,300,750, space number× time number, respectively.

The parameters of the bilateral smoothing method are also
determined by the traversal method. They are set as follows:
the characteristic propagation velocity under free traffic flow
cfree is +30km/h and the characteristic propagation velocity
under congestion traffic flow ccong is -15km/h. These two
parameters are set for reference from the literature [2], [19].
The parameters of the action scope of the kernel σx , σt , σs are
500 meters, 10 minutes, 10 km/h, respectively.

To evaluate the effectiveness of the proposedmodel, we use
three performance measures, which are the mean absolute
error (MAE), the normalized mean square error (NMSE), and
the root mean square error (RMSE). To measure the error
of the overall traffic state estimation, MAE and RMSE are
usually used in similar studies. However, these two indicators
cannot reflect the ratio of the error to the observed value.
We have introduced a relative error indicator, NMSE, which
canmeasure the estimated performance under different traffic
patterns. These three indicators are defined as follows

MAE =
1
n

n∑
i=1

∣∣vi − v̂i∣∣ (19)

NMSE =

n∑
i=1

∣∣vi − v̂i∣∣2
n∑
i=1

v2i

(20)
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TABLE 2. Comparison performance with other methods under various aggregation time scale for line 13.

RMSE =

√√√√1
n

d∑
i=1

(
vi − v̂i

)2 (21)

where n is the total number of the testing data, vi and v̂i
represent the observed speed value and estimated one.

C. COMPARATIVE EXPERIMENTS
The comparative experiments in this paper include three
parts. First, we conduct an ablation experiment to verify
the effectiveness of each component in GAN_BS. Second,
the performance of GAN_BS is tested by comparing it with
some popular estimation methods. Last, we compare the
accuracy of the methods in different periods to see its adapt-
ability to different traffic patterns.

1) COMPARED UNDER ABLATION STUDY
To evaluate the effect of two components in the method
proposed by this paper, we use the GAN-I and the bilateral
smoothing method separately to estimate the traffic state and
compare the results with the full pipeline method. To verify
the performance of the methods using data with a high miss-
ing rate, we set the scale of GPS data aggregation in time to
1 minute, 2 minutes, 3 minutes, 5 minutes, and 10 minutes,
respectively. And the data missing rate corresponding to the
input matrix under these different time aggregation scales is
about 80%, 70%, 60%, 50%, 45%, respectively.

2) COMPARED WITH OTHER METHODS
In this part, the proposed method compares with other classic
and advanced algorithms mentioned above under the data
with different degrees of sparsity. The compared traffic state
estimation algorithms are as follows:
(1) Co-kriging: This method proposed by Bae et al. [1]

uses the uniformity of the traffic state in the time-space
domain to regress the traffic state random field. We use
theGaussianmodel as the variogram of thismethod and
set the minimum estimate of error n = 0.01, the maxi-
mum dissimilarity s = 20, and the distance r = 10.

(2) KNN: This algorithm adopted by Tak et al. [4] searches
for the first k numbers of historical data that are most
similar to the divided section to estimate its traffic
states. We set K to 10, which gets the best accuracy
among values of k from 5 to 20.

(3) TAS-LR: This method has been used for traffic
state estimation in [45], which aims to explore the
spatial-temporal relationship of the traffic state through
low-rank decomposition. In this study, the latent rank r
= 10, the number of neighbors k = 10, the parameters
λ1, λ2, λ3, λ4 are set as 0.5, 10, 5, and 5, respectively.

(4) BGCP: This algorithm proposed by [5] extends the
Bayesian probability decomposition model to the
imputation problem of the high-order tensor of traffic
state. We use the third-order tensor (space number ×
day × time number) as the input of this method.

(5) PD-GAN: This traffic state estimation method pro-
posed by [7] uses parallel data to be a temporal hint
for GAN. We use three convolutional layers as hidden
layers in the generator and discriminator. The filter size
of the convolutional layers is 3× 3, and the number of
kernels in each hidden layer is 150.

All the methods use the spatial-temporal matrix of speed as
input so that they can consider the time and space relationship
of the traffic state at the same time. And each model for
comparison has been carefully tuned.

3) COMPARED UNDER DIFFERENT TRAFFIC PATTERNS
To evaluate the traffic state estimation performance under
the different traffic state conditions, we have selected three
time zones with different traffic patterns of 06:30, 09:30, and
18:30 to analyze the performance.

D. ANALYSIS OF RESULTS
1) PERFORMANCE COMPARISON UNDER ABLATION STUDY
The calculated error indexes of the ablation study are shown
in Table 2 and Table 3. With the aggregated interval changing
from 1 minute to 10 minutes, the combination of the GAN-I
and ARS method improves the accuracy of the two separate
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TABLE 3. Comparison performance with other methods under various aggregation time scale for line 6.

FIGURE 6. Traffic state heat maps of ablation experiment results (Line 13).

FIGURE 7. Traffic state heat maps of ablation experiment results (Line 6).

methods by nearly 20% in most cases. The difference in the
results of the three methods can be intuitively seen from
Fig. 6 and Fig. 7. The traffic state generated by ARS is
messy because it is a local filter and must borrow data from

unrelated locations in the distance when the entire block
of data is missing. The GAN-I can restore the distribution
characteristics of traffic state in time and space. But it cannot
avoid the interference of noise, and its generated state is
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FIGURE 8. Comparison of traffic state heat maps of different methods (Line 13).

FIGURE 9. Comparison of traffic state heat maps of different methods (Line 6).

fragmented and discontinuous. But the full pipeline method
can generate a continuous state from the noisy data because of
the ability to fill reasonable data and eliminate noise. Besides,
we compared the error indicators of GAN_BS in Table 2 and
Table 3 and found that the traffic state estimation of Line 13
and Line 6 are both accurate. This model can estimate the
traffic state of exclusive bus lanes and non-exclusive bus lanes
well.

Furthermore, to observe the performance of GAN_BS in
estimating traffic state and distinguishing the edge of traffic
patterns, we have chosen the traffic state of the two bus lines
at three different times and compared themwith the estimated

speed (as shown in Fig. 6 (1) (2) (3) and Fig. 7 (1) (2) (3)).
GAN_BS can reconstruct the traffic state from sparse data
points. Because of the smoothing method, it tends to ignore
the interference of noise and generate a continuous state.

2) COMPARISON RESULTS WITH OTHER METHODS
It can be observed from Table 2 and Table 3 that GAN_BS
achieves better performance than the compared methods in
terms of all evaluation metrics. More specifically, we can see
the estimated results of each method under the data missing
rate of 50% on January 9th from Fig. 8 and Fig. 9. For the
Co-kriging interpolation method, it tends to fit a smooth state
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TABLE 4. Comparison of performances results of line 13 with other estimation methods under different traffic patterns.

TABLE 5. Comparison of performances results of line 6 with other estimation methods under different traffic patterns.

surface while ignoring the intermittent effects of bottlenecks
such as road intersections and bus stops. The result of KNN
is similar to the output of GAN. It is fragmented because the
KNN looks for similar values in the historical data to fill in,
and the original data set is noisy. On average GAN_BS have
relatively 1.90 lower RMSE, 2.57 lower MAE, 0.08 lower
NMSE than the two tensor decomposition methods, includ-
ing TAS_LR and BGCP in two test data sets. It is easy
to see that the tensor decomposition method can eliminate
noise while filling the traffic state. But it is easy to overes-
timate the congestion range at the temporal-spatial location
(16 : 15, 3000km) of Line 13. Last, we use the PD-GAN test
whether the convolutional network can filter noise better than
the fully connected layer. The result shows that PD-GAN still
cannot directly produce a smoothing traffic state of the bus
lane that conforms to the traffic pattern.

Moreover, as the aggregation scale of data in time shrinks,
the missing rate of data increases, and the calculation accu-
racy of GAN_BS is generally declining. The acceptable accu-
racy means that GAN_BS is effective in estimating the traffic
state when the missing rate of the data ranges from 45%
to 80%. However, the accuracy of Co-kriging and TAS_LR
on Line 6 decreases with the increase of the aggregation
time scale. It may because the boundaries between different
states are getting closer as the aggregation scale increases.
And these two methods are less capable of distinguishing

the boundaries between different traffic patterns. On the
Line 13 test set, the accuracy of estimation methods is worse
than other cases when the aggregation scale is 3 minutes and
10 minutes. During the experiment, it is found that the noise
interference is the most obvious in the original data when the
aggregation scale is 3 minutes. Therefore, the performance
of all test methods has declined. However, the methods with
noise immunity, such as SVD, BGCP, and GAN_BS perform
relatively better. And the assumption that the traffic state
remains stable within 10 minutes is weak for the bus lane of
Line 13. Therefore, the test methods will have some distor-
tions in restoring the traffic state patterns.

3) PERFORMANCE COMPARISON UNDER DIFFERENT
TRAFFIC PATTERNS
The observed and estimated values of the corresponding traf-
fic state are shown in Table 4 and Table 5. The accuracy of
these methods under free-flow conditions is better than under
congestion conditions. And we can see that GAN_BS can
output accurate estimation results under different traffic con-
ditions. Fig. 10 compares the estimated speed from GAN_BS
and observed speed from the bus as scatter diagrams. Gener-
ally speaking, the estimated speed is likely to be higher than
the observed speed in the congested state with speed slower
than 20km/h. In the free flow state, the estimated speed is
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FIGURE 10. Scatter diagrams of estimated speed from GAN_BS vs observed speed from bus GPS.

lower than the observed speed, and the error distribution is
more scattered.

V. CONCLUSION
The present study proposed a method named GAN_BS for
estimating the traffic state of the bus line. This method first
proposes an improved generative adversarial network to gen-
erate the bus data under sparse sampling. Then, a traffic
adaptive bilateral smoothing method is proposed to recon-
struct the accurate traffic state pattern from discrete speed.
It can be seen through a series of numerical experiments
that GAN_BS can generate accurate traffic state under sparse
sampling. In particular, it outperformed other traffic estima-
tion methods in terms of noise elimination and traffic pattern
boundarymaintenance. GAN_BS also behaved quite robustly
with respect to the sparse data whose missing rate ranges
from 45% to 80%. GAN_BS can not only impute the sparse
data, but also accurately estimate the traffic state. However,
parameters such as characteristic wave speed in BS are fixed.
Future work should improve themodel in dynamically adjust-
ing parameters to adapt to different traffic patterns.
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