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ABSTRACT Learning methodologies on quantum devices have shown that there are advantages in utilizing
quantum properties. A requirement for using quantum computing in machine learning techniques is the data
representation as quantum states. In QuantumMachine Learning, quantum state preparation is paramount to
attain a functional pipeline in a model. One state preparation method, amplitude encoding, allows a dataset
to be mapped or encoded more robustly and enhances the learning of quantum models. Albeit more densely
represented, a dataset which has been prepared by amplitude encoding provides a more learnable input to a
model. The two main advantages from using amplitude encoding are an increase in classification accuracy
and reduced variability of learning epoch to epoch. In this paper, we compare the basic implementations of
TensorFlow Quantum’s Quantum Convolutional Neural Network and a hybrid quantum-classical network
using angle encoding, with a third network of our design that utilizes amplitude encoding for enriched state
preparation. Our results show there is a direct benefit in performing amplitude encoding before training a
TensorFlow Quantum hybrid quantum-classical model. In the best case scenario, amplitude encoding made
classifying the samples 8.9% more accurate.

INDEX TERMS Amplitude encoding, machine learning, quantum computing, quantum information, and
state preparation.

I. INTRODUCTION
Quantum Machine Learning (QML) is an interdisciplinary
field where Quantum Computing (QC) and Machine Learn-
ing (ML) converge. Interest in QML over the last couple
of years has grown largely due to the advances in hardware
implementations of quantum devices known as Noisy Inter-
mediate Scale Quantum (NISQ) devices [1], [2]. The goal of
this rising field is to describe learning models that apply the
benefits of computing on quantum devices so that operations
in machine learning can be performed [3] and potentially
improved. It should be noted that we are still not able to
show QML on NISQ devices can surpass the abilities of clas-
sical techniques [4]–[6]. However, the constantly improving
capabilities of quantum information processing is promising
[7], [8], and NISQ era devices are getting closer to one day
outperforming their classical counterparts.

State preparation is a fundamental component of data
pre-processing for QML. One of these methods is amplitude

The associate editor coordinating the review of this manuscript and

approving it for publication was Szidónia Lefkovits .

encoding [9], [10]. This method maps the classical data
into the amplitude of fundamental quantum computing unit,
the qubit. The qubit is the quantum dual of the binary
bit and is represented as |ψ〉 (read state psi or ket psi).
An example of a qubit is defined in (1), where αn cor-
responds to the probability amplitudes constrained by (2),
|0 . . . 00〉, |0 . . . 01〉, . . . , |1 . . . 11〉 are the basis states, and
n is the number of basis states. Unlike a bit, the qubit can
be in a linear combination of several states (superposition),
meaning that in such a system two or more basis states can
coexist [11].

|ψ〉 = α0|0 . . . 00〉 + α1|0 . . . 01〉 + · · · + αn|1 . . . 1〉

(1)
n∑
i=0

|αi|
2
= 1 (2)

Amplitude encoding can be likened to one-hot encod-
ing, where information is losslessly encoded and decoded.
One-hot encoding takes a sample from a dense represen-
tation to one that is sparse. For example, if a dataset is
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FIGURE 1. Base architecture implemented in each model for quantum convolution and quantum pooling. For the QCNN
model this is the whole architecture. MSE and Loss of the Angle-Hybrid and Amplitude-Hybrid follow after a classical MLP
is added.

densely represented as (〈1〉, 〈2〉, 〈3〉) with one-hot it would be
encoded into (〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉). The application of
encoding techniques, in both the classical and quantum sense,
may determine whether a dataset can be learned from [12].
Nonethless, in amplitude encoding, a sample is encoded from
a classical representation to a quantum representation, chang-
ing the computational basis and allowing superposition of
states among other properties; whereas in one-hot encoding,
a sample only changes its form from dense to sparse. In both
cases, the encoding method’s performance is dependent on
the applied architecture.

Google recently announced a new quantum computing
library named TensorFlow Quantum (TFQ) for Python [13].
TFQ is a promising library with recently published findings
on Google’s Sycamore device [14]. TFQ is meant to combine
the abilities of the TensorFlow (TF) library with a quantum
computing frame of mind. This library is a machine learning
library for rapid prototyping of hybrid quantum-classical ML
models. TFQ works in conjunction with two other Python
libraries, Sympy and Cirq, which leverage symbolic math-
ematics and quantum logic circuit design respectively [15],
[16]. When utilized together, TFQ allows a user to easily
develop a QML model, Sympy provides a user the ability
to interject trainable quantum parameters, and Cirq allows
for the application of logical quantum operators or gates
necessary for fundamental quantum computing. These three
libraries are the software stack for developing QML tech-
niques in this work. We perform tests and show results
of amplitude encoding’s current capabilities on a simulated
quantum device since TFQ does not mention a publicly
available physical quantum device. These results are based
on the available models in the TFQ library documentation.
The application of amplitude encoding with the TFQ library
shows a considerable improvement over a short number of
epochs and a measurable decrease in sporadic training behav-
ior. These improvements are in line with what recent work has
indicated [17], [18].

The rest of this paper is organized as follows. Architectural
design, data sets, and implementation of methods used in this
work are given in Section II. In Section III, experimentation

results and the analysis of the work done here are given.
Finally, the conclusion and discussion of future work is
provided in Section IV.

II. METHODS
Two of the three models implemented in this work fol-
low directly from the TFQ documentation, Quantum Con-
volutional Neural Network (QCNN) and Hybrid Quan-
tum/Classical Neural Network [13]. For the third model
we propose a modification of the TFQ Hybrid Quan-
tum/Classical Neural Network which we call
Amplitude-Hybrid Quantum/Classical Neural Network as
it utilizes amplitude encoding for the preparation method
of quantum states. Subsequent descriptions of these three
models are referred to as ‘‘QCNN’’, ‘‘Angle-Hybrid’’, and
‘‘Amplitude-Hybrid’’. Throughout this work comparisons are
focused between the Angle-Hybrid and Amplitude-Hybrid
models but QCNN is included for completeness.

A. ARCHITECTURE & DESIGN
Each architecture at its core implements the QCNN archi-
tecture shown in Fig. 1. This model consists of two layers
of quantum convolutions (QConv) with a quantum pool-
ing layer following each of them. The circuit gate imple-
mentations for QConv and quantum pooling are depicted
in Fig. 2. The Angle-Hybrid architecture consists of this
model in Fig. 2 followed by a small multi-layer perceptron
(MLP). This architecture combines a quantum learning tech-
nique with a classical learning technique, hence the name
Hybrid. Ourmodel, Amplitude-Hybrid, uses a pair of QConvs
and quantum pooling layers and the same MLP used in the
Angle-Hybrid model but a different implementation for how
data is fed to the model is used.

Each model shares the same hyperparameters within the
QCNN and MLP components. Architecturally, the only dif-
ference between the Angle-Hybrid and Amplitude-Hybrid
models is our input layer. The input layer for the
Amplitude-Hybrid model was modified to allow both quan-
tum encoded samples and classical samples. This was done
by first inputting the classical samples to the model at the
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FIGURE 2. Base quantum model circuits implemented in each architecture for quantum convolution (top circuit) and quantum pooling (bottom circuit).

FIGURE 3. Angle preparation of classical data into the state |ψ〉 for a
3-Dimensional classical sample as used in the TFQ documentation.

beginning, but within the QCNN the quantum encoded sam-
ples are used. For the Angle-Hybrid model, angle encoding
is performed by using either a rotation about the x-axis or
y-axis via an RX or RY gate where the angle is given as the
feature for each sample. This method of preparation is shown
in Fig. 3.
Where the three dimensional sample’s vectorV = 〈v1, v2, v3〉
will be encoded into the states (ψ1, ψ2, ψ3), onto qubits
(q1, q2, q3) respectively. As depicted in Fig. 3, this encod-
ing will work for n number of dimensions of a given sam-
ple provided there are n number of qubits to generate the
encoded set of states. A sample prepared by this method has
the same dimensionality as its classical counterpart, is rela-
tively straightforward to prepare, and does not need as much
unpacking as an amplitude encoded representation.

In our Amplitude-Hybrid model the difference in model
architecture is in the input, our input layer provides some
added training influence onto the classical data via the ampli-
tude encoded states. In particular, the Amplitude-Hybrid
model additionally includes classical samples as the initial
input to the model to influence the encoded states. This
change is necessary for this model to encode the features
in the amplitude of a given state |ψ〉. Before the amplitude
encoded states are created, the data must be converted to
their angle representations with multi-controlled rotations
[12] which are performed using (3), where the angle θ is
created via a vector, vi represents the ith classical sample, and
β is the angle based on the arcsin of the number of dimensions
in the sample space. The complexity of a represented state
depends on the number of dimensions in a sample, and the
angles which map a sample’s features is dependent on the
contents of a sample [12], [18].

|ψ〉 = R(vi, β)|q1 . . . qs−1〉|qs〉 (3)

The state |ψ〉 is prepared as a circuit of ‘‘cascading’’ Ry
rotations such that n Ry applications are performed where n

represents the power in binary for encoding a feature vector
vi [12]. Therefore, if a sample has dimensions equal to ten, n
would equal four, i.e. since n equal to three at most encodes
an eight dimension sample. The circuit in Fig. 4 is used to per-
form the amplitude encoding for four dimensional samples in
the Amplitude-Hybrid model. The complexity of amplitude
encoding can be seen visually just by comparing the number
of gates in Fig. 4 and Fig. 3. With four dimensions we can
also see the limitations of applying amplitude encoding for
large datasets in NISQ era devices which are known for the
presence of noise and limited quantum volume [7], [19].
In this work, although amplitude encoding only needs three
qubits, the number of gates, or circuit depth, applied to create
the state |ψ〉 grew roughly ten fold when compared to the
angle encoding method. In a NISQ device this leads to issues
such as dechoerence, or a loss of information. This means that
on a NISQ device datasets with a large number of features
have a hard time utilizing amplitude encoding. Similarly,
angle encoding requires a qubit per dimension which again
raises the concern of dechoerence but also issues with device
topology and total number of qubits.

A sample of data is encoded following a set of just two
steps which is expressed via (3) and Fig. 4. First a sample
must be converted feature-wise to a set of angles (3). This is
so that the information can be used for state preparation [10],
[12], [18]. Second the state preparation of the circuit must be
created using a combination of Controlled Y gates Ry. The
‘‘cascade’’ of Controlled Y gates Ry depends on the number
of dimensions or features in a sample. Recently, Araujo et al.
have shown a very through generalization of this method for
both conversion of the dataset and state preparation using the
classical algorithm for divide and conquer [18].

B. DATASETS
To evaluate performance we trained each model using differ-
ent synthetic datasets from the Python library Scikit-Learn
[20]. The ability to control the classes’ distance and feature
distribution in the tests was needed in gathering consistent
results. We create these datasets by specifying a center box
per class (0, 1). The center box or centroid of each class is
given as the positive and negative value for each of the classes,
i.e. if the center box is 1.6 the centriods for both classes
are (-1.6, 1.6). When the centriods are closer to zero the
two classes share more overlap and less when the centriods
are more spread apart. The two classes were converted from
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FIGURE 4. Circuit creating the amplitude encoded state |ψ〉 with three qubits for a classical sample.

FIGURE 5. Two-dimensional plots of each dataset used to test each model. Noting the separation between classes as the center box values
grows from 0.6 to 2.0.

(0, 1) to (-1, 1) to keep consistent with TFQ’s documentation.
Each dataset was created with four features.

With our datasets we conduct two sets of tests to evaluate:
(I) the ability of the Amplitude-Hybrid model to converge
at a higher accuracy sooner and (II) the ability to learn less
erratically and therefore more effectively over time. To test
these hypotheses, we train the datasets with eight differ-
ent centroid distances for both (I) and (II). The datasets
are shown in Fig. 5 using a two-dimensional projection
plot of the four features. Each training dataset was split
into train/validation subsets with 80% and 20% of samples
respectively. The train set contained 2,048 training samples,
validation contained 512 samples, and test or evaluation
was done on an additional 512 samples after training was
completed.

III. EXPERIMENTS & RESULTS
The experiments in this work were performed in a classical
device that simulates a physical quantum device. This was
done primarily because there is currently no quantum com-
puter publicly available that is tied to TFQ. The two tests
we will further describe here were based on the number of
training epochs, (I) eight-epochs and (II) fifty-epochs. The
task for eachmodel was to classify the two classes (-1, 1). The
models use the accuracy metric from TFQ documentation,
which computes the mean over the set of predicted labels
when equal to their true labels. We calculate and show the

results for loss, accuracy, precision, recall, and F1-score.

accuracy =
1
n

n∑
i=1

(yi = ỹi) (4)

MSE =
1
n

n∑
i=1

(yi − ỹi)2 (5)

For both accuracy and MSE yi is the observed value and
ỹi is the predicted value. We use mean square error as our
loss function, seen in (5). The optimizer used in the MLP
was Adaptive Moment Estimation (Adam) [21] optimizer,
described in (6), with the learning rate η set to 0.02, following
the TFQ documentation. In (6), θt+1 is the current gradient of
the stochastic gradient descent (SGD) based on the previous
gradient θt ,

θt+1 = θt −
η√
v̂t + ε

m̂t , (6)

where the weight v̂t and momentum m̂t are defined as:

v̂t =
β2vt−1 + (1− β2)g2t

1− β t2

m̂t =
β1vt−1 + (1− β1)gt

1− β t1
. (7)

with mt and vt are estimates of the gradients’ mean and
variance respectively, and β1 and β2 are forgetting factors.
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TABLE 1. Testing results on holdout set of 512 additional samples for each model (QCNN, Angle-Hybrid, and Amplitude-Hybrid) after eight epochs of
training.

The final dense layer of each model (QCNN, Angle-
Hybrid, Amplitude-Hybrid) uses tanh as the activation func-
tion since the two classes aim to classify (-1, 1). The tanh
function or hyperbolic tangent is defined in (8) where x is the
current sample weight,

tanh(x) =
ex − e−x

ex + e−x
. (8)

The tanh function is also referred to as a scaled sigmoid
function in some literature [22]. Precision is calculated as a
ratio of true positive (TP) and false positive (FP)

Precision =
TP

TP+ FP
, (9)

whereas recall is calculated as a ratio of TP and false negative
(FN).

Recall =
TP

TP+ FN
, (10)

F1-score is calculated as the relationship (harmonic mean)
between precision and recall,

F1 = 2 ∗
Precision ∗ Recall
Precision+ Recall

. (11)

Equations (9), (10), and (11) were used to gather additional
statistics about each model’s behavior on the range of cen-
troid distances after training was completed.

A. EIGHT-EPOCHS
In the first set of experiments, we aimed to show that ampli-
tude encoding can help a model converge faster. Specifically,
this would mean fewer training epochs are needed. With that
in mind, we train and check the performance of each model
for each dataset after just eight epochs and evaluate the results
on the testing dataset. Table 1 shows that in every dataset
the Amplitude-Hybrid model was the top overall performer

for each evaluation metric. Where (-1) and (1) in the metrics
represent the class labels.

We consider each cluster’s centroid distance as our met-
ric for classification difficulty. For the first two centroids,
0.6 and 0.8, the most difficult datasets in this work,
the Amplitude-Hybrid model achieved roughly 2% improve-
ment over the Angle-Hybrid model. At 1.4 centroid dis-
tance, the Amplitude-Hybrid model in Table 1 is the first
occurrence of a model that achieves an accuracy of 90% or
higher. Additionally, we see that the Angle-Hybrid model
never reaches an accuracy of 90% until the final dataset
of 2.0. Each model increases its performance as the cluster
overlapping in the datasets decreases, i.e. as we go from
centroid 0.6 to centroid 2.0. By the time the distance is 1.4,
the Amplitude-Hybrid model attains higher than 90% accu-
racy, overall precision, overall recall, and overall F1-score.
The training validation accuracy of each dataset is shown
in Fig. 6 alongwith the validation loss for eachmodel. Several
of the Amplitude-Hybrid accuracy plots also show themodels
began to behave linearly after roughly four epochs, meaning
the models overcame the nonlinear approximation of the
heuristic. From Table 1 we can see that in almost every dif-
ficultly Amplitude-Hybrid outperforms Angle-Hybrid in per
class Precision, Recall, and F1-Score. That being said, when
we average the two classes together these metrics are always
better for Amplitude-Hybrid. When comparing the Fig. 6 we
can see that for the first two centroid distances 0.6 and 0.8 in
the Amplitude-Hybrid model learn rather well after just train-
ing for the eight epochs. In fact overall these two learn better
than any other in QCNN or Angle-Hybrid. The thing we must
consider here is by also taking into account the results from
Table 1 for these three models. In terms of learning better we
describe this in terms of increase in accuracy over the eight
epochs and decrease in loss. However, the results in every
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FIGURE 6. Training histories of each model over eight epochs. Left to right shows the models QCNN, Angle-Hybrid and Amplitude-Hybrid. Top to bottom
are the respective training validation accuracy and training validation loss (best seen in color).

metric (per class and averaged) are very close to the results in
both QCNN and Angle-Hybrid, as we have stated above they
are still better. But we also know that the first two models
utilize a simplified encoding method, as we have described
this is angle encoding, and because of this see tightly corre-
lated results in every difficultly. The results in the first two
difficulties even the most obvious results. We see that with or
without the hybrid quantum/classical addition to the network
the QCNN and Angle-Hybrid models perform similarly in
that there is not much in terms of accuracy improvement over
the eight epochs. In the best case, for QCNN and Angle-
Hybrid, Angle-Hybrid was only two percent better than the
QCNNmodel. In the majority of cases it is obvious that from
Table 1 that Angle-Hybrid is within 0.5% accuracy of the
QCNNmodel. In contrast the 1.0, 1.2, 1.4, and 1.6 difficulties
all improve at least by ten percent from the first epoch and in
a few cases even twenty percent for the Amplitude-Hybrid
model. When looking at the results in Table 1 these difficul-
ties for QCNN and Angle-Hybrid models are all very similar.
It follows that the models utilizing angle encoding limit the
ability of overall learning, from Table 1 it is clear that the
additional components of the Angle-Hybrid model do not
improve the performance. Although the following sections
discusses the topic of (II) the same behavior and similarity
of results for angle encoding can be gleamed in Table 2.

B. FIFTY-EPOCHS
With the second set of experiments, we sought to show the
consistency of learning over time. Specifically, this would

mean Amplitude-Hybrid is better at learning the datasets.
We consider the eight-epoch scenario presented in Fig. 6
first in our evaluation. Over the eight epochs of training
histories, we see that each model is learning with a generally
increasing accuracy and decreasing loss, model to model.
These trends additionally appear for each centroid distance.
With this observation, we consider the results in Table 2
and the training graphs in Fig. 7. It is apparent from the
results in Table 2 that the overall results of both the QCNN
and Angle-Hybrid model are higher than several of the
results presented in Table 1. Additionally in the experiments
reported in Table 2, in most cases, the Amplitude-Hybrid
model performed a few percent worse than those presented
in Table 1. This can be seen in several of the metrics.
At first glance, we view these results as counter-intuitive.
Arbitrarily training for a larger number of epochs is not
always an effective means of achieving increased accuracy
or any of the metrics presented in this work. We include
this Table 2 for completeness and discuss it further in our
conclusions.

To evaluate the variability in training, we consider the
training history graphs for fifty-epochs in Fig. 7. It is noted
that looking at the Table 2 for variability is not a substantial
source as it evaluates the results based on the final epoch
on the testing set. The second objective is to consider the
variance that arises from training in quantum models [23],
[24]. In the case of the Amplitude-Hybrid model, it is appar-
ent that after roughly 10-20 epochs the model has fit to the
data as best as it can, considering the peaks in accuracy,
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TABLE 2. Testing results on holdout set of 512 additional samples for each model (QCNN, Angle-Hybrid, and Amplitude-Hybrid) after 50 epochs of
training.

drops in loss, and gradual overfitting in the rest of the history.
A gradual or sudden but increasing increase to loss appears
when the model starts to overfit, i.e. it retains too much
influence of the training data while failing to successfully
evaluate the validation data. This consistency and nominal
change in variance between training epochs is what we
hoped to find in the Amplitude-Hybrid model. The reason we
expected this conclusion was due to the amplitude encoding
state preparation. The information was encoded from the
classical representation with much richer representation than
the trivial angle encoding approach described in section II-A
Fig. 3. This in turn implies that better learning behavior
can be achieved simply by involving a better encoding
method.

With respect to the QCNN and Angle-Hybrid models,
we can see a difference in the historical outcomes from epoch
to epoch in Fig. 7. In both the QCNN and Angle-Hybrid mod-
els, we see that almost none of the datasets showed a best fit to
the data. In several cases, these models made improvements
to accuracy and loss within the first twenty epochs. In a few
cases, small improvements can be seen within another twenty
epochs. Consider again the 10-20 epoch range mentioned
above for the Amplitude-Hybrid model. The Angle-Hybrid’s
historical behavior is the opposite of the Amplitude-Hybrid
model, where the heuristic is consistently improving and then
consistently overfitting. In the Angle-Hybrid model, the his-
tories show that the model erratically jumps from a ‘‘high’’
accuracy to one that is 10% or even 15% less within just
a few epochs. This type of behavior generally implies that
learning is failing as the heuristic tries to ‘‘guess’’ where the
local maximum will be at the end of an iteration (per batch),
and shown here at the end of an epoch. Looking at the results
in Table 2 we can not see the real behavior of the model, only

whether or not the results for any dataset are good. Looking at
Table 2 consider the results for Angle-Hybrid and Amplitude
Hybrid for 1.0, 1.2, and 1.4 difficulties. The difference in
accuracy between these three difficulties is 0.0%, 0.976%,
and 3.125% in favor of Amplitude-Hybrid in the latter two.
Just looking at the accuracy, even other metrics for that matter
such as F1-Score, the former two show there is not much
difference between these models. The other metrics such as
recall and precision are even higher for the first two with
Angle-Hybrid. This information in Table 2 are misleading
to imply that the two models perform roughly the same for
these difficulties or centriods. They also hardly express what
can be seen in the Fig. 7. The training behavior for all three
difficulties in Angle-Hybrid appears random when consider-
ing the fact that over the fifty epochs each of these models
bounced around 5-10% epoch to epoch. In contrast you can
see the threemodels for Amplitude-Hybrid weremuch tighter
over the entire training period while displaying less random
behavior epoch to epoch.

The results in both Tables 1 and 2 can be misleading when
considered without their training histories in Figs. 6 and 7.
We consider the case where the dataset centroid distance
is set to 1.2 and look at the results for Angle-Hybrid and
Amplitude-Hybridmodels. Angle-Hybrid shows that it is on a
positive slope that comes back down after a few epochs. Con-
sidering the same dataset for the Amplitude-Hybrid model,
we see that during this entire training history the model has
been roughly 3-5% higher than at the 50th epoch. We can see
that at 14 epochs the model performance has peaked and stays
there for some time before beginning to overfit. Due to this
behavior, we conclude that with amplitude encoding themod-
els that trained for fifty-epochs began to overfit, and therefore
the overall drop in metric evaluations is naturally expected.
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FIGURE 7. Training histories of each model over fifty epochs. Left to right shows the models QCNN, Angle-Hybrid and Amplitude-Hybrid. Top to bottom
are the respective training validation accuracy and training validation loss (best seen in color).
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The same cannot be said about the Angle-Hybrid model.
In the case of the Angle-Hybrid model, we recognize that
training was so erratic that the model performance cannot be
ascertained. The results improving after fifty-epochs may not
be more than coincidence.

IV. CONCLUSION
From Tables 1 and 2 presented in the results, we consider the
most obvious difference, which is that the collected results
for eight-epochs surpass those of the fifty-epoch model.
We also see that only the Amplitude-Hybrid model con-
sistently over performed the fifty-epoch experiments in the
eight-epoch experiments. Although it appears the QCNN
and Angle-Hybrid models both show some cases in the
fifty-epoch experiments with higher accuracy, among other
metrics, than in the eight-epoch experiments, we believe
this to be coincidence. In the subsection III-B, we describe
that the unpredictability of Amplitude-Hybrid’s training over
long periods was due to the simplified preparation of states.
The variability between epochs in the Angle-Hybrid model
make its results inconclusive. This means we cannot find an
epoch that would point to the conclusion of learning and the
beginning of overfitting. From Fig. 7, it is apparent that after
the first dozen or so epochs the Amplitude-Hybrid model
does not continue to steadily improve, but it is still better
Angle-Hybrid on every dataset. We conclude that roughly 10-
20 epochs is an appropriate amount of time to train for most
of the datasets.

Amplitude encoding should not be considered the
only performance enhancement required to improve a
quantum-classical model. Further, state preparation is only
one component that machine learning techniques stand to
benefit from when applied in quantum or quantum-classical
architectures. An additional method of improvement could
be how readout is performed when the data passes from the
quantum pooling layer to the classical MLP shown in Fig. 2.
Ultimately, it is up to the individual to decide what pro-
cessing, pre-processing, and/or design methods to add to
their architecture when trying to enrich quantum-classical
models.

Moving forward, we seek to find a representative model
and dataset combination that coincides with the results here.
With much anticipation, we expect the abilities of amplitude
encoding could further benefit specific datasets. Specifically,
investigating properties of features found within a dataset,
such as distribution, or overall distance between dimensions.
We are currently testing our application of amplitude encod-
ing on a physical quantum device with non-synthetic datasets
for truly empirical results on a different platform.
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