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ABSTRACT Convolutional neural networks(CNNs) have demonstrated its advanced ability in many fields.
However, the calculations and parameters of the advanced CNNs are unaffordable for exiting intelligence
devices. This problem mostly hinders the practical application of CNNs. In this paper, we propose a
two-stage model compression and acceleration(abbreviated as STCA) method to solve this problem. The
STCA is composed of supernet and subnet, the supernet is a large pre-trained neural network with superior
performance, and the subnet is obtained by pruning the supernet. More specifically, the overall process of
STCA includes the search and train stage. In the search stage, we first search and remove the unnecessary
channels of the supernet based on channel importance pruning to get the pruned network. Then the weights
in the pruned network are initialized to get the subnet. During the training stage, the subnet will learn from
the training data and the supernet together. We will extract the knowledge from the supernet and transfer
it to the subnet to improve the performance of the subnet. We have proved the effectiveness of STCA by
implementing extensive experiments on several advanced CNNs (VGGNet, ResNet, and DenseNet). All
subnet trained by STCA achieve significant performance, especially when selecting the VGGNet-19 as the
supernet, the subnet only with about 1/10 parameters and 1/2 calculations achieves 94.37% and 74.76%
accuracy on the CIFAR-10 and CIFAR-100 dataset, which are 0.84% and 2.31% higher than the accuracy
of the supernet.

INDEX TERMS Model compression and acceleration, stagewise search and train, convolutional neural

networks, network pruning, knowledge transform.

I. INTRODUCTION

In recent years, convolutional neural networks(CNNs)
have achieved excellent results in many computer vision
tasks, such as image classification [3], [9], [24], object
detection [6], [22], and semantic segmentation [2], [19],
which have greatly promoted the development of artificial
intelligence. Overall, with the continuous improvement of
the CNNs performance, its depth and width are also increas-
ing. In 2012, AlexNet [13] contained only eight convolu-
tional layers, and there are most 256 channels in a layer,
achieved top-1 and top-5 error rates of 37.5% and 17%
respectively on ImageNet dataset [46]. In 2016, the deeper
ResNet-152 [9] with 152 layers and has most 512 channels in
alayer had a performance superior to AlexNet, with top-1 and
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top-5 error rates 21.43% and 5.71%, respectively. However,
these large-scale CNNs with superior performance often with
huge memory and computational burdens. For example, when
inferencing an image with a size of 224 x 224, the ResNet-152
has approximately 60 million parameters and requires more
than 20 Giga float-point-operations(FLOPs). The great mem-
ory and computing resource consumption of CNNs are
unaffordable for these resource-limited intelligent devices
such as autonomous vehicles, smart speakers, and smart-
phones, which hinders the further development of artificial
intelligence.

Many approaches have been proposed to reduce the num-
ber of parameters and calculations of CNNs to promote the
practical application of artificial intelligence. These approchs
mainly include network pruning [16], [20], knowledge
distillation [1], [11], lightweight network [27], [29]
and automatic model compression methods [4], [48].
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Network pruning first selects and prunes unimportant parts
of the CNNs by specific criteria, and then fine-tunes the
pruned network on the dataset to recover the ability. Network
pruning can reduce the size of neural network greatly, but
the performance of the pruned neural network is unsatis-
factory when the pruning rate is higher. The knowledge
distillation framework mainly includes the teacher net-
work and student network. During the training process,
the knowledge extracted from the teacher network will trans-
fer to a small student network. After knowledge transforms,
the student can achieve better performance than the network
only trained on the dataset. After knowledge distillation,
the student network with fewer parameters and calculations
can achieve the ability to meet practical applications. But
knowledge distillation requires a network with a specific
optimized structure as a student network, and the knowl-
edge distillation is difficult to extend to other neural net-
work structures. For example, when use ResNet-family [9]
neural network to implement knowledge distillation, The
50-layers ResNet50 or the 34-layers ResNet34 are often
select as the teacher network, the 18-layers ResNet18 is often
choosing as the student network. However, the student net-
work is usually not small enough. For example, ResNet18 still
has 11 million parameters and 557 million calculations,
which always has a large memory and calculation burden
for smart devices. Lightweight networks are composed of
efficient convolutional structures, which can achieve high
performance with few parameters. However, the lightweight
networks require design artificial, which is very time-
consuming and requires many experiments to verify the effec-
tiveness of the network. The automatic model compression
method uses neural architecture search [43], [44] or rein-
forcement learning [51], [52] to automatically realize model
compression. These methods may solve the problems of the
aforementioned model compression methods, but the existing
automated model compression method is very dependent on
computing resources. Cheng et al. [49], Choudhary et al. [50]
summarizes the existing model compression and acceleration
methods to propose that how to effectively use the limited
available resources to design specific compression methods
for these resource-limited devices remains a challenge.

In this paper, we propose a two-stage model compression
and acceleration framework(STCA) to solve the problems
of the existing model compression methods. Our proposed
method can compress the model to any size and improve
the accuracy of the model to meet the needs of practical
applications. Our proposed STCA includes the search stage
and the training stage. Figure 2 is the overall framework
of our proposed approach STCA. An optimized structure is
crucial for the CNNs with fewer parameters and calcula-
tions to achieve excellent performance. We will first search
for an optimized small network (called subnet) from a big
network (called supernet). The input image will be input
to the supernet and subnet to obtain the features, classifi-
cation results, and soft-targets of the supernet and subnet.
Then the consistency loss, cross-entropy loss, and soft-target
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loss are calculated in turn. In the end, the optimized subnet
will achieve significant accuracy. In [18], Liu et al. proposed
the main effect of network pruning is to find an optimized
pruned network, and they train the pruned network from
scratch to get a considerable performance with the pruned
network fine-tuned on the dataset. Therefore, in the search
stage, network pruning is used to find an optimized subnet
from a pre-trained supernet, and we will initialize the weights
of the subnet. The process of STCA searches for subnets from
the supernet very fast. When training on CIFAR-10 dataset,
searching for a subnet with about half calculations from
the ResNet32 [9] only takes about 20 seconds on a single
V100 Graphics Processing Unit(GPU). STCA is significantly
faster than the automatic model compression and acceleration
method TAS [4], which uses the neural architecture search
to spend more time searching for the structure of an optimal
network. When ResNet32 is also used for training on the
CIFAR-10 dataset, TAS finish the searching procedure of
ResNet-32 in about 3.8 hours on a single V100 GPU and
reduce about 50% calculations of ResNet32.

In the stage of training, we will fix the weights of the super-
net, and the supernet is only used to implement knowledge
transform. The training data will be input into the supernet
and the subnet to get the outputs of the supernet and subnet,
respectively. In the first, the outputs of supernet and subnet
will input to the softmax function to get the soft-targets.
By minimizing the difference of the soft-target of the supernet
and subnet, the knowledge will be able to transfer from
the supernet to the subnet to improve the performance of
the subnet. Then, the output of the subnet is compared to
the ground-truth label, and the performance of the subnet is
future improved. Extensive experiments on the benchmark
dataset demonstrate that the subnet with fewer parameters and
calculations searched and trained by our proposed STCA can
achieve higher accuracy than the supernet. Figure 1 shows the
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FIGURE 1. All experiments are performed on the CIFAR-10 dataset. The
circular dots represent the accuracy of the subnet trained by STCA under
different pruning rates. The triangle points represent the accuracy of
fine-tuning by the pruning network under different pruning rates. In the
same model size, the performance of the subnet trained by STCA is
superior to the performance of fine-tuning the pruned network on the
dataset.
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FIGURE 2. The entire structure of our proposed method. The subnet is obtained by pruning the supernet. The image will input into the supernet and
subnet to get the features, classification results, and soft-targets. Then, the subnet will learn under the supervision of the truth labels and the

knowledge from the supernet.

accuracy of the subnet trained by STCA and fine-tune on the
data, the accuracy of the subnet trained by STCA all higher
than the accuracy fine-tunes on the data at various prune ratio.

Our contributions are summarized as follows:

1. We propose a two-stage model compression and acceler-
ation framework composed of supernet and subnet, abbrevi-
ated as STCA. STCA can obtain an optimal subnet by pruning
the supernet, and the subnet trained under the supervision
of the supernet. After training, the subnet trained by STCA
achieves state-of-the-art performance.

2. Compared with the supernet, the subnet trained by
STCA has only a few parameters and calculations, but the
subnet has achieved better performance than the supernet.

3. We conducted a large number of experiments on a range
of benchmark datasets(CIFAR-10, CIFAR-100, STL-10), and
extensively verified the effectiveness of STCA.

The rest of the paper is summarized as follows: Section II
describes the related works of the paper. Section III elab-
orates the details about how to implement the STCA.
Section IV shows the experiment results of STCA on bench-
mark datasets. Section V concludes the paper. Section V is
the supplementary materials of the paper.

Il. RELATED WORK
Based on different algorithms and applications, existing
model compression and acceleration methods main include
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three categories, i.e., network pruning, knowledge distilla-
tion, and lightweight network. There are also some methods
are proposed to search for an optimal structure automatic.

A. NETWORK PRUNING

In the search stage of the STCA, we will select and pruned
the unimportant part of the supernet to get the subnet based
on network pruning. The network pruning remove the con-
nections and corresponding parts of a neural network in
a structured or unstructured manner according to specific
criteria and preserve the network’s performance as more
as possible. In the early work of network pruning, optimal
brain surgeon [8] and optimal brain damage [14] measure the
importance of weights in the network based on the second
derivative of the loss function and then crop the unimportant
weights to get a compact network. Han et al. [7] proposed
to find important connections by training the entire network
and prune the unimportant connections to obtains a sparse
network. Finally, the remaining parameters will fine-tune
on data to recover the capacity of the pruned network.
Peng et al. [20] proposed calculating the channel importance
evaluation based on Taylor expansion to find and remove
unimportant channels in a neural network. Network slim-
ming [17] adds a scale factor to each channel to control
the network’s output and regularizes these scale factors by
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L1-norm during the training process. After training, the chan-
nels with low scale factor will be pruned. Li et al. [15] pro-
posed a structured network pruning framework, which presets
the number of filters to keep in each layer and uses the sum of
absolute weights of the filters to measure this filter’s effect.
The filters in each layer will sort accord to the sum of absolute
weights, and finally, these filters will be pruned according to
the preset threshold. Lottery [5] search a relatively optimized
sparse network (called winning tickets) in the complex deep
neural network. The parameter amount and complexity of the
winning tickets are much lower, but it achieves an inference
accuracy similar to the original network. Long et al. [18] pro-
posed that the main contribution of neural network pruning
is to obtain an optimized network structure, and to initialize
the weights of the pruned network to train the network from
scratch, finally achieves the same accuracy as the fine-tuning
of the pruned network that retains the weights on the dataset.
Dong et al. [4] proposed the automatic network pruning
method based on neural architecture search, and similar to
us, the original network is used to transfer knowledge to the
pruned network. But their search phase is time-consuming,
and the accuracy of the pruned network is also reduced to
some extent.

B. KNOWLEDGE DISTILLATION

In the training stage of STCA, we transfer knowledge from
the supernet to the subnet effective based Knowledge dis-
tillation. Knowledge distillation utilizes a large network
with more parameters and calculations to transfer knowl-
edge to a small network with fewer parameters and calcu-
lations to improving the performance of the small network.
Ba and Caruana [1] proposed that a shallow net with fewer
parameters can achieve similar results with a deep net, and
uses a large network to transfer knowledge to a small network.
The concept of knowledge distillation was first proposed by
Hinton ef al. [11]. First, they input the outputs of the teacher
network and student network to the softmax function to get
the soft-target, which contains more information than the out-
puts. Then, the student network learns from the soft-target and
realize knowledge transfer. FitNets [23] extracts the middle
layer features of the teacher network to obtain more knowl-
edge for knowledge transfer and successfully mimics a deeper
student network. Zagoruyko and Komodakis [25] proposed
that only use the feature map of the neural network to transfer
knowledge from teacher network to student network is ineffi-
cient and uses the attention mechanism to extract the attention
map from the feature map to implement knowledge transfer
more efficient. Yang et al. [24] proposed to add the noise to
the teacher network. It makes the teacher network contains
more soften information and reduces the performance of the
teacher network to a certain extent. But the soften knowl-
edge from the teacher network improves the generalized
ability of the student network. Knowledge distillation based
on generative adversarial network(KDGAN) [32] introduce
to train the student network to improve its performance by
adversarial learning loss greatly. During the training, the
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conditional generative adversarial networks is used to dis-
criminate the outputs of the teacher network and the student
network. Furlanello et al. [33] proposed the Born Again
Neural Networks(BornNet), which train a small network in
generations under the supervision of a large network. After
multiple generations of training, the small network finally
obtains performance beyond the large network. Correlation
congruence knowledge distillation(CCKD) [21] introduced
the correlation congruence as the knowledge, in the progress
of knowledge transfer, the instance-level information and
the correlation information between instances are trans-
ferred together. Positive-Unlabeled knowledge distillation
(PUKD) [35] uses a positive-unable classifier to select
training data from the cloud based on a small amount of
data and realizes knowledge distillation with only a few
labeled data. Date-Free learning(DFL) [34] combines gen-
erative adversarial networks and knowledge distillation to
construct a data-free knowledge distillation structure, which
can train high-performance student networks without data.
Wang et al. [47] proposed a one-shot automatic pruning
method based on the online ensemble distillation, which
pruning removes the redundant structures of CNNs at once
in a global way to obtain compact ones without any iterative
pruning and retraining.

C. LIGHTWEIGHT NETWORK

Different from our proposed STCA to search a subnet with an
optimized structure, the lightweight network designs an opti-
mized structure with small memory and computing require-
ments artificially. Squeezenet [27] uses the 1 x 1 convolution
layer to replace the 3 x 3 convolution layer to compose the fire
module. By stacking fire modules, it achieves AlexNet-level
accuracy with about 50x fewer parameters and 0.5MB model
size. Chollet et al. [28] proposes to separate the channels
correlation and the spatial correlation to get the separable
convolution. Then, they use the separable convolution to
improve the Inception to get the Xception, which obtains
higher accuracy when the number of parameters is less than
the Inception network. MobileNet [29] uses depth-wise sep-
arable convolution to build a lightweight neural network and
introduces width multiplier and resolution multiplier to bal-
ance the accuracy and the inference speed. Zhang et al. [30]
proposed to use group convolution and channel shuffle to con-
struct a shuffle unit, and to construct ShuffleNet by stacking
shuffle units. Chen et al. [31] proposed that in the CNNs,
the multiplication operation has higher computational com-
plexity than the simple addition operation. By using addition
operation to replace the multiplication operation in CNNs,
they hugely reduce the size of the CNNs.

D. NEURAL ARCHITECTURE SEARCHING

An optimized structure is essential for the neural network to
achieve superior performance, but the artificially designed
state-of-the-art structure [40]-[42] is very complicated and
time-consuming. There are also some researchers proposed
the neural architecture search(NAS) methods to search for
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FIGURE 3. The diagram of how to pruning the neural network. After pruning, the channel with a lower scaling factor in the supernet will be pruned to

get the subnet.

an optimized network structure through automatic learning
search. Different from with the STCA use the network
pruning to search the neural architecture. Zoph et al. [43]
proposed to automatically generate a CNN structure based on
transfer learning and promote the searched model to achieve
SOTA effects on large-scale image classification and object
detection. ENAS [44] effective reduce the time-consuming
computing process of NAS, which shortens the GPU com-
puting time of NAS by more than 1000 times. Liu et al. [45]
proposed a differentiable architecture search(DARTS),
DARTS uses gradient descent to efficiently search neural
network architectures based on the continuous relaxation of
the architecture representation.

ill. APPROACH

In this section, we will explain how to implement our pro-
posed method STCA and analysis why STCA is effective.
The purpose of our proposed method is first to find an opti-
mized subnet with a few parameters and calculations. Then,
we will transfer knowledge from the supernet to the subnet
to promote the subnet to achieve the performance beyond the
supernet.

A. SEARCH THE OPTIMAL SUBNET

The existing advanced neural network can obtain satisfactory
performance after specific iterations of training. However,
in a neural network, each neuron contributes differently to
the final classification result of the network. There are many
inefficient neurons in the neural network, which leads to a
large amount of waste of computing and memory resources.
So, it is essential to search for an optimal structure for the
neural network to use a small number of parameters to obtain
superior performance. The fundamental purpose of network
pruning is to find and remove the part that contributes less to
the final result of a CNNs. After pruning, the pruned network
has fewer parameters and calculations while retaining as
much accuracy as possible. Recent research [18] shows that
the network pruning can search for an optimal structure for a
small network with superior performance. Therefore, in this
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paper, we use the network pruning to search for a suitable
network structure and take the network slimming [16] as an
example to elaborate on how to search the optimal subnet.
The figure 3 shows the process of how to pruning a layer of
a neural network. More specifically, we will add a trainable
scale factor y to each channel of the neural network. During
the training process, we will train the weights of the network
and these scale factors of channels jointly. After training, each
scale factor of the channel will represent their final contribu-
tion to the network. These channels with small scale factors
mean their contribution lower to the neural network, and these
channels can be removed almost without down the ability of
the neural network. But adding a scale factor to each channel
will increase the parameters of the network. In the search
stage, we use batch normalization(BN) [36] layer to act as a
scale layer. BN is a basic unit of CNNs and is widely applied
in existing neural networks. The transformation progress can
be written as follows:
f= B =i+ p (1)

JoZ+e€

The x;,, and x,,; are the input and output of BN, the x is
the temp features. u = L Z:’;l x}, is the mean of x;, and

o = L3 (xi —pu)” is the variance of the x;,, m is

the number of mini-batch, € is a minimum to prevent divi-
sion by zero errors. The y and B are the adaptive learning
parameters, which are used to improve the representability of
the network. The y is range from 0 to 1 and multiplied with
the X, which is equivalent to the scale factor of the x. So, the y
in BN is used as the scale factor without any more additional
parameters, and the L1-norm is applied to promote the y of
the inefficient channel to zero. After training, these channels
in each layer will sort by the y, and the pruning threshold
will be calculated according to the preset ratio. Then we
will prune the channels with a y small than the threshold.
For example, when using the 19-layers VGGNet19 [23] as
a supernet, we will prune 70% of the channels and initial-
ize the weight of the remaining channels to get a supernet.
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Algorithm 1 Training Process of STCA

Input: A set of RGB images x = {x!,x?, -+, x"}, the preset

ratio r.

Model: The pre-trained supernet V),

Parameter: Hyper-parameter o B y of the overall objective
function.

1: Part One: Searching the optimal subnet:

2: Sort the channels of supernet by the corresponding scale
factor;

3: Get the sort list § = {s',s%,---, sV}, N is the total
channel number of the supernet;

4: Get the threshold Thre by sorting list S and preset pruning
rate r;

5. Set i=0;

6: repeat

7. Compare the scale factor s' with the Thre;

8 if st < Thre;

9:  Pruned the corresponding channel of s';

10: i=i+1;

11: untili < N

12: Get the pruned network Nj;

13: initialized the weights of A\, to get the subnet Np;

14: Part Two: Training the subnet:

15: repeat

16:  Input the images x to the supernet \V,, and subnet Np;

17:  Get the feature F, classification results Y, soft-target

S of the V,, and Np;

18:  Calculation the loss for consistency L.s by F;

19:  Calculation the loss for soft-target Ly by S;

20:  Calculation the loss for classification Lj,pe; by Y

21:  Update weights in the subnet N} through back-

propagation;
22: until convergence
Output: The compact subnet Np,.

The table 1 shows the configuration of the subnet obtained by
pruning the VGGNet19 according to various pruned ratios.

Long et al. [18] proposed that the pruned network can
be initialized and trained from scratch to achieve the perfor-
mance similar to the retained weights pruned network, which
fine-tuned in the dataset. In our STCA, we hope that the
subnet can learn from the dataset and the supernet together.
The subnet retains the original weight will be able to prevent
the subnet from learning knowledge from the supernet. So,
in our method, the weights of the subnet will be initialized,
and the subnet will be trained from scratch.

B. TRAIN THE SUBNET

Unlike the convention training process of network pruning,
which first pruned the CNNs and then fine-tuned the pruned
network on the data. In the paper, the subnet will first be
initialized; then, the subnet will training under the super-
vision of the supernet and data. Figure 2 shows the train
process of the subnet. The input image x is first input into
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TABLE 1. ConvNet configurations. The leftmost is the network
configuration of the supernet, and the right is the network configuration
of the subnet obtained by pruning the 30%, 50%, and 70% channels of
the supernet. The conv3 x 3-64 represents that the neural network layer
is composed of a 64-channel convolution kernel with a size of 3 x 3. The
conv3 x 3-64 represents that all the channel in the layer are pruned. Each
convolutional network block consists of several convolutional layers
followed by a maxpool layer. At the end of the convolutional layer,

it contains a 512-channel fully connected layer(FC-512) and a soft-max
layer.

ConvNet Configuration

Supernet(VGGNet19) Subnet
Pruned Ratio 30% | 50% 70%
input(32x32 RGB image)
conv3x3-64 conv3x3-62 | conv3x3-61 conv3x3-53
conv3 x3-64 conv3x3-64 | conv3x3-64 | conv3x3-64
maxpool

conv3x3-128
conv3x3-128

conv3x3-128
conv3x3-128

conv3x3-128
conv3x3-128

conv3x3-128
conv3x3-128

maxpool

conv3 x3-256
conv3x3-256
conv3x3-256
conv3 x3-256

conv3 x3-256
conv3x3-256
conv3x3-256
conv3x3-256

conv3 x3-256
conv3x3-256
conv3x3-256
conv3 x3-256

conv3x3-256
conv3x3-256
conv3x3-255
conv3x3-210

maxpool

conv3x3-512 conv3x3-510 | conv3x3-482 | conv3x3-34
conv3x3-512 conv3x3-473 | conv3x3-221 | conv3x3-2
conv3x3-512 conv3x3-356 | conv3x3-62 conv3x3-0
conv3x3-512 conv3x3-191 | conv3x3-31 conv3x3-0
maxpool
conv3x3-512 conv3x3-109 | conv3x3-4 conv3 x3-0
conv3x3-512 conv3x3-82 | conv3x3-3 conv3x3-0
conv3x3-512 conv3x3-214 | conv3x3-44 conv3 x3-1

conv3x3-512

conv3x3-511

conv3x3-499

conv3x3-264

maxpool
FC-512
soft-max

the supernet and subnet to obtain the feature of the supernet
F, = {fpl,fpz, cee ,fp"} and the feature of subnet F =
{fb1 Sp2 e }. nis the number of the feature. Because the
supernet is a pre-trained neural network with excellent perfor-
mance, we assume that if the feature of the subnet is more
consistent with those of the supernet, then the subnet also
has a similar performance. Euclidean distance is a distance
metric that can measure the absolute distance between two
points in a multidimensional space. In the training of subnet,
the Euclidean distance is used to calculate the consistency
loss of their feature. By minimizing the Euclidean distance,
the feature of subnet will improve to more consistency with
the supernet. The consistency loss function is formula as:

ey
i=1

Then, the feature of the supernet and subnet will input into
the classification layer to obtain the classification result of
the supernet Y, = {ypl, ypz, el y],"} and the classification
result of the subnet Y = { ol yp?, -, yb"}. Specifically,

@

2
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the classification result of CNNs is the one-hot vector, such
aso = [0, 1, 0...0]. There is only one value is one and others
are zero. The one-hot vector o only contains the information
of the class that the corresponding value is 1. However, there
is more similar information between pictures in the dataset.
For example, a dataset contains pictures of cats, dogs, and
cars. The pictures of cats contain a lot of information similar
to dogs and contain little information similar to cars. This
similar information is very useful for improving CNNs. Hin-
ton et al. [11] proposed to input the classification result to
the softmax function to get the soft-target example as s =
[0.1,0.8,...,0.05] to transfer knowledge. There are many
non-zero values in the soft-target, which means the soft-target
s contains more similar information than the one-hot vector o.
So, in our proposed approach, the soft-target is used to trans-
fer knowledge from the supernet to the subnet. In details,

for the classification result ¥ = {y!,y?,--- )"} of neural
network, the soft-target can be get as follows:
i exp (v//T) 3
Zj exp (y’ / T)

The T is the temperature to soften the output neural network.
A more significant T can get a more softened soft-target, more
soften soft-target contains more non-zero values. By utilizing
the eq.3, the soft-target of supernet and subnet can be get
as Sy = {5yl 5% - .5} and Sp = {sp1. 5% -+, 5"}
respectively. The loss function of soft-target is elaborated as:

n
Ly = % > Hirai (Sf,, SZ) T “
i=1

The Hgraiv is the KL divergence, if the S, and S, more
similar, the KL divergence more smaller.

In the train process of CNNs, the network will be
trained under the supervision of the ground-truth label L =
{ll, 2. ,l"}. We will supervise the subnet learning by
the ground-truth label to promote the subnet classification
more accurately. The classification result of the subnety, =
{vp', 32, -+, yp"} will calculate the cross-entropy loss with
the ground-truth label through the following formula:

n
Liabel = % Z Heross (Y;;v li) (5)
i=1

The Hross 1 the cross-entropy loss function. By minimizing
the cross entropy loss of the subnet, the classification of the
subnet can be promoted more accurately.

C. OVERALL OBJECTIVE FUNCTION
By combining these loss functions proposed above, our final
objective function is:

Lrotal =0 Les+ B Ly + ¥ - Liapel (6)

The «, B and y are the hyperparameter to adjust the three
term in the overall objective function. Through the final loss
function, the subnet can learn more information from the
supernet and can absorb the information not exiting in the
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TABLE 2. ConvNet configurations. The configuration of the Predefined
Structured Pruning, the firsy layer of supernet and the last three
convolution blocks will pruned half number of channels.

Convnet Configuration

Predefined Structured Pruning

Supernet(VGGNet16) Subnet
Model type VGGNetl16-H
input(32 x32 RGB image)
conv3x3-64 conv3x3-32
conv3x 3-64 conv3x 3-64
maxpool
conv3x3-128 conv3x3-128
conv3x3-128 conv3x3-128
maxpool

conv3x3-256
conv3x3-256
conv3x3-256

conv3x3-128
conv3x3-128
conv3x3-128

maxpool
conv3x3-512 conv3Xx3-256
conv3x3-512 conv3x3-256
conv3x3-512 conv3x3-256
maxpool
conv3x3-512 conv3x3-256
conv3x3-512 conv3x3-256
conv3x3-512 conv3x3-256
maxpool
FC-512
soft-max

supernet from the dataset. In the end, the subnet with few
parameters and calculations will achieve a very significant
performance than the supernet. The algorithm list of our
STCA is shows at algorithm. 1.

D. ANALYZE OUR PROPOSED METHOD

The memory and computational costume of the subnet are
less than that of the supernet, but the subnet trained by
our proposed method have achieved better performance than
the supernet. There are mainly two reasons why the subnet
achieves such performance:

1. The subnet has a more optimized network structure:
A more optimized structure means that this network contains
fewer inefficient neurons. In the process of back-propagation,
without the interference of these invalid neurons, the subnet
can more easily find the optimal point, thereby obtaining
higher performance.

2. The subnet can learn more effective knowledge: The
Subnet can gain knowledge from the supernet and dataset
together. At one aspect, the supernet has a larger network
structure than the subnet, which means that the supernet can
learn more information from the dataset and includes more
useful knowledge. Therefore, in knowledge transfer, the sub-
net can learn a lot of valid information that cannot be learned
from the dataset. On the other hand, the structure of the subnet
and the supernet is different, which means the knowledge that
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the subnet can learn from the dataset is also different from the
supernet. It leads the subnet contains a lot of useful informa-
tion that the supernet does not. After training, the subnet with
effective knowledge from the supernet and the dataset so that
the subnet can achieve a better performance than the supernet.

IV. EXPERIMENTS

In this section, we will chose three pruning algorithms to
search the network model for extensive experiments. There
are non-structural pruning methods [7], predefined struc-
tured pruning methods [15] and automatic structured pruning
method [16]. We will use various popular image classifica-
tion CNNs as our experimental model, include the VGGNet-
family [23] CNNs, ResNet-family [9] CNNs, and DenseNet-
family [12] CNNs. In all experiments, the parameters in the
total objective function eq.6 are set to: «=0.1, f=0.9 and
y=0.1.

We use the CIFAR-10 [37], CIFAR-100 and STL-10 [38]
datasets for training. For the CIFAR datasets, the training
set has 50,000 pictures, and the test set has 10,000 pictures.
The CIFAR datasets consist of 32 x 32 pixel images in
multiple categories, CIFAR-10 contains 10 categories, and
CIFAR-100 contains 100 categories. The STL-10 dataset is
an image recognition dataset similar to CIFAR-10, which
contains 10 categories of pictures. Compared with CIFAR-10,
the STL-10 [38] dataset is more challenging. Each category
contains only 500 tagged training images, and STL-10 con-
sists of higher resolution (96 x 96) images.

A. UNSTRUCTURED PRUNING

The unstructured pruning method named weight-level [7]
which turns the dense network into a sparse network. It first
trains the entire network to find out the crucial connec-
tions based magnitude. Then the low-weight connections
will be removed base on the predefined threshold. Finally,
the remaining parameters will fine-tune on the dataset to
boost the performance of pruned network. The details of
weight-level can be seen at appendix V-A. In this experiment,
we only prune the weights of the convolutional layer, without
changing the structure of the fully connected layer. We first
use the weight-level to get a pruned network and initialize the
pruned network to get the subnet by the same initialization
method as [10]. The CIFAR and STL-10 datasets are used
as the training data. When the experiment on the CIFAR
datasets are used as data, the details of the training sets are
set as follows, the batch size is 64, the parameter T in eq.3
is set as 8. For the optimization function of the neural net-
work, we select the Stochastic Gradient Descent(SGD) [26]
as the optimizer, the learning rate of the optimizer is 0.1 and
divide by 10 every 80 times epoch. In SGD, weight-decay
is used to adjust the influence of model complexity on the
loss function to prevent the overfitting of the neural net-
work model during the training process, in the experiments,
we set weight-decay as Se-4. The momentum is a commonly
used acceleration technology in SGD, we set the momen-
tum as 0.9 during these experiments. When the STL-10 is
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used as data, the learning rate and weight-decay of SGD
are all set as 0.01, others training settings are same as the
CIFAR datasets. To prove the effectiveness of our proposed
method more extensively, the 16-layers VGGNet-16 [23],
110-layers pre-activation PreResNet-110 [9] and 40-layers
DenseNet-40 [12] are used as the supernet. And these CNNs
will training on the CIFAR and STL-10 datasets.

Table 3 is the results of the subnet which uses the unstruc-
tured magnitude-based weight pruning to search a network
architecture. Each supernet will be cut by 30% channel to get
a subnet. When fine-tuning the pruned network on the data,
due to the reduction in the number of parameters, when the
subnet is fine-tuned on the CIFAR-100 dataset, its effect is
still lower than that of the supernet. When the VGGNet-19
is used as a supernet, the accuracy of the subnet the
fine-tuning on the CIFAR-100 dataset reduced by 0.67% to
71.96%. But when the subnets are trained by the STCA,
which enable the subnets learning from the knowledge of the
supernet, all the subnets have achieved better performance
than the supernet. When training on the CIFAR-10 dataset,
the accuracy of the subnets obtained by pruning VGGNet-19,
PreResNet, and DenseNet-40 is increased by 0.55%,
0.51%, and 0.21% respectively compared with the super-
net. When training on the CIFAR-100 dataset, all the sub-
nets still achieve satisfactory performance. Especially when
VGGNet-19 is used as a supernet to train the correspond-
ing subnet, STCA has achieved the greatest improvement,
the subnet has achieved 73.58% accuracy, which is 0.95%
higher than the supernet. When training the subnet on the
STL-10 dataset, the VGGNet-19 is used as the supernet,
the subnet trained by STCA still get the best accuracy
of 86.04%. This experiment results show that our proposed
STCA can effectively improve the performance of small net-
works under the supervision of supernet.

TABLE 3. Results for using weight-level to search the subnet. The PR
represent the preset prune ratio.

Dataset Model Original PR Fine-tuned ST
VGGNet-19  93.50% 30%  93.51%  94.05%
CIFAR-10  PreResNet-110  95.04% 30%  95.06%  95.55%
DenseNet-40  94.40% 30%  93.86%  94.61%
VGGNet-19  72.63% 30%  71.96%  73.58%
CIFAR-100 PreResNet-110 76.96% 30%  76.88%  77.31%
DenseNet-40  73.82% 30%  73.65%  74.64%
STL-10 VGGNet-19 85.41% 30%  8527%  86.04%

B. PREDEFINED STRUCTURED PRUNING

The predefined structured pruning method [15] pre-sets the
structure of the pruned network and uses the L1-norm to
find the unimportant parts of the network to cut them
out. The training settings is same as section IV-A. The
16-layers VGGNet-16, 56-layers ResNet-56 and 110-layers
ResNet-110 are used as supernets. We use L1-norm to find
half channels of each convolutional layer in the supernet to
remove. These channels contributed lower to the classifica-
tion result of the supernet, so that can be pruned without hurt
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TABLE 4. Results for using /1-norm to search subnet.

Dataset Model Original Pruned Model Fine-tuned ST
VGGNet-16 93.63% VGGNet-16-H 93.41% 94.21%
CIFAR-10 ResNet-56 93.14% ResNet-56-H 92.97% 94.19%
ResNet-110 93.14% PreResNet-110-H 93.14% 94.75%
VGGNet-16 72.41% VGGNet-16-H 72.37% 74.61%
CIFAR-100 ResNet-56 72.20% ResNet-56-H 72.14% 73.07 %
ResNet-110 73.89% PreResNet-110-H 72.87% 75.58%
STL-10 VGGNet-16 84.93% VGGNet-16-H 84.64% 86.90 %
TABLE 5. Results for using network slimming to search subnet.
Dataset Model Original Prune Ratio  Fine-tuned = Accuracy
VGGNet-19 93.53% 70% 93.60% 94.37 %
CIFAR-10 PreResNet-164 95.04% 40% 94.77% 95.69 %
DenseNet-40 94.10% 60% 94.00% 94.33%
VGGNet-19 72.63% 70% 72.32% 74.76 %
CIFAR-100  PreResNet-164 76.80% 40% 76.22% 77.24%
DenseNet-40 73.82% 60% 73.35% 73.98%
VGGNet-19 85.41% 30% 85.36% 86.21%
STL-10 VGGNet-19 85.41% 50% 85.25% 85.69%
VGGNet-19 85.41% 70% 85.13% 85.24%

the ability of the supernet and get the optimal subnet. The
pruning procee of predefined structured pruning can be seen
at appendix V-B.

Table 4 displays the experiment results of the subnets
pruned by the predefined structured pruning method. The
table shows the accuracy of the supernet, the precision
achieved by the subnet through fine-tuning, and the accuracy
achieved by the subnet trained by STCA. It can be seen from
the table that thees subnets trained by our STCA all achieved
the best results when using various CNNs as supernets. It is
worth noting that when only about half of the parameters and
calculations are included, the subnets trained by STCA all
achieve significantly higher performance than the supernet.
When training on the CIFAR-10 dataset, the accuracy of
the subnets obtained by pruning VGGNet-16, ResNet-56,
and ResNet-110 are increased by 0.58%, 1.22%, and 1.61%
respectively compared with the supernet. When training on
the CIFAR-100 dataset, the accuracy of the subnets obtained
by pruning VGGNet-16, ResNet-56, and ResNet-110 are
increased by 2.20%, 0.93%, and 1.69% respectively com-
pared with the supernet. The subnet performance of STCA
training on the CIFAR-100 dataset is more superior. When
training on the STL-10 dataset, the subnet trained by STCA
still achieved the best performance, about 86.90%, which
is 1.97% higher than the 84.93% accuracy of the supernet.
CIFAR-100 and STL-10 datasets contain fewer pictures in
each category than the CIFAR-10 dataset. It is more difficult
for a model trained on the CIFAR-100 and STL-10 datasets
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to achieve better performance. This proves that the subnet
trained by STCA can learn more effective information from
the dataset and supernet.

C. AUTOMATIC STRUCTURED PRUNING

The automatic structured pruning Network Sliming [16] can
performs structured pruning automatically by adding scale
factors to each channel. Section III-A describes the spe-
cific implementation steps. The experiment sets are the same
as section IV-A. When using the 19-layers VGGNet-19 as
supernet, we will prune 70% channels of the VGGNet-19 to
get the subnet. When taking the 164-layers pre-activation
PreResNet-164 as supernet, there are 40% parameters be
pruned. And when the 40-layers DenseNet is set as supernet,
we will cut off 60% channels of it.

Table 5 shows the experimental results of taking auto-
matic structure pruning to search the subnet. The accu-
racy of these small subnets trained by STCA is signifi-
cantly higher than that of training subnets by fine-tuning.
Even compared with the original large supernet, the subnet
trained by our method still has more superior performance.
When the CIFAR-10 is used as dataset, the accuracy of the
subnets obtained by pruning VGGNet-19, PreResNet-164,
and DenseNet-40 are increased by 0.84%, 0.65%, and 0.23%
respectively compared with the supernet. When training
on the CIFAR-100 dataset, the accuracy of the subnets
is increased by 2.13%, 0.44%, and 0.16% respectively
compared with the supernet. The effect of STCA on
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TABLE 6. Results for using various pruned ration to search subnet. The FLOPs mean floating-point operations per second, which is used to represent the
amount of calculation. The pruned ratio is 0% means the network unpruned and without the accuracy of fine-tuned and ST.

Dataset Model Original Pruned Ratio Parameter FLOPs Fine-tuned ST
0% 20.8M 7.97x108 - -
50% 5.0IM 5.01x108 93.55% 94.01%
CIFAR-10 VGGNet-19 93.53%
60% 3.70M 3.98x108 93.48% 94.13%
70% 2.31M 3.91x108 93.52% 94.37%
0% 20.8M 7.97x108 - -
50% 5.0IM 5.01x108 72.37% 74.30%
CIFAR-100 VGGNet-19 72.63%
60% 3.70M 3.98x108 72.21% 74.58%
70% 231IM 3.91x108 72.17% 74.76 %

TABLE 7. Results for the subnet trained by ST compare to other method. Scratch represents the accuracy of the pruned network train from scratch.

Dataset Model Original Pruned Ratio Scratch [17] LECNP [16] LCCL [39] KD[!1] STCA
CIFAR-10 VGGNet-19 93.53% 70% 93.30% 93.52% 93.31% 91.94% 94.37 %
PreResNet-164 95.04% 40% 94.70% 94.68% 94.09% 94.06% 95.69 %
VGGNet-19 72.63% 70% 71.86% 72.17% 72.05% 69.21% 74.76 %

CIFAR-100
PreResNet-164 76.80% 40% 76.36% 76.10% 75.26% 72.15% 77.24%

the CIFAR-100 dataset is more obvious than that of the
CIFAR-10 dataset, which is consistent with the experimental
results in Section IV-B. When performing a experiment on the
STL-10 dataset, the subnets obtained by STCA training the
VGGNet-19 achieved 86.21%, 85.69%, and 85.24% accuracy
when the pruning rate was 30%, 50%, and 70%, respectively.
Both are higher than the accuracy of the subnet fine-tuned
on the dataset. And when the pruning rate is 30% and 50%,
the accuracy of the subnet trained by STCA is still higher
than that of the supernet. When the pruning rate is 70%,
since the subnet has only a few parameters and calculations,
its performance is slightly lower than that of the supernet,
about 0.17%. These experimental results show that our pro-
posed STCA can automatically search and train an optimal
network, and achieve better performance than the supernet
with only fewer memory and computational burden.

D. VARIOUS PRUNED RATIO TO SEARCH SUBNET

To prove the effectiveness of our proposed STCA more
extensively, in this section, we will employ various pruned
ratios for experiments. The 19-layers VGGNet-19 is selected
as supernet, and the automatic structured pruning Network
Slimming is used to search the subnet. The pruned ratio are
set as 30%, 50% and 70%. The training settings are same
as setcionllI-A, and the CIFAR datasets are used as training
data.

Table 6 displays the experiment results. The subnet
trained by our STCA achieved better results than the subnet
fine-tuning on the dataset when using all pruning ratios, and
also achieved better performance than the supernet. When
training on the CIFAR-10 dataset, the subnets trained by
STCA obtained the accuracy of 94.01%, 94.13%, and 94.37%
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respectively at 50%, 60%, and 70% pruning rates. When
using the CIFAR-100 dataset, the subnets trained by STCA
achieved the precision of 74.30%, 74.58%, and 74.76%
respectively at 50%, 60%, and 70% pruning rates. Especially
when the pruning rate is 70%, the subnet trained by STCA
only has about 1/10 parameters and 1/2 calculations of the
supernet, achieve the significant accuracy on the CIFAR-10
and CIFAR-100 datasets, which are significantly higher than
the accuracy of supernet, about 0.84% and 2.13%.

E. COMPARISON WITH SOTA METHODS

In this section, the subnet trained by STCA will be com-
pared with other SOTA methods. Include subnet trained
from scratch [17], the subnet trained by the LCCL [39] and
LECNP [16]. The subnet trained by knowledge distilla-
tion [11]. When the subnet trained from scratch, the pruned
will be initialized and without the supernet to trans-
fer knowledge. When using knowledge distillation for
training, the subnet is obtained by directly reducing the
number of channels in the supernet according to the cor-
responding pruning ratio. For example, when the pruning
ratio is set as 50%, there are half of channels in each
layer will be pruned. We chose the 19-layers VGGNet-19,
the 164-layers pre-activation PreResNet-164, and the
40-layers DenseNet-40 as supernets.

The experimental results is exhibits in table 7. The
KD means knowledge distillation. When using different
structures as supernets, the corresponding subnets trained
by our STCA all obtain the highest accuracy. Although the
subnets trained by knowledge distillation will also learn
knowledge from the supernet, the effect of these subnets is
not ideal. It proves that an optimized structure is crucial for
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TABLE 8. Results for the subnet trained by ST which uses various term in Lyg4a] -

Dataset Model Prune Ratio Original Les Les+ Lt Les+Lxg LTotal
CIFAR-10 VGGNet-19 30% 93.53% 93.01% 93.90% 94.20% 94.44%
CIFAR-100 VGGNet-19 30% 72.63% 71.88% 74.81% 75.09% 75.13%

a CNNss to achieve better ability. And the performance of the
subnet trained from scratch and the subnet purned by LCCL
and LECNP fine-tuned on the data is lower than that of the
subnet trained by STCA, it is because these CNNs trained
from scratch and fine-tune can only learn knowledge from
the dataset. It proves that the knowledge from the supernet is
very useful for improving the performance of the subnet. The
experimental results prove that the search and train stage of
STCA jointly promote the subnet to achieve better results.

F. ABLATION EXPERIMENTS

In this section, we will demonstrate the importance of each
loss function in Lo through ablation experiments. We will
select the automatic structure pruning Network Sliming [16]
to search the optimal structure, and the subnet will trian on
CIFAR dataset, the prune ratio is set as 30%, the trian settings
are same as sectionIV-A.

Tabel 8 shows the experiment results of ablation experi-
ments. The subent will trainied uses Lcs, Les+Lst, Los+Lkds
Lotal respectively. When using Lqs to train the subnet,
the subnet only trained on the dataset, and the accuracy of
the subnet is lower than the supernet due to 30% parameters
are pruned. When Ly and Lyg are used for training, the per-
formance of the subnet has been greatly improved. Compare
to the subnet only uses L. for training, on the CIFAR-10
and CIFAR-100 dataset, the subnet trained by Lco+Lg
achieves 93.93% and 74.81% respectively, the subnet trained
by Lcs+Lkq achieves 94.20% and 75.09% respectively. The
subnet trianied by Lo achieves the best accuracy, 94.44%
on CIFAR-10 and 75.13% on CIFAR-100 respectively. This
experiment results demonstrated that each term in our pro-
posed overall objective function is effective to improve the
performance of the subnet.

V. CONCLUSION

The huge memory and computational burden of Convolu-
tional Neural Networks(CNNs) are unaffordable for exiting
resource-limited artificial intelligence(Al) devices. In this
paper, we propose a two-stage model compression and accel-
eration approach STCA to deal with the problem. The struc-
ture of STCA consists of the large supernet and the small
subnet which pruned by supernet. At the search stage, STCA
searches the subnet with optimized structure from the super-
net based on the network pruning method. At the training
stage, the subnet is trained from scratch, and the knowledge
is transformed from supernet to the subnet to promote the
performance of the subnet.
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FIGURE 4. The diagram of train step of the unstructured network pruning
method.
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'/{f'}zi{f;‘\\‘ connections

Pruning the
neurons

FIGURE 5. The diagram of train step of the unstructured network pruning
method.

Extensive experiments on benchmark dataset prove that
our proposed method can be widely applied to exist-
ing advanced CNNs to compress the size of the network
and improving the performance of the network. When the
VGGNet19, ResNet50, DenseNet40, etc. are used as the
supernet, the corresponding subnet only with few parameters
and calculations all achieve significantly better performance
than the supernet. In future work, we will further improve
STCA according to practical application requirements and
train the suitable compact model to apply to Al equipment.

APPENDIX

A. UNSTRUCTURED PRUNING

Figure 4 shows the entire pruning step of the unstructured
network pruning method(USNP). USNP first trains a neu-
ral network to find unimportant connections. Unlike con-
ventional training of the neural networks, the purpose of
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FIGURE 6. The x; is the input feature, the x; . ; is the output feature, and the x; ,, is the output feature of the next layer. The F; ; is a 3-dimension

convolution kernel and K is the 2-dimension convolution kernel.

the USNP training neural network is to determine which
connections are important, rather than training to get the
final value of these connections. After the neural network is
trained, the USNP will sort these connections according to
the corresponding weight values, and then obtain the pruning
threshold through the preset pruning rate. By comparing the
pruning threshold with the weights of these connections,
connections with weights lower than the threshold will be
pruned. Finally, the network that has been pruned is retrained
to make the network retain as much performance as possible.
These three steps of the USNP will repeat until the neural
network convergence.

1) REGULARIZATION

During the network training process, the regularization
method used will affect network pruning and retraining.
L1 regularization can effectively penalize smaller non-zero
parameters and cause more parameters to approach zero,
enabling the network to find unimportant connections more
accurately and obtain better accuracy. But for other con-
nections with larger parameters, the effect of L1 regulariza-
tion is not as good as that of L2 regularization. In general,
L2 regularization can get better pruning results.

2) ITERATIVE PRUNING

To learn the correct connection and keep the accuracy of the
pruned network as much as possible, USNP will iteratively
perform network pruning. In the entire pruning process of
the neural network, the pruning will be repeated-in the prune
and retrain step, and the number of connections in the neu-
ral network will decrease gradually. After many rounds of
such iterations, the smallest number of connections can be
found.

3) PRUNING NEURONS

After trimming the connections, in order to further reduce
the size of the network, the USNP will prune these neu-
rons with zero input connections or zero output connec-
tions, as shown in figure 5. Neurons with zero-input con-
nections (or zero-output connections) have no contribution
to the final performance of the neural network, so cutting
out these neurons will not affect the performance of the
network.
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Algorithm 2 Searching Process of PSNP
1: Calculate the sum of its absolute kernel weights s; =
"
=1 2Kl

2: Get the sort list S = {sl, 82, -
number of layer i;

3: Select filters with the smallest sum values, and pruned
the filters and corresponding feature maps. In the next
convolutional layer, the m corresponding feature maps
are also removed;

,sni}, ; 1s the channel

B. PREDEFINED STRUCTURED PRUNING

It is different from the magnitude-based pruning method
that can only reduce the parameters of the fully connected
layer. Predefined structured pruning(PSNP) is an accelerated
pruning method. PSNP will prune those convolution kernels
that are considered to have little effect on the output accuracy.
In the pruning process, PSNP deletes the entire convolution
kernel and its feature maps to reduce computational cost.
Unlike the method of pruning weights, PSNP does not cause
sparse connection patterns.

As shown in figure 6, PSNP will prune the entire convolu-
tion kernel when performing network pruning. The 4; and w;
is the height and width of the input feature x; € R™>*"i>Wi,
And the x; will input to in 3D convolution kernel F;; €
R"*kxk to get the output feature x; 1 € R+ *hit1>XWirt
then, the x;4; will input to next layer to get the x;1>. The
kernel matrix is composed of n;4 1 number of F; ;, and the F; ;
is composed of n; number of 2D kernels K € R¥*¥. During
the pruning process, PSNP will search the ineffective F; ; to
prune, after pruned the F; j, the corresponding feature map
in x;y1 is removed, which reduces n,-k2h,-+1wi+1 operations.
After pruning, if there were m filters of layer i is pruned,
it will reduces m/n; computations for layer i and i + 1.

1) SEARCH THE UNIMPORTANT KERNEL

PSNR uses [1 — norm to determine the importance of the
convolution kernel. First, PSNR calculate the absolute val-
ues of the parameters in the 3D convolution kernel F;;
and add them. Then prune the smallest or smallest m 3D
Convolution kernel. The detailed steps are shown in the
algorithm 2.
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