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ABSTRACT The traditional K-means algorithm has been widely used in cluster analysis. However,
the algorithm only involves the distance factor as the only constraint, so there is a problem of sensitivity to
special data points. To address this problem, in the process of K-means clustering, ambiguity is introduced
as a new constraint condition. Hence, a new membership Equation is proposed on this basis, and a method
for solving the initial cluster center points is given, so as to reduce risks caused by random selection of initial
points. Besides, an optimized clustering algorithm with Gaussian distribution is derived with the utilization
of fuzzy entropy as the cost function constraint. Compared with the traditional clustering method, the new
Equation’s membership degree can reflect the relationship between a certain point and the set in a clearer way,
and solve the problem of the traditional K-means algorithm that it is prone to be trapped in local convergence
and easily influenced by noise. Experimental verification proves that the new method has fewer iterations
and the clustering accuracy is better than other methods, thus having a better clustering effect.

INDEX TERMS K-means, fuzzy entropy, cluster center, membership degree, fuzzy clustering.

I. INTRODUCTION

The clustering process is the most effective classification
method for people to summarize complex external informa-
tion [1]. Though classification can see a mature development
now, there are still challenges for the clustering algorithm
regarding how to eventually realize cognition, learning and
classification under unsupervised conditions by extracting
data features [2]. No model can be used universally and
achieve better results, since it is not a priori [3]. Data imply
enormous scientific and commercial values [4], especially in
the explosive growth of data production in recent years. In
2016, the global data volume reached 10ZB and maintained
an annual growth rate of more than 40 Scattered raw data,
processed with data mining technology, can deliver valuable
results, such as the planning of humanities and the construc-
tion of biological sciences in the reference [6]-[8]. This type
of research is of great significance for both social develop-
ment and human self-cognition and learning cognition. It can
be clearly seen that clustering research on various types of
data has attracted academic attention for a long time [9].

In a study on clustering problems, for a given data set,
we should first make sure whether there is a clustering struc-
ture. If so, the algorithm structure should be determined.
Once conformed, three aspects should be involved to figure
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out whether the clustering result is reasonable or not [10].
For different types of data, there are different processing
algorithms to get a good clustering effect. K-means is one
of the most commonly used clustering algorithms. Featur-
ing a simple principle, the K-means algorithm is easy to
implement, and can classify low-dimensional large data sets
in an efficient way. However, the K-means algorithm also
has shortcomings such as the vulnerability to special points,
the risk of local optimal solutions, the only constraint of
distance, the sensitivity to initial point selection, and the
exclusive suitability for clustering numerical data and data
sets with convex clusters [11]. Therefore, based on the clas-
sic K-means algorithm, many new and improved algorithms
have been proposed, such as the K-modes algorithm that can
cluster discrete data [12], K-means-CP algorithm based on
the consistency of k nearest neighbors [13], Canopy-based
K-means (DCK-means) algorithm with Canopy Method inte-
grated through which the initial point is found by consid-
ering sample density [14] etc. The K-means algorithm and
its derived algorithms have been successfully applied in rec-
ommendation systems, image processing, data mining, video
recognition, and other fields [15]. At present, the classic
K-means algorithm is usually optimized by combining other
algorithms to realize the selection of clustering centers and
the determination of the distance function In [16], it is pro-
posed to use the result of Singular Value Decomposition
(SVD ) decomposition as the initial point of clustering to
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obtain better clustering effects. In reference [17] it is pre-
sented to utilize neighboring ideas, by taking the overall
distribution of data samples as the basis for division, so as
to improve clustering effects. In reference [18], with the
combination of Adaptive radius immune algorithm(ARIA)
and K-means algorithms, the immune algorithm for adaptive
radius is applicated to preprocess the data so as to generate
mirror data that represen the distribution and density of the
original data, improving the noise resistance and stability of
clustering. In reference [19], a K-means clustering algorithm
is designed with a random shift of the center of gravity
to process single-color images specifically for the isolated
point problem. In addition, new directions have emerged,
which combine swarm intelligence and bionic algorithms,
such as Particle swarm optimization K-means(PSO-Kmeans)
based on particle swarms [20], artificial bee colony K-means
algorithm (ABC-Kmeans) based on bee swarms [21], and
Gray Wolf K-means (GWO-Kmeans) [22] based on gray wolf
optimization. In the above optimization examples, most are
still optimization methods for the division of a certain aspect
such as distance or edge data. Among them, only reference
[18] presented an application for the characteristics of data
distribution, which is an effective use of data information
except for the distance between points.

After the fuzzy theory appeared, Dunn et al. put for-
ward the fuzzy c-means clustering algorithm (FCM) [23].
According to its judgement criteria, clustering is divided into
hard clustering and soft clustering. Reference [24] raised a
Fuzzy C-Means algorithm with a Divergence-based Kernel
FCM algorithm (FCMDK), which can handle data whose
boundaries between clusters were non-linear. Chowdhary,
C. L et al.proposesd a novel possibilistic exponential fuzzy
c-means (PEFCM) clustering algorithm for segmenting med-
ical images better and earlier [25]. In the process of hard
clustering, objects to be clustered are strictly classified by
their exclusive nature, but the object of a practical problem
is complex, and there may exist objective problems with
attributes of multiple categories. Therefore, it is necessary to
come up with a soft division method on such fundamental
issues. For example, FCM clustering has been widely used in
fields like pattern classification and image processing [26].
Because it adds ambiguity to the membership requirement
of each pixel, this type of algorithm is significantly bet-
ter than traditional K-means clustering in image processing
results [27]. Although the degree of membership can feed-
back the correlation beyond the distance, it is still gained
by the distance relationship between a single point and the
class. Therefore, the algorithm is also very susceptible to
noise. In reference [28] hybridizes intuitionistic fuzzy set
and rough set in combination with statistical feature extrac-
tion techniques,which is higher than the accuracy achieved
by hybridizing fuzzy rough set model. In reference [29],
a method is advanced to relax the restrictions of membership
and improve the robustness. In reference [30], the weight of
membership degree is involved for the consideration of influ-
ences of each dimension attribute on clustering. In reference
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[31], a heuristic method is offered based on the Silhouette
criterion to find the number of clusters. Reference [32] desig-
nates the digital execution of a model, based on an intuition-
istic fuzzy histogram hyperbolization and possibilitic fuzzy
c-mean clustering algorithm for early breast cancer detection.
In reference [33], a clustering method featuring the combina-
tion of fuzzy c-means algorithm and entropy- based algorithm
is advised to achieve both distinct and compact effects. Ref-
erence [34]proposed a novel intuitionistic possibilistic fuzzy
c-mean algorithm. Possibilistic fuzzy c-mean and intuitionis-
tic fuzzy c-mean are hybridized to overcome the problems
of fuzzy c-mean. In reference [35], a novel fuzzy-entropy
based clustering measure (FECM) is presented, in which the
average symmetric fuzzy cross entropy of membership subset
pairs is integrated with the average fuzzy entropy of clusters.
The above methods improve clustering effects with the fuzzy
entropy utilized to enhance the effective use of information
such as overall distribution characteristics. Inspired by the
theory of fuzzy mathematics and reference [17] and [18],
in the clustering process, this paper proposes a fuzzy mean
clustering algorithm, namely fuzzy metrics K-means (FMK),
with fuzzy entropy as a constraint in the distance condition.
The algorithm first introduces artificial setting of the initial
cluster center to reduce the influence of noise, integrates
the overall distribution structure into that of the membership
function, and then compares the overall ambiguity of the
cluster after introducing a certain point. The last step is the
convergence completed through iteration, finally realizing
the clustering of the FMK-means algorithm.

Il. RELATED INFORMATION

A. K-MEANS ALGORITHM

As one of the most well-known clustering algorithms, The
K-means algorithm can actively select the number of cate-
gories and bases its calculation of closeness on the Euclidean
distance between the points.

In the algorithm, k clusters C = {Cy, Cy,--- , Cylare
randomly selected as partitions and n datasets of samples
D = {x;,x2,---,x,},n > kare divided into the nearest
cluster. Then Recalculate the center point of the cluster. Stop
the iteration until the convergence condition is reached. Gen-
erally, the convergence function is defined as follow:

K
SSE(C) = "> lxi—c I (1)
k=1 xi€ck

in, SSE is the least square error of the cluster division cor-
responding to the algorithm sample clustering. ci is the center
point of the cluster Cy. In the reference [15], the mathematical
meaning of the center point is verified and deduced. Here
comes the conclusion: the best center of a cluster is the mean
value of each point in it. The calculation method is as follow:

= Zx,'eck i )

|Ckl
In summary, the goal of the K-means algorithm is the min-
imum clustering result in (1). This optimization problem
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is an NP-hard problem [15]. Equation (1) also reflects the
closeness of the samples in the cluster around the center. The
smaller the SSE value is, the higher the degree of clustering
and the higher the similarity within the cluster will be. The
algorithm is characterised by its simple method in generating
the center point, fast speed and good scalability.

B. MEMBERSHIP AND FUZZY METRICS

The degree of membership is the basis of fuzzy set operations,
and the membership function is the key to describing the
fuzziness [36]. Unlike the rule of the classic set, one element
in a fuzzy set can belong to multiple sets. Besides, the sum
of the membership degrees of the element to different clus-
ters is always one. For example, in the FCM algorithm, the
membership algorithm is as follow:

1
¢ dy 2
D k=1 (d—kj)'"“

c

s.t. Zuij =1 3

j=1

Ujj =

The relationship between a point and a set is described by
the degree of membership, while the overall fuzzy degree
of a certain set requires a new fuzzy measure. The fuzzy
entropy defined based on the order relationship reflects the
fuzzy degree of a fuzzy partition [37]. Let F(X) denote all
fuzzy sets on X. For any A, B € F(X), we call A < LB if
and only if A < B. There are the following theorems on the
ambiguity d(A) of fuzzy set A [34,35]

Theorem 1: Let A be the fuzzy set in the universe X, if the
mapping d: F(U) — [0, 1] then: (1)

1) d(A) =0ifand only if A € p(X);

2) d(A) = 1if and only if uA(x) = 0.5;

3) Ifany x; € U, uA(x;)) = uB(x) = 0.5, or uA(xj) <

uB(x;) < 0.5, then d(A) < d(B);

4) d(A) =d(~A)

Theorem 2: IF U; = [A1,Az,---,Ad, Uy =
[B1, B, - - -, B.] are two fuzzy c divisions on X and satisfy
Aj < sz,j =1,2,---,c,then call Uy a distinct modifica-

tion of U; and record it as Uy < ,f,,Ug. Hence, for all fuzzy
partitions FP(X) on X, there must exist [%] as the largest
element.

In this paper, the fuzzy entropy E is used as the fuzzy
measure, and equation is as follows

4 c n
E,(U:c)= 7 Z Zuij(l — ujj) @

j=1 i=1

in (4), ¢ is the number of divided clusters. In addition, when
1 < ¢ < n, equation (4) must satisfy the following properties:

1) 0<Ey(U : ¢) < D

2) E,(U :c¢) =0 <« U is hard partition
3) U=[16EU:c) =D

CP-H
Proofs of these theorems have been given in reference [37],

so they are omitted here.
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FIGURE 1. lllustation of the Spical points in this study.

What’s more, Fan and Wu [38] proved that clustering with
the use of fuzzy entropy as a fuzzy metric is feasible. The
fuzzy entropy function in the reference [38] is a particu-
lar case where p is zero in the reference [37]. Meanwhile,
the parameter p also plays an analytical role in clustering to
overcome defects of partition coefficients and other similar
clustering validity functions.

lll. OPTIMIZATION METHOD

When the K-means algorithm is applicated in the process-
esing of data, there may occur special point problems such
as equidistant points or noise, as shown in FIGURE 1.
From equation (2), it can be known that the center point is
controlled by the distance between points during iteration.
So when there are special points, the clustering results of
the K-means algorithm are very easily affected. Therefore,
this paper proposes an improved algorithm based on fuzzy
entropy (FMK-means), according to the characteristics of
fuzzy entropywhich judges the set structure.

A. OPTIMIZATION DIRECTION

When processing data, the traditional K-means algorithm and
the improved algorithm still focus on calculating the distance
between points to get the globally optimal solution. However,
their clustering effects on non-convex sets are not good. At the
same time, as the initial cluster centers are randomly selected,
the cluster center iteration is contracted evenly instead of
conforming to the characteristic direction of data distribution.
Hence, the problem of sensitivity to special points has not
been solved [39]. When the membership degree is intro-
duced into the fuzzy clustering FCM algorithm, although
more information between points is referred to, the value of
emphasis, m, related to the membership degree needs to be
taken account of. There is still no ideal theoretical result for
this problem [40]. None of the above clustering can assess the
clustering effect by reflecting the set’s overall ambiguity and
information degree of the set.

Therefore, in order to solve the problem of intra-cluster
measurement and initial center point, the overall feature space
and the initial artificial cluster center point are needed in addi-
tion to the concept of fuzzy measurement. PEntropy usually
functions in the description of the order of information: the
higher the order of information is, the lower the fuzzy entropy
will be, and vice versa. For example, reference [41], a sim-
ple fuzzy entropy constraint is added to the original FCM
algorithm, which can suppress noise data to a certain extent.
In reference [42], there emerged, based on the original FCM,
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a membership equation with data distribution characteristics
and the fuzzy clustering algorithm on entropy (FCMOE)
with fuzzy entropy constraints. Both of them have a certain
improving influence on the convergence direction of data.
Reference [43], the ABC-kmeans algorithm is supplemented
with the strategy of data features, performing better in clus-
tering. Reference [44], based on the PSO-Kmeans algorithm,
a two-step method is proposed by giving priority to a better
initial clustering center, finally reducing the cost..

In summary, the introduction of the fuzzy entropy function
makes fuzzy entropy the coefficient of the K-means algo-
rithm’s objective function. Meanwhile, an optimized clus-
tering algorithm with Gaussian distribution can be derived
by utilizing the distribution characteristics of the data to
be clustered and taking fuzzy entropy as the cost func-
tion constraint, finally improving the anti-noise performance.
Moreover, this algorithm gives a better initial center point to
reduce iterations.

B. FMK-MEANS ALGORITHM DERIVATION
Plug fuzzy entropy into equation (1) as a measure of fuzzy
degree., equation (5) can be obtained,in which the constraint
condition can be got through the theorem 2.

4 n c
SSE = -, DO u(l = uyxi = ¢)

i=1 j=I
st p=log,4c—1)—1 5)

Concurrently, the distribution characteristic @ of the clus-
tering function is introduced to make the newly added con-
straint condition contract according to it.

1 n N X
“= nN Z Z max Xy
i=1 k=1

in, N is the number of dimensions of elements in the cluster,
and o represents the normalized distribution characteristics
of the clustered data set. According to the factor w, let the
fuzzy entropy meet the data distribution characteristics. The
KKT condition of FMK-means algorithm with fuzzy entropy
factor can be expressed as equation (7)

4 n c X
§= cr 21 Zl uii(1 — ui)(x; — ¢j)” + owj In u;
=1 j=

(6)

st gluy) = ulnu; <0
w=>=0
wg(0) = wg(l) =0 @)

Find the extremum here and define Lagrangian multiplication.

A new function of (8) is available

4 n C 5
L = o 21: 21: uii(1 — wip)(xi — ¢j)” + oujInu;
i=1 j=

c

n
D h = uy)
i=1 j=1
c

s.t. Zu,-j =1 (8)

J=1
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Take the partial derivative of u; in (8) and make it zero.

Through constraint (7), the degree of membership can be

finally obtained, which can be expressed as equation (9)
4(1=2u)(xi—x))?

Ui = exp(— CPw ) (9)
Y7 ¢ 4(1—2u3)(x; —x;)>
Zt:l €)Cp(— Clw )

Then calculate the partial derivative of the cluster center c;
from equation (8), and the cluster center can be expressed as
equation (10) .

= ot (1~ ) 10

iz (1 — uy)

C. INITIAL CENTER POINT SOLUTION OF FMK-MEANS
ALGORITHM
In the traditional K-means algorithm, the initial center point is
randomly allocated. If using noise or edge points as the initial
point, a significant interference will definitely be caused to
the result. To avoid similar situations, the initial point can be
given artificially, and the initial point is required to be as close
to actual point size as possible. According to the distribution
of clustering centers, centers of different clusters must be
arranged in a nearly linear way in one or more dimensions.
An approximation effect can be achieved through the average
value. Assume that the data set X includes n N-dimensional
data divided into c clusters. Then the cluster center of the /th

dimension (/ = 1,2, --- , N) of any i cluster can be expressed
as:
; 3i] & an
vil = ——— Xj
! 2c¢cn i

Get the initial center point V; = {v;1, v, - - -
17 21 Tt C}

s Vil , ©* ,V,’N|i:

D. THE FLOW OF FMK-MEANS ALGORITHM

The traditional K-means algorithm randomly selects the ini-
tial point without considering distribution characteristics of
actual data. It does not have soft clustering characteris-
tics, which leads to the lack of robustness and stability of
clustering results. Obviously, compared with the traditional
K-means algorithm, it’s more reasonable for the improved
algorithm to work from multiple angles rather than a single
one. In addition, the improved algorithm reflects a Gaussian
distribution nature and can effectively overcome the problem
of sensitivity to noise. The initial point can be given automati-
cally, and a soft clustering algorithm with data characteristics
is proposed in this paper. The specific steps are as follows:

Step 1 For a given data set, the mean points of all samples
are calculated by referring to equation (11). The mean point
is taken as the first clustering center, denoted asV©, The
distribution characteristic of the overall data, w, is calculated
through equation (6).

Step 2 Calculate the ugq) of all samples, and the member-
ship degrees will be determined according to equation (9).
Similarly, at the beginning, all the sample points are initial-
ized, which means all of the membership degrees should be
ZEero.
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| Initialized n, m, T, ¢, € |

'

| Solve the initial cluster center V(o |

'

| Calculate the attribute ® |

'

Calculate the distance between points,
the membership degree, SSEw, and the new cluster center Vi

L Aq+1) = SSE+1) — SSE(y) J

End

FIGURE 2. Algorithm flow chart.

Step 3 Conduct the algorithm FMK-means calculation
on given data sets. Constantly iterate u;; and c;, until the
termination condition of the iteration is reached.

Step 4 Output final clustering results.

IV. FMK-MEANS ALGORITHM COMPLEXITY

In terms of time cost, the time complexity of the traditional
K-means algorithm is O( x ¢ x n x m), where c is the
number of clusters, i is the number of iterations required for
convergence, and n is the number of the the number of the
data set contains, m is the number of attributes of each data.
If the convergence occurs faster, the value of i will usually
relatively small. As long as the number of clusters c is signif-
icantly less than n, the K-means algorithm is linearly related
to n.

In the optimization algorithm, the time complexity of the
algorithm to solve the initial center point can be expressed
as O(n x m). The time complexity of solving the membership
degree in a single iteration in the subsequent iteration process
is O(c x n x m), and the time complexity of cluster centers in
each iteration is O(c x n x m). By introducing the above data
to equation (5), the time cost of the FMK-means algorithm is
O(c x n x m). In summary, the total cost of each iterations
is 20(c x n x m). Assuming that the number of iterations is
i, then the total cost time complexity is O( X ¢ X n X m).
Finally, the time complexity of the FMK-means algorithm
can be determined to be O(kn).

In reality, in consideration of the actual effects of the
initial center points, the number of iterations of the improved
algorithm will be much smaller than the number of iterations
i of the traditional K-means algorithm.
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Algorithm 1 FMK-Means (Fuzzy Metrics K-Means)
Require: Data set, the Maximum number of iterations 7,
Threshold ¢, the Number of clusters ¢
Ensure: Clustering results of the data set
1: initialize the Array List;
2: compute V; (D);
3 FOR(each sample jeK){
4 FOR(each sample IeN){
5: compute vjr;
6
7
8
9

}
}

. select Center Vj;

: PRINTF(K ,Initial Center V);
10: WHILE(data sets D!=null){
11: compute u;;(D);

12: FOR(each sample jinK){

13: FOR(each sample iinD){
14: compute Uij;

15: }

16: }

17: select Membership u;j;

18: PRINTF(D,Initial Membership u;;);

19: FMK-means inputer(D, K,Initial Center V, D,Initial
Membership; u;;)

20: WHILE(new center!=original center){

21: FOR(each center V; € V) {

22: FOR(each center V; € V){

23: compute SSE(ujx,dix);

24: }

25: IF(SSE(u;k,dik)=Min SSE(u;j,d;j)){
26: Center Vj <- sample I;

27: }

28: } //END FOR;

29: compute NEW Center Vj =

30: Mean(sample(i &&(i € ClusterV))));

31: } // END WHILE;
32: PRINTF(Cluster V});

V. SIMULATION EXPERIMENT OF CLUSTERING

A. EXPERIMENTAL ENVIRONMENT AND DESIGN

The experiment was conducted with the system of
Windows 10, 16GB physical memory, CPU frequency
of 3.20GHz and the Python 3.8 platform. Comparisons were
realized between the FMK-means algorithm, K-means algo-
rithm, K-means++ algorithm, FCM algorithm,Alternative
Fuzzy k-means (AFKM) algorithm [45] and FCMOE algo-
rithm. The k-means algorithm, k-means++ algorithm, and
FCM algorithm were implemented by calling the Scikit-
learn [46], [47]. The experimental data were 5 data sets (iris,
balance, phoneme, ring and HTRU) [48]-[52], and detailed
parameters are shown in TABLE 1. Since the reference data
has a certain degree of the reference data, the clustering
results have a more intuitive comparison effect.
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TABLE 1. Attribution of data.

TABLE 5. Performance comparison of ring clustering algorithm.

Data Number Attributes categories algorithm result frequency  Accuracy(%) time(ms)
Iris 150 4 3 K-means 319809084566 26 64.4 172
Balance 625 4 3 K-means++ 319808889384 22 64.3 159
Phoneme 5404 5 2 FCM 167235493497 7 83.9 86
Ring 7400 20 2 AFKN 164663234143 8 84.3 93
HTRU 17898 9 2 FCOME 130706814338 5 86.9 67
FMK-means 126740804128 5 87.5 37

TABLE 2. Performance comparison of Iris clustering algorithm.

algorithm result frequency Accuracy(%) time(ms)
K-means 78.94 11 84.0 23
K-means++ 76.69 18 84.1 33
FCM 285.14 57 86.7 37
AFKM 348.26 41 89.7 34
FCOME 329.64 27 90.7 46
FMK-means 326.88 21 91.1 32

TABLE 3. Performance comparison of balabce clustering algorithm.

algorithm result frequency Accuracy(%) time(ms)
K-means 3474 19 59.7 62
K-means++ 3470 24 61.2 80
FCM 1723 521 76.7 984
AFKM 1696 492 717.1 1208
FCOME 1655 296 78.9 613
FMK-means 1577 297 79.2 633

TABLE 4. Performance comparison of phoneme clustering algorithm.

algorithm result frequency Accuracy(%) time(ms)
K-means 12837.80 19 74.1 102
K-means++ 12837.87 19 74.8 103
FCM 9832.97 32 67.7 88
AFKM 9653.47 30 70.1 96
FCOME 9322.71 23 78.1 88
FMK-means 9297.87 21 78.2 84

The parameter are t = 10000, and the threshold & = 0.0001.

Becauseit is pointed out in reference [53] that when the fuzzy
index is 1.5 — 2, the clustering effect is ideal, so set m = 2 in
FCM.

In order to verify the effect of the improved FMK-means
algorithm, two sets of comparative experiments were
designed. Experiment 1 compared the above data’s cluster-
ing results with different clustering algorithms to verifythe
increase of the improved algorithm on the clustering effects
of the traditional algorithm. In the experiment, each group
of algorithms took the average of ten calculation results
for different data groups in turn as the clustering results.
Experiment 2 verified the anti-noise ability of the improved
algorithm and the traditional algorithm by adding noise data
to the sample data.

B. EXPERIMENTAL RESULTS AND ANALYSIS
1) ALGORITHM CLUSTERING RESULTS
The clustering performance comparison of the above six
algorithms is shown in the table below

In the above results, we found that the amount of data
and dimensions have different effects on different ranges of
the same method. In addition, in the same data set, the out-
put results of different algorithms were also quite differ-
ent. Based on the data in TABLE 2 to TABLE 6, set the
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TABLE 6. Performance comparison of HTRU clustering algorithm.

algorithm result frequency ~ Accuracy(%)  time(ms)
K-means 122775535 186 87.0 288
K-means++ 122771113 133 87.1 303
FCM 94000261 57 73.8 547
AFKN 93799064 51 74.2 624
FCOME 87437421 49 89.1 496
FMK-means 87547142 48 88.3 499

r_——
70.00% = \ )

60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

iris balance phoneme ring HTRU

—&—K-means K-means++ FCM AFKM  =@=FCMOE  =@=FMK-means

FIGURE 3. Comparison of clustering accuracy of the six algo-Rithms.

results of different algorithms in the five cases of 500, 2000,
20000,100000(8) and 100000(19).

It can be seen from the accuracy line chart of FIGURE 3
that the six clustering algorithms perform best on Iris. Hard
clustering performs the worst on the accuracy of Balance
data, because the banlance data is not a continuous variable.
The worst effect on soft clustering in phoneme is due to the
fact that different types of data are more scattered. However,
considering data distribution characteristics, the two algo-
rithms FCMOE and FMK-means stand out for their high
accuracy. It also somewhat reflects that purely measuring the
distance between points in calculation is unreasonable.

It is not difficult to find from the comparison that
FMK-means in this paper has several indicators ranking the
best in the performance test. In several experimental data sets,
the FMK-means algorithm has the highest average accuracy
and is close to the FCMOE algorithm. The reason is that
both of them offer the initial cluster center, avoid the problem
of random initial points, and also take into account fuzzy
entropy measurement and the overall distribution character-
istics of data, hence more comprehensive than other algo-
rithms. Although changing the metric in the AFKM algorithm
improves the robustness of the AE metric, its clustering effect
is not significantly improved compared to the FCM.

To summarize, for low-dimensional small data clustering,
when the stopping condition is satisfied, the FMK-means
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—e—K-means K-means++ Fem

AFKM  —@=FCMOE  —@=FMK-means

FIGURE 4. Clustering time of the six algo-Rithms.

300

balance oneme ring HTRU

AFKM ~ —@—FCMOE  —@—FMK-means

FIGURE 5. Number of iterations of the six algo-Rithms.

algorithm has the fewest iterations and the highest accuracy
rate. In the case of rising data volume from Iris to Phoneme,
the number of iterations of the traditional algorithm increases
at an incredible speed, but the soft clustering methods have
fewer iterations and the time cost changes smoothly. The
main reason is that the degree of membership can better
reflect the relationship between multiple points rather than
simply the distance between two points, thereby speeding up
the convergence. Moreover, the algorithms of FMK-means
and FCMOE have a smaller number of iterations due to the
artificial initial center. Besides, when dimensions increase
from Phoneme to Ring, the accuracy of K-means algorithms
decreases, but the accuracy of fuzzy clustering does not
experience a similar change and clustering algorithms with
fuzzy entropy as the constraint posess the highest accuracy.
Since fuzzy entropy describes the nature of the overall fuzzy
degree, and since the more specific the set is, the lower fuzzy
entropy is, FMK-means has a higher accuracy and a lower
clustering output. In the Balance data, there appear abnormal
feedback results in the above several algorithms because the
balance data is not convex data, and the distribution is shown
in FIGURE 6. Therefore, in spite of a small data volume of
the sample, the accuracy of the traditional K-means algorithm
is not high. The FMK-means and the FCMOE algorithm,
though taking a little bit longer time, can gain a high accu-
racy due to the use of data distribution characteristics as the
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FIGURE 6. Data distribution of banlance.

TABLE 7. Initial cluster center comparison.

Iris Phoneme Ring HTUR
The Random 27 25 7 54
Equation (11) 21 21 5 48
TABLE 8. Anti-noise performance.
10% 15% 20%
Error rate of K-mean 32.5% 35.7% 39.4%
Error rate of K-means++ 32.3% 35.7% 39.0%
Error rate of FCM 33.0% 36.6% 40.1%
Error rate of AFKM 31.3% 34.5% 38.2%
Error rate of FCMOE 8.9% 10.1% 12.2%
Error rate of FMK-means 8.7% 9.2% 10.1%

contraction direction. Both Ring and HTRU are at the level
of 100,000, but the impact of their dimensionality on all
algorithms is higher than that of quantity.

Even though the FCMOE requires fewer iterations than
the traditional K-means algorithm and FCM algorithm, there
is still a certain gap on accuracy and convergence results
between it and the FMK-means algorithm. The main reason
is that fuzzy entropy is used as the coefficient in the optimiza-
tion algorithm. Although both introduce an adjustment factor
that indicates the distribution characteristics of the data set,
it is more reliable in the reduction direction. However, due
to the calculation with fuzzy entropy introduced, the output
of the FMK-means algorithm is the smallest, and the result
of the overall distribution is more unambiguous.

2) ANTI-NOISE ABILITY COMPARISON

For the purpose of comparing the anti-noise ability of the
FMK-means algorithm and the other five algorithms, 10%,
15% and 20% of the noise data are added to the Iris data. Then
use these algorithms to complete the clustering and check
the anti-noise ability. The experimental results are shown in
TABLE 8.

According to the experimental results, the FMK-means
algorithm is less affected by noise and has a good anti-noise
performance. Compared with traditional K-means algo-
rithms, FMK-means, with artificial initial cluster centers,
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effectively avoids the interference of randomly selected spe-
cial points, reduces iterations and possesses some anti-noise
ability. Fuzzy entropy is introduced as a new constraint in the
FMK-means algorithm. Secondly, in the FMK-means algo-
rithm, data distribution characteristics are also introduced
into the membership degree, so that the membership func-
tion is supplemented with Gaussian distribution characteris-
tics. By doing so, it ensures that the reducing direction of
entropy conforms to that of distribution characteristics during
the algorithm convergence, thereby reducing the impact of
non-convex clustering.

Comparison between the clustering effects of different
algorithms and the analysis the clustering results make it
clear that the improved FMK-means algorithm has stronger
advantages in terms of convergence speed, iterations and
clustering accuracy.

VI. CONCLUSION

This paper proposes an improved K-means algorithm based
on fuzzy entropy. Fuzzy entropy characterized in its descrip-
tion of the set’s fuzzy degree contributes to the solution of the
problem that the traditional K-means algorithm is extremely
sensitive to special points. Meanwhile, a new solution to
the initial center point is proposed, which avoids the defect
that the initial point is randomly selected and the risks of
a special point or a local optimal solution. In the optimiza-
tion algorithm, the factor representing data set distribution
characteristics is specified for fuzzy entropy as w, so that
the clustering result solution has Gaussian distribution char-
acteristics, which improves the accuracy and noise resis-
tance of the clustering algorithm. However, the processing
of multi-dimensional data, such as text data and image data,
is not covered in this paper. Further research tasks are listed
as how to select a correct way to reduce dimensionality and
how to reasonably introduce other types of ambiguity.
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