IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 13, 2020, accepted November 22, 2020, date of publication November 26, 2020,

date of current version December 14, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3040785

EERA: An Energy-Efficient Resource Allocation
Strategy for Mobile Cloud Workflows

JUAN LI'"“1-2 AND XIAOLU XU 34

1School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
2Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan 430205, China
3Wuhan NARI Ltd. Liability Company of State Grid Electric Power Research Institute, Wuhan 430074, China

“State Grid Electric Power Research Institute, NARI Group Corporation, Nanjing 211000, China

Corresponding author: Juan Li (Ijwuse2012 @whu.edu.cn)

This work was supported in part by the Hubei Province Natural Science Foundation of China under Grant 2019CFB172, and in part by the
‘Wauhan Institute of Technology, China, through the Science Foundation Research Project, under Grant K202035.

ABSTRACT Movbile cloud computing (MCC) which can invoke cloud services and offload tasks from the
mobile device to the cloud has become an appropriate computing paradigm to provide many useful and
complex workflow applications. However, offloading tasks needs extra communication time and energy,
which leads to a conflict between saving the energy and improving the QoS. Thus, how to allocate these
different resources (mobile or cloud) efficiently during the workflow execution process to optimize the
system energy consumption under the deadline constraint is still a huge challenge in MCC. To address such
an issue, this article proposes an energy-efficient resource allocation strategy for workflow applications in
MCC. Firstly, we formulate the resource allocation problem into an optimization problem with the goal
of minimizing the UtilityCost which represents the trade-off between energy consumption and the total
execution time. Then, we use an energy-efficient resource allocation algorithm shortened as EERA to solve
the problem. The algorithm firstly finds all the Partial critical paths of the workflow graph to segment
the whole optimization problem into several local problems, and then uses the discrete particle swarm
optimization algorithm to find the local optimal solution for every local problem, finally the local optimal
solution is integrated to obtain the global one. In addition, we have adapted several representative algorithms
for evaluation and comparison purpose. Comprehensive experimental results show that our EERA based
strategy achieves the best overall performance on three key measurements including the energy consumption
of the device, the execution time of the workflow and the UtilityCost.

INDEX TERMS Workflow, resource allocation, energy saving, task offloading, mobile cloud computing.

I. INTRODUCTION

Mobile devices, such as smartphones and tablets, are rapidly
becoming the preferred choice of both organizational and
personal computing due to their super convenience in time
and location. Cisco VNI report (2017-2022) [1] shows that
the average amount of traffic per smartphone in 2017 grew
49 percent and had reach to 2.3 GB per month. Along with the
5G development, it has also predicted that by 2022, a 5G con-
nection will generate 2.6 times more traffic than the average
4G connection. In the meantime, a large number of innovative
mobile applications which need increasingly large computing
power are being produced in the market [2]. However, issues

The associate editor coordinating the review of this manuscript and

approving it for publication was Huan Zhou

217008

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

such as limited computing power and storage, low bandwidth
and limited battery life are still hindering the success of
mobile computing, especially the limited battery life restricts
the use of smartphones in business and personal applications
which require intensive computation and/or long running
time [3].

A mobile cloud workflow in this article is an application
that can be recognized as a set of tasks in a partial order
to achieve a specific business goal (e.g. an order processing
workflow in an online sale system, and a travel approval
workflow in a mobile office system) using a group of mobile
devices and cloud servers [10]. Generally speaking, all the
tasks can be executed either on the mobile locally or on
the cloud servers remotely in a specific order determined
by the workflow logic. Different from the traditional mobile

VOLUME 8, 2020

https://orcid.org/0000-0001-7116-836X
https://orcid.org/0000-0002-3634-6236
https://orcid.org/0000-0003-4007-7224

J. Li, X. Xu: EERA: An Energy-Efficient Resource Allocation Strategy for Mobile Cloud Workflows

IEEE Access

application, a mobile cloud workflow has three main features
(here we name the mobile user who triggers the workflow as
“client”’, and name the resource which executes the workflow
task as “‘processing unit’’):

o The client and the processing unit are interacting with
each other. In MCC, the client can trigger the workflow
and control the interaction with the processing unit. For
example, the client may request the workflow state to
roll back from the current GUI (Graphical User Inter-
face) state to a preceding state if required.

« The processing unit can be either the mobile device or
the cloud server. Generally speaking, in MCC, a work-
flow task can be executed by either the mobile device
locally or the cloud server via computation offloading.
Therefore, a cloud server can not only act as a required
service for workflow execution, but also play a key
role to receive and handle the requests for computation
offloading sent from the mobile device.

o Human intervention is normal. In MCC, a mobile cloud
workflow often cannot be executed in a fully auto-
matic fashion as human intervention is needed to com-
plete some workflow tasks. That is, the execution of
the mobile cloud workflow may involve not only the
“client” and the ‘““processing unit”, but also some other
human participants.

These features of mobile cloud workflow can seriously
increase the complexity in energy-efficient resource alloca-
tion due to the following reasons:

1) MORE UNCERTAINTIES DURING THE WORKFLOW
EXECUTION

There are increasingly more uncertain factors during the
execution of the mobile workflow, for example, the user
may be away from the mobile while the workflow is waiting
for the input, and the user may restart a new workflow
from the mobile side without stopping the old tasks running
on the cloud and so on. Meanwhile, there may be other users
involved to deal with certain workflow tasks. Thus, these
user interventions will inevitably increase the waiting time of
individual workflow task and further increase its execution
time, which will lead to the increase the uncertainty and the
risk of task time delay. If there are too many user interventions
in an active workflow, too many individual workflow tasks
may be delayed which will increase the risk of the workflow
execution time. To deal with these risks, deadlines on indi-
vidual workflow tasks are normally assigned to ensure the
timely completion of the whole workflow. Therefore, besides
workflow deadlines, we also need to consider task deadlines
in our energy-efficient resource allocation strategy.

2) LOCATION RESTRICTIONS

Some workflow tasks can only be executed on the cloud or
the mobile device as the execution requires specific data,
software or hardware that are only available at a specific
location due to technology limitation or security concerns.

VOLUME 8, 2020

Therefore, we need to consider these location restrictions
when design the energy-efficient resource allocation strategy.

3) CONFILICT BETWEEN SAVING ENERGY AND

IMPROVING QOS

The processing power of the cloud server is usually higher
than the mobile device so that QoS (Quality of Service)
especially execution time could be improved when tasks are
executed on the cloud. However, offloading the workflow
tasks from the mobile onto the cloud will consume additional
time, network and energy. Therefore, there can be a conflict
between saving the energy and improving the QoS, and such a
conflict needs to be addressed in our energy-efficient resource
allocation strategy.

To tackle these challenges above, we first investigate the
execution features of a real-world mobile cloud workflow and
determine some relevant settings. For the sake of maximizing
the benefits of MCC in energy saving and service quality
(specifically on execution time) improvement, we synthesize
the energy consumption and execution time as a type of Util-
ityCost of the mobile device and then formulate the resource
allocation problem as an optimization problem with the goal
of minimizing the UtilityCost while meeting the workflow
deadline constraints. Furthermore, to address this problem,
we propose an energy-efficient resource allocation algorithm
shortened as EERA to solve the problem. EERA firstly finds
all the Partial Critical Paths (PCP) of the workflow graph to
segment the whole optimization problem into several local
problems, and then uses the Discrete Particle Swarm Opti-
mization (DPSO) to find the local optimal solution for every
local problem, finally the local optimal solution is integrated
to obtain the global one. In addition, we adapt, implement and
compare several representative algorithms including Greedy
algorithm (which has been further implemented into two
versions: Greedy on UtilityCost (GU) and Greedy on Energy
(GE)), Heterogeneous Earliest Finish Time (HEFT), Genetic
Algorithm (GA) and DPSO to make the resource allocation
decision. To evaluate the performance of our resource allo-
cation strategy, simulation experiments are conducted and
comparison results on three key measurements including
energy consumption of the mobile device (ECMD), execution
time of the workflow (ET/WD) and the UtilityCost (UC), are
presented and discussed. The results show that our proposed
strategy EERA achieves the best overall performance as it
significantly reduces the energy consumption while achiev-
ing the best trade-off between the energy consumption and
execution time.

To sum up, the major contributions of our work are sum-
marized in three aspects:

o We task, design and analyze an online travel planning
workflow as a typical example to demonstrate the special
features of the mobile cloud workflows and investigate
the energy-efficient resource allocation strategy for them
which are verified more complicated in the real-world
for achieving business goals. Based on this, we are more

217009

IEEE Access

J. Li, X. Xu: EERA: An Energy-Efficient Resource Allocation Strategy for Mobile Cloud Workflows

aware of that an energy-efficient resource allocation
strategy is of vital importance in MCC system.

o Comprehensive models, including workflow application
model, MCC system model, execution time model,
power consumption model and resource allocation opti-
mization model, are designed for the problem and
especially a novel concept of “UtilityCost” has been
proposed to balance the energy consumption of the
mobile device and the total execution time of workflows.
To the best of our knowledge, the proposed optimization
model with minimizing the UtilityCost of the system is
the first work jointly and evenly the energy consumption
and the execution time.

o Furthermore, an energy-efficient resource alloca-
tion algorithm shortened as EERA, combining the
PCP and DPSO algorithm, has been proposed to
solve the optimization problem. In addition, sev-
eral heuristics/metaheuristics-based representative algo-
rithms have been designed and adopted to verify
the effectiveness and superiority of EERA algo-
rithm. Finally, comprehensive experiments with various
parameters and different graph structures have been
conducted and implemented to verify its effectiveness
and the simulation results illustrate that EERA outper-
forms other representative algorithms with three key
measurements, including the ECMD, ET/WD and UC.

The remainder of this article is organized as follows:
Section II presents a motivating example and the prob-
lem analysis. Section III defines all related models used
in this article. Section IV proposes our energy-efficient
resource allocation strategy as well as three other presenta-
tive strategies. Section V demonstrates the evaluation results.
Section VI presents the related work. Finally, Section VII
concludes the paper and points out some future work.

Il. MOTIVATION EXAMPLE AND PROBLEM ANALYSIS

In this section, we illustrate a representative motivating sce-
nario for a real-world mobile cloud workflow. Afterwards, the
workflow features mentioned in the introduction section have
been further analyzed using this example.

A. AN ONLINE TRAVEL PLANNING WORKFLOW

An online travel planning workflow is a typical mobile
cloud workflow which involves not only two representative
roles including “client” and ‘“‘service provider”, but also
the third-party participator such as “financial auditor”. This
workflow will be accomplished through several tasks exe-
cuted either locally or remotely in a defined order and within
limited time. The flowchart in Fig.1 illustrates the basic work-
flow process after a mobile user request arrives into the travel
planning application.

There are a large number of mobile clients using this online
travel planning application at the same time every day and
the first task is to log into the application when a travel
planning request arrives. In fact, among these mobile clients

217010

Mobile cloud workiTow
Processing units

Request? .

| .‘/_\
N

i |

I
= Login

Maobile client

2 r .
Map service

|

|

4 . |
Weather serviee i,—] |

. _ |

|

|

|

|

|

. |

2.4 D |

[P I P—— T . 3y . .
L . FT T | I Flight scrvice llotel booking ~ Scenic spots|

|

|

Cloud service

| = Route plan
" 7 .) | 4._|_4—1
- 4 X

|

|

|

I |

I |

By | pht i |
I |

I |

I I

I |

5 +
o &) 7 Opltimal Toute

Mobile/Cloud server — 8 Cost estimator
= 1w .
Custom result =~ N
-~ I T EZT-TIZZZ”T
-~ | S
S] AL Order conlirmation . |
Mobile client [. I . . |
T

< |
12 v |
| Advanced deposit = N |
) : ‘.fI‘ o S .
‘ ‘ - T) : <Y Tinancial audit |
i U= |

Mobile/Cloud server
FIGURE 1. Online travel planning workflow flowchart.

some may have logged into the application recently, but some
may be new users or users which have logged out of the
application for a long time. Accordingly, the login service
can be executed on the mobile devices locally or on the cloud
servers remotely. When the client login is successful, he/she
must input the basic information about the travel, such as
number of people, destination, travel dates and other user
preference. Upon receiving the information, the weather/map
service first generates the local map and relevant seasonal hint
(Task 2, 3). With the help of a local map, the flight service
can find the proper ticket information, the hotel booking
service can search and return the hotel information and other
relevant information such as local scenic spots which are
obtained by Task 6. Some possible route plans are gener-
ated by synthesizing the local weather, map, flight, hotel
and scenic spots (Task 7). According to the user preference,
an optimal travelling plan is selected by a specific recom-
mendation algorithm (Task 8). Following that, the cost for
the travel can be estimated and the travel planning result
is returned and displayed to the mobile client (Task 9, 10).
Afterwards, the client affirms if he/she is satisfied with the
travel planning result (Task 11). If yes, then the client needs to
pay an advanced deposit which will be carefully checked by
the financial auditor (Task 12, 13). Finally, the mobile client
can download the travel plan and the receipt for the deposit,
and the whole workflow is accomplished (Task 14).

B. PROBLEM ANALYSIS

In the online travel planning workflow example, each task
has its own features during its execution: for example, some
of them are computation-intensive tasks (Task 7 and 8), some
of them are data-intensive tasks (Task 14), and some others

VOLUME 8, 2020

J. Li, X. Xu: EERA: An Energy-Efficient Resource Allocation Strategy for Mobile Cloud Workflows

IEEE Access

are communication-intensive tasks (Task 11 and 13). Except
for some special tasks, most tasks can be executed either
on the mobile locally or offloaded onto the cloud server
remotely. We denote these tasks without location constraint
for execution as free nodes and those special tasks with loca-
tion constraint as fixed nodes. For example, to get the local
map and local weather information, the tasks must access
to the cloud services (Task 2, 3) which must be executed
on the cloud remotely. But the other tasks such as login the
application (Task 1) and confirm the order (Task 11) can only
be executed on the mobile device locally by the end user.
Thus, in this example workflow, Tasks 2-6 are ““fixed”” nodes
and others are ‘“free” nodes. Meanwhile, Task 13 needs a
third participant ‘‘Financial Auditor” to check whether the
advanced deposit paid by the client meet the minimum cost
or not, which belongs to the human intervention.

Based on the above analysis and to further obtain some
quantitative results, we implement the travel planning work-
flow application using the Android SDK in JAVA. We set the
tasks (Task 2-6) as the fixed nodes which can be executed only
on the cloud, and the task ‘“‘order confirmation” (Task 11) as
fixed node which can be executed only on the mobile device.
Except for these nodes, other nodes are free nodes which can
be executed either locally or remotely. In addition, a Huawei
Honor 5C mobile phone with Android 6.0 is used as the test-
ing mobile device and a desktop PC with Windows 10 which
has dual-core CPU is used as testing cloud server. We also use
PowerTutor [11] to monitor the energy usage of the major
mobile system components. We consider two situations for
comparison purpose: one is that all free nodes are executed
on the mobile device locally and the other one is that all free
nodes are executed on the cloud server remotely.

As shown in Fig.2, when the travel time is short (lower
than 7 days), offloading the free nodes onto the cloud for
execution consumes less energy than processing them on the
mobile device locally. But when the travel time becomes
longer (more than 7 days), the mobile device will consume
much more energy for task offloading, and on the contrary,
the device will consume less energy when executing the free
nodes locally. This is due to a significant increase in the
energy consumption and network usage for the data commu-
nication between the mobile device and the cloud.

As for the workflow execution time, it is obvious
that offloading the free nodes onto the cloud is more
time-consuming than running them on the mobile device
locally in all situations with different travel times as demon-
strated in Fig.3. On average, executing all tasks remotely
spends 2.67ms longer than executing all tasks locally, which
however can be considered as negligible.

Form the comparison results above, we can see that
offloading the free nodes onto the cloud for execution con-
sumes both extra time and energy. If the whole execution
time of the online travel planning workflow is within a normal
range and the travel time is short, offloading the free nodes
can reduce the energy consumption of the device. In contrast,
if the travel time is longer, executing all the nodes locally

VOLUME 8, 2020

N

1 Executed Locally @ Executed Remotely

6

Energy consumption of mobile device(J)
-

Travel Time(days)

FIGURE 2. Energy consumption of the mobile device.

225
& Executed Locally 3 Executed Remotely
22

Execution time of workflow (ms)

Travel time(days)

FIGURE 3. Execution time of the online workflow.

can obtain a lower energy consumption. Therefore, we need
to synthesize the features of the workflow tasks, as well as
the network environment and the QoS constraints, in order
to design an efficient resource allocation strategy which can
achieve the minimum energy consumption while meeting the
execution time constraints.

Ill. RESOURCE ALLOCATION MODELS
In this section, we will describe the resource allocation mod-
els for mobile cloud workflows in detail.

A. WORKFLOW APPLICATION MODEL

A mobile cloud workflow in MCC environment is a process
that consists of a series of workflow tasks performed in series
or in parallel to be automated and executed collaboratively.
An important feature of mobile cloud workflow is that the
mobile client can request the workflow to transition from
the current state to a preceding state. Thus, the dependency
relationship “loop”” may happen in the execution of the work-
flow. For this situation, we convert the loop to a sequence by
adding a middle task illustrated. And through this conversion,
the workflow with cycles can be transformed to be acyclic that
can be modeled as a Directed Acyclic Graph.

Definition 1 (Mobile Cloud Task): A mobile cloud task in
MCC is a relatively independent computation unit which is
invoked inside a workflow and can be executed in a mobile
device or cloud server. Each task receives an input and pro-
duces an output after processing. We model a mobile task as a

217011

IEEE Access

J. Li, X. Xu: EERA: An Energy-Efficient Resource Allocation Strategy for Mobile Cloud Workflows

triple v=(dI, dO,w) where dI/dO is the size of the input/output
data, and w is the workload size of the task for processing.

Definition 2 (Mobile Cloud Workflow): A mobile cloud
workflow is a process that consists of a series of mobile cloud
tasks executed in a specific order with a goal of accomplish
the mobile user’s request. We use a Directed Acyclic Graph
G=(V, E) to model a mobile cloud workflow with n tasks,
where V={vi, va,...v;,...v,} represents a set of mobile
cloud tasks and E={e(v;, vj))|lv;,v; € V} is illustrates the
invoke relationship between task v; and v; with the constraint
that the start execution time of task v; must be later than the
finish time of task v;.

B. MCC SYSTEM MODEL

Definition 3 (Mobile Device): A mobile device is a smart-
phone, tablet or any other portable device which has
access to the Internet and can invoke resources from the
cloud. We model the mobile device as a 4-tuple MD=(fy,,
Po, Py, Paown) Where fyr is the operating frequency of the
mobile device for executing a task, Pg is the idle power
consumption under the mobile device startup state, P,, and
P jown denote the power for uploading and downloading data
of the mobile device, where P, is considerably larger than
P jown- They are all fixed value in the same MCC environment
and can be measured based on experience. It is well known
that the power consumption of mobile Py, is proportional to
its operating voltage squared and frequency, and the operat-
ing voltage of the core is proportional to frequency. Thus,
the power consumption can be represented as Py = any,
where both o and y are constants related to the mobile device
and can be obtained through testing.

Definition 4 (Cloud Server): A cloud server in MCC is a
computing element in the cloud which can provide service
to the mobile devices or execute the computation offloading
from the mobile devices. We use f¢ to represent the operating
frequency of cloud server.

Definition 5 (Resource Allocation Decision): A resource
allocation decision is a vector for each mobile cloud work-
flow to determine which task is running locally and which
task is executed remotely. We introduce a 0-1 variable x; to
denotes the decision of offloading for task v;, specifically
x; = 0 represents that the task will be executed locally on
the mobile device and x; = 1 represents that the task will
be offloaded to the cloud server for execution. The resource
allocation decision can be denoted as the set X = {x,
X2y oo Xiyeeny Xn .

C. EXECUTION TIME MODEL

The workflow execution time contains two parts: the com-
putation time of each task and the communication time of
each arc. The computation time of task v; depends on its
execution decision. And the communication time of each arc
e;j depends on the decisions of task v; and v;. Thus, we denote
Tl-Cp (x;) as the computation time of task v; and Ti]‘f’”(xi, Xj) as
the communication time between tasks v; and v;, where x; and

217012

x; represent the allocation decision of v; and v;, respectively.
We formulate the task execution time as follows:

1) COMPUTATION TIME
When task v; is executed on the mobile, x; = 0, the execution
time of task x; can be calculated by TiCp xi=0) = wi/fu.
If execute the task v; on the cloud, its computation time can
be calculated by Tl.Cp (x; = 1) = w;/fc, illustrated in (1).
e, |wilfm, xi=0
Ti (xi) = wilfe, xi=1 (1)

2) COMMUNICATION TIME

If the decision of task v; and task v; is equal, both executed
on the cloud/mobile, the communication time is 0; if task
v; 18 executed on the mobile and its immediate successor is
executed on the cloud, the communication time is Sdata;; /R,
where Sdata;; is sending data from mobile to cloud and
Ry, is the uploading rate; and if task v; is executed on the
cloud and its immediate successor is executed on the mobile,
the communication time is Rdata;j/Ryown Where Rdataj; is
the receiving data from the cloud to mobile and Ry, is the
downloading rata; To summaries, the communication time
between tasks v; and v; can be calculated by (2).

0, X = 0, Xj =0
Sdatajj/R,p, i =0,x;=1
Ti" (xi, X)) = ataij/Rup i Y)
Rdataij/Raown, xi=1,x=0
0, X = 17 _x/ = 1
Combining the above analysis, the execution time of appli-

cation can be calculated by (3), where T;’:’:I]Sh is the finish time
of the last task in the workflow, T;ﬁ:l is the computation time
of the last task in the workflow, and Tifan is the commu-
nication time between the last task v, ;1 and its predecessor
task v;.

TX) =T = T2 () + T G X)) (3)
D. POWER CONSUMPTION MODEL

Power consumption of the mobile device also contains two
parts: computation power consumption of the tasks and com-
munication power consumption of the arcs, which is affected
by the resource allocation decision. We use ElC P (x;) to denote
the power consumption during the execution time of task v;
with x;. Eij’”(x,', x;) denotes the power consumption of arc e;;
with x; and x;.

1) COMPUTATION POWER CONSUMPTION
When task v; is executed locally, the power consumption only
contains the computation power consumed on the device, cal-
culated by E;? (xi= 0) =Py*T;" (xi= 0) = af{,[_l. If execute
the task v; remotely, the power consumption of mobile is
E7”(x; = 1) = PoxT;"(x; = 1) = Po*wi/fc.

“fﬁzil, x =0

Powi/fc, xi =1 @

Ef(x) = {

VOLUME 8, 2020

J. Li, X. Xu: EERA: An Energy-Efficient Resource Allocation Strategy for Mobile Cloud Workflows

IEEE Access

2) COMMUNICATION POWER CONSUMPTION

The power consumption during the communication process
depends on the resource allocation decisions of two tasks in
the arc e;;. If task v; is executed on the cloud/mobile and
its immediate successor v; is executed on the same resource,
the consumed communication power is regarded as 0; but if
task v; is executed on the mobile and task v; is executed on
the cloud, the consumed communication power is calculated
as Ei‘]?m(xi = 0,x; = 1) = Pyy*Sdata;j/R,,Tdata;/f; if task
v; is executed on the cloud and task v; is executed on the
mobile, the consumed communication power is calculated as
Eij.’"(xl- = 1,x = 0) = Pgown*Rdatajj/RgownRdata;/1.; To
summaries, the communication power consumption of two
connective tasks v; and v; with the offloading decision x; and
x; can be calculated by (5) as follows.

0, Xi= 0, Xj= 0
E;m(xi, x) = PypSdataij/Ryp, x=0,x=1 5)

Pdowanamij/Rdowna xi=1, Xj= 0

0, Xi= 1, Xj =1

Based on the calculated components mentioned above,
the energy consumption of the mobile in MCC can be denoted
as (6).

EX) =), ET @)+ Ef" (v,) ©6)

E. RESOURCE ALLOCATION OPTIMIZATION MODEL

Since the goal of minimizing the total energy consump-
tion and goal of minimizing the total execution time are
contradictive to each other to some extent, the target is to
find the best trade-off between them. For such a purpose,
we define the tradeoff as the UtilityCost of the decision
as in (7), where E(X) and T (X) represent the total energy
consumption of the mobile device and the total execution
time of the workflow respectively with the resource allocation
decision X . The denominator in (7) represents the total energy
consumption of the mobile E (Xp) and the execution time of
the workflow application T (Xp), when all the free tasks are
executed locally besides some fixed tasks, that is, X = Xp =
{0,0,0...}. Because that there are no communication time
when all the tasks are executed locally, thus E (Xp) can be
calculated as Z’,Zig) E,fp (Xo) and T (Xp) can be calculated as
T2, (xa41) according to (3) and (6).

EX) TX) EX) T(X)
UX) = * = T * —
EXo) T (Xo) Vo EL(Xo) T (1)
(N
Meanwhile, there are some constraints of the optimization
problem.

Constraint 1 (Whole Execution Time): the whole execu-
tion time of the workflow should be less than the execution
deadline Tysax denoted as (13);

Constraint 2 (Partial Execution Time): the execution of
mobile cloud workflow involves human intervention, which
leads to a big uncertainty of time. Hence, we must make some

VOLUME 8, 2020

constraints in partial execution time, that is, tasks should be
completed in a required time, denoted as (9);

Constraint 3 (Fixed Tasks): in fact, there are some mobile
cloud tasks only can be executed on the cloud or on the device,
which have no choices to choose the other way. We defined
these special tasks as fixed tasks and divide them into two
categories: set M denotes the tasks only can be executed on
the mobile device and set C denotes the tasks only can be
executed on the cloud serve, illustrated as (10);

Therefore, the optimization resource allocation problem
can be further formulated as a minimization problem of the
UtilityCost with constraints (7)-(12). The objective is to find
the optimal offloading decision X that can minimize the
UtilityCost in (7). The explanation of constrains (8)-(10) is
abovementioned, the constraint in (11) guarantees that the
offloading decision is a 0-1 variable and the constraint in (12)
makes sure that two dummy tasks must be executed on the
mobile locally.

E(X) T(X)
* —
P
HEPX) T (Kag)
s.t. T(X) < Tmax

TP (xi) + maxe;ep Ty (xi, xj) < T, max; (i.j € [1, n])

Min U(X) =

®)

)
Foreachvie M, x; =0;v;e C,x; =1 (10)
x;i € [0,1](x; € X,i e [l,n)]) (11)
X0 =Xxp+1 =0 (12)

IV. GREEN RESOURCE ALLOCATION STRATEGY AND
CANDIDATE ALGORITHMS

Green resource allocation strategy is to optimize the task
offloading decision X in the mobile cloud environment. The
major goal for the green resource allocation strategy is to
minimize the UtilityCost of the mobile cloud workflow while
all the QoS constraints can be satisfied by dynamically opti-
mizing the decision X. Note that given the large scalability of
the mobile cloud workflow, there will be a huge number of
tasks running in the system. Further, The resource allocation
problem of minimizing the UtilityCost with constraints is an
NP problem [33], [34], and hence it is difficult to design
a global algorithm to find the optimal solution within a
reasonable overhead. Therefore, in this article, we propose
an improved DPSO based algorithm named Energy-Efficient
Resource Allocation (shortened as EERA) algorithm based
on Partial Critical Path (PCP) to solve the optimization
problem.

A. ENERGY-EFFICIENT RESOURCE ALLOCATION
ALGORITHM
The core idea of EERA is that we start from the exit task of the
workflow, find all the partial critical paths (PCPs) recursively,
and then use the DPSO algorithm with the goal of minimizing
the UtilityCost to schedule all the free nodes on each PCP.
Critical path, the longest execution path between the entry
and exit tasks of a workflow is widely used in task graph.

217013

IEEE Access

J. Li, X. Xu: EERA: An Energy-Efficient Resource Allocation Strategy for Mobile Cloud Workflows

The key of designing an optimal X focuses on the decisions
of the tasks on the critical path. In this article, we use the
PCP to distribute the overall deadline of the workflow into
several sub processes and assign each critical task on the PCP
recursively until all the tasks assigned [17], [19].

1) BASIC DEFINITION

In order to find all the PCPs in G, we define some basic
notions: the earliest start time EST(v;) denoted as the earliest
start time of task v; for which it will start the execution and
the latest finish time LFT(v;) denoted as the latest finish time
of task v; for which it has finished the execution. The task
computation time and communication time may be different
with different decision, which has a great effect on obtaining
the exact earliest start time EST(v;) and the latest finish time
LFT(v;). Thus, we use an approximate value to compute the
EST(v;) and LFT(v;) of each task. Assuming that all the tasks
are executed on the cloud with fc, we can compute the earliest
start time EST(v;) by (13).

:EST(VO) =0

. . (13)
EST (vi) = maxy,epw){EST (vj) + T;p + Tj;m}

where the set P(v;) represents the parent task set of v;. And
similarly, we define the latest finish time LFT(v;) as formula
(14), where C(v;) is the children tasks set of v;.

LFT(Vn+l) = Tmax
7 P cm (14)
{LFT(V,‘) = mlnvjec(vi){LFT(v]-) — T] — Tij }
2) GREEN RESOURCE ALLOCATION ALGORITHM
BASED ON PCP
Algorithm 1 illustrates the algorithm based on PCP. In line 2,
we add two dummy nodes vy and v,4] in the task execution
graph, which have no actual scheduling in the algorithm. Line
3 and line 4 give the computation process of earliest start time
and latest finish time for each task in G. Line 5 indicates that
the entrance task and exit task must be executed on the mobile
and set as scheduled nodes. We define the scheduled node as
a task that has made its decision for execution and when all
the tasks in G have been scheduled, the strategy terminates.
In the end, we call the PCP() procedure to find the PCPs.

Algorithm 1 EERA (G, T)4x)
Input: Workflow: G and time deadline Ty,
Output: the optimal decision X*

1: Procedure EERA(G, Tyax)

2: Addvo, v,+1 and their corresponding edges to G;
Compute EST for each task by (13);

Compute LFT for each task by (14);

Set task vy and v,4+ are scheduled;

Call PCP(v41)-

AR A

3) FINDING THE PARTIAL CRITICAL PATH

We can find the PCP for a given task v by Algorithm 2
and the whole PCPs will be found recursively. First of all,

217014

Algorithm 2 PCP (v)
Input: the task v
Output: the offloading decision X*

1: Procedure PCP(v)

2: if (v has no unscheduled parent) then

3: return(Success);

PCP <—empty;

u < v,

While (u has an unscheduled parent) do
Find the critical parent p(u) unscheduled;
Add p(u) into the beginning of PCP;
u < p(u);

10: if (PCP is not scheduled) then

11: Call DPSO(PCP);

12: For all(task v/ on PCP) do

13: if (v/ has an unscheduled parent) then

A

N

14: Call PCP(V);
15: Compute EST for each task on PCP by (13);
16: Compute LFT for each task on PCP by (14);

if the task v has no unscheduled parent, the offloading has
been finished (Line 2-3). Then set the PCP be empty(Line 4).
And in the first while loop (from Line 6-9), the PCP of a
particular task will be constructed by finding its critical parent
task unscheduled. In the basic Graph Theory, the parent task
that results in the maximum earliest start time is the critical
parent of the task. After that, we add the scheduled critical
parent as the beginning of PCP. Repeat the process several
times until the task has no unscheduled parent. Followed that,
the algorithm calls the procedure DPSO(PCP) (illustrated
in Section B) with the input variable, PCP, to make the
task execution decision and schedule the tasks on the PCP
before its latest finish time (Line 10-11). After this procedure,
the earliest start time and latest finish time of each task on the
PCP need to be updated and call the procedure recursively to
schedule all the tasks in the workflow graph (Line 12-15).

B. DISCRETE PARTICLE SWARM OPTIMISATION

Particle Swarm Optimization (PSO) is an evolutionary algo-
rithm proposed by J. Kennedy and R. C. Eberhart which
is designed to find the optimal solution for continuous
optimization problems. In this article, we introduce a dis-
crete version, named DPSO, to solve our resource alloca-
tion problem [15], [16]. In the resource allocation model,
the one-dimensional task execution decision X in G can be
represented as a particle position in DPSO. Each particle
adjusts its flying velocity according to its flying experience
(local best position: pbest;) and the companion’s experience
(global best position: gbest). Thus, the position of particle i
can be denoted as X; = (xj1, Xi2, .. ., Xjj, ..., Xin), 1 <j < n,
x; € [0,1], a particle i is associated with a n-dimensional
velocity Vi = (vi1, viz, ..., Vin), vij € [—1,0,1] to determine
its flying distance and direction. v;; = —1 denotes the particle
i is learning from pbest;, vij = 0 denotes the particle i is

VOLUME 8, 2020

J. Li, X. Xu: EERA: An Energy-Efficient Resource Allocation Strategy for Mobile Cloud Workflows

IEEE Access

learning from itself and v;; = —1 denotes the particle i is
learning from gbest. We define the velocity by V = V), + Vg,
where V), denotes the velocity adjusting part towards its local
best position pbest, and V, denotes the velocity adjusting part
towards the global best position gbest. The calculation rules
of these variables in our DPSO algorithm is illustrated by the
formulas as follows:

Vo

1 (Xpbest —-X)

0, rr<pp

v, = (15)

1, otherwise

In (13), c; represents the learning parameter towards
pbest, and we generate a random indicative parameter rr
for each particle, define ppe[0,1] as a learning threshold
towards pbest, obtain V,, by comparing rr and pp. When
rr < pp, V, =0 indicates that the new particle will select
the corresponding position from itself, otherwise, V, = 1
indicates that the new particle will select the corresponding
position from its local best position.

In a similar way, V, can be defined in (16), where c;
represents the learning parameter towards gbest. gpe[0,1] is
a learning threshold towards gbest, rr is a random indicative
parameter introduced above, and V, can be calculated by
comparing the value of rr and pg. When rr < gp, V, =0 indi-
cates that the new particle will select the corresponding posi-
tion from itself, otherwise, V, = 1 indicates that the new
particle will select the corresponding position from the global
best position.

Vg = CZ(ngesl —-X)

0, rr < gp

V, = (16)

—1, otherwise

Thus, the velocity of each particle can be calculated by:
V =V, + Ve = c1Xppesi-X) + c2(Xgpess-X), and the new
position of each particle can be updated by X = X + V.

Algorithm 3 DPSO(G) illustrates the pseudocode of our
DPSO based heuristic resource allocation algorithm in G.
As depicted in DPSO(G), before the DPSO starts, we need
remove the fixed tasks from PCP and obtain a new path
G’ (Line 1-2). The objective of the searching phase here is
to find the global optimal resource allocation strategy for
G’ using DPSO (Line 3-15). The algorithm starts with the
initialization of the swarm (Line 4). After generating initial
feasible position X for MS particles, pbest can be initialized.
Then the initial ghest with minimum Utility can be obtained
(Line 5). The learning probability pp for learning pbest and
gp for learning gbest (Line 6) are generated randomly. The
evolution phase of DPSO is Line 7-15 and it comes to the end
until the stop condition: the maximum iteration number. For
each particle, firstly generate a random indicative parameter
rr, then calculate V), V, through comparing rr with pp, gp,
and finally calculate the velocity V using V), and V, (Line
10-12). After that, a new swarm can be obtained by X; =
X;—1+V.Next step is to check the feasibility of X; with all the

VOLUME 8, 2020

Algorithm 3 DPSO (G)
Input: Workflow: G; Fixed task set M, C;

Maximum iteration: N"***; Population size: MS.
Output: Task offloading decision on PCP: X*

1: for each task in G do
2: {Remove the fixed tasks in M and C from G and
obtain G’}
//Swarm initialisation
: Fori=1toMSdo
4: {Generate a feasible solution X and pbest=X;} //
pbest equals to the solution itself initially.
5: Find gbest;
6: Generate the learning threshold pp and gp randomly;
/lgenerate the new swarm
7: While (j <= N™®) do {
8: Fori=1toMS do{

w

9: Generate a random indicative parameter r7;
10: Calculate V), and V,;
11: Calculate V using V), and Vy;
12: Calculate the new position Xj; //
13: Feasibility(X;);
14: Updata pbest and gbest;}

15: Return X*=gbest;}

constraints (Line 13). Following that, update pbest and gbest
for the swarm (Line 14). The last step of the whole algorithm
is return the global best position of the particle and deploy
it to X*.

C. COMPLEXITY ANALYSIS OF EERA ALGORITHM
The proposed EERA algorithm is depend on PCP and DPSO.
The complexity of PCP algorithm is O(n +), where n is the
number of vertices and e is the number of edges in directed
acyclic graph G. And the complexity of DPSO algorithm is
O(N™**MS), where N is its maximum iteration and MS
is the population size of the particle. In the worst case, all
the possible task offloading decision can be a particle. The
maximum population size is 2!, where m is the number of
the tasks in the PCP. And m is much less than n due to the
PCP algorithm. In addition, the PCPs in the workflow graph
is becoming shorter and shorter during the recursive lookup,
which leads to the value of N and MS smaller and smaller.
Thus, the complexity of EERA algorithm is max{O(n + e),
O(N™*MS)}.

V. EXPERIMENTAL EVALUATION

In this section, we first introduce other representative task
scheduling algorithms including Greedy (GU and GE),
HEFT, GA and DPSO briefly. Then, experimental set-
tings, including the experimental computing environment,
the parameter settings of workflows, resources and algo-
rithms, are illustrated. Finally, we illustrate the simulation
results to evaluate the performance of our proposed resource
allocation strategy EERA and demonstrate the comparison
results with other algorithms.

217015

IEEE Access

J. Li, X. Xu: EERA: An Energy-Efficient Resource Allocation Strategy for Mobile Cloud Workflows

A. INTRODUCTION OF ORTHER REPRESENTATIVE
ALGORITHMS

For the comparison purpose, we employ and adapt several
representative heuristics or metaheuristics-based resource
allocation algorithms including Greedy, Heterogeneous Ear-
liest Finish Time, Genetic Algorithm, and Discrete Particle
Swarm Optimization (DPSO) introduced in the above part as
the candidate resource allocation algorithms.

Greedy algorithm is one of the simplest heuristic algo-
rithms to solve the optimization and search problems [12].
In Greedy, every solution is a local best choice in the current
iteration. That is, the optimal solution obtained by Greedy
is just a local optimal one, but not a global one. The key
issue of Greedy is the choice of the greedy strategy. For
comparison, we introduce two different Greedy algorithm
versions according to the greedy strategy. One version uses a
greedy strategy with minimum UtilityCost, named as Greedy
on UtilityCost (GU) and the other one uses a greedy strategy
with minimum energy consumption of the mobile device,
named as Greedy on Energy (GE).

The Heterogeneous earliest finish time (HEFT) proposed
by Topcuouglu et al. is a two-stage static algorithm, including
task prioritization and resource selection, to solve the opti-
mization resource allocation problem [13].

Genetic Algorithms (GA) is one of the most com-
monly used search techniques to generate high-quality or
approximate solutions for the optimization and search prob-
lems [14]. GA is inspired by the process of natural selection
to make the evolution toward better solution by evolutionary
biology. In GA, every solution is represented with a string,
also known as a chromosome or an individual which is
defined by the encoding method. After encoding, the initial
population with M individuals need to be generated as the
initial search space. Within each generation/iteration, a new
population can be obtained by using three basic GA opera-
tions, i.e. Gene selection, Gene crossover, and Gene mutation,
to simulate the gene evolution process. Finally, the individual
with the best fitness value is returned to represent the best
optimal solution when meet the terminated condition. Thus,
the whole GA process is end. In recent years, GA has been
considered as an effective method to deal with the resource
allocation problems.

Besides the three algorithms introduced above, we also
implement other popular algorithms including Local which
executes all free tasks on the mobile device locally and DPSO
introduced in Part IV(B) for comparison.

B. EXPERIMENTAL SETTINGS

1) EXPERIMENTAL ENVIRONMENT SETUP

A PC having an Intel Core i5 processor with a maximum
frequency of 4.2 GHz and a 16G RAM, which installed a
Windows 10 system, is used to test our proposed resource
allocation strategy. We used the MATLAB 2015 integrated
development environment to generate the workflows with
different scale, implement the proposed EERA algorithm and
other comparison algorithms.

217016

Mobile Cloud Workflow Activity

e 50

a) Balanced Structure Workflow a) General Structure Workflow

FIGURE 4. Two different structures for workflows.

2) PARAMETER SETTINGS FOR MOBILE CLOUD
WORKFLOWS

The workflow process depends on its structure, task workload
and the I/O data. Specifically, according to the task execution
logic in the workflow, we consider two different graph struc-
tures: balanced and general in this article as shown in Fig.4.
The former illustrated as Fig.4(a) refers to the workflows in
that the tasks are executed in parallel and symmetric. And the
latter one illustrated as Fig.4(b) refers to the workflows in that
the tasks are executed irregularly and generally. Additionally,
the scale of the workflow changes from 12 to 102 tasks
(including the two dummy tasks), each workflow has 10%
tasks set as fixed-position tasks, and the arcs number in the
graph is set as double times the tasks. On average, we divide
the tasks in a workflow into two different types: one is
computation-intensive and one is communication-intensive.
For the computation-intensive tasks, the mean workload of
each task is randomly selected from 5000 to 8000 and its
standard deviation is defined as 33% of its mean. The mean
sending/receiving data of each arc is randomly selected from
50 to 3000 and its standard deviation is defined as 33% of
its mean. To the contrary, for the communication-intensive
tasks, the mean workload of each task is randomly selected
from 50 to 3000 and its standard deviation is defined as
33% of its mean. The mean sending/receiving data of each
arc is randomly selected from 5000 to 8000 and its standard
deviation is defined as 33% of its mean.

3) PARAMETER SETTINGS FOR CONSTRAINTS AND
RESOURCES

It is well known that the execution deadline has a major
impact on the performance of the resource allocation strate-
gies. In order to evaluate all the strategies under a reasonable
workflow deadline constraint, we specify the workflow dead-
line using (17), where T},,4x and T,,;, are the workflow execu-
tion time produced by GE and HEFT respectively. We define
k as a relaxation factor between 0 and 10 to evaluate the

VOLUME 8, 2020

J. Li, X. Xu: EERA: An Energy-Efficient Resource Allocation Strategy for Mobile Cloud Workflows

IEEE Access

impact of the deadline constraint from tight to relax. The
larger k is, the more relax the constraint is.

WD = Tyin + k(Tmax — Thin) (17)

Same as the mobile cloud environment for the motivating
example discussed in Section II, the basic settings for mobile
cloud resources include the CPU process frequency of the
mobile device/cloud server, the idle power of the mobile
device, computation power of the mobile device/cloud server
and so on, all described here in Table 1. The environment
parameters, such as fy; and fc, can be obtained by the task
manager of the system. Besides, we use Powertutor to mon-
itor the real-time power consumption of the mobile device
and calculate the average data as the environment parameters
in the simulation, including Po, Pps, Pyp, Paown. The value
of uplink/download rate R,,/Rgows can be monitored by a
software kit. In this article, we use NetTraffic to monitor
and record the rate by uploading/downloading 100 pictures
in real time and calculate its average as the parameters in the
simulation.

TABLE 1. Parameters of the Environment Used in simulation.

Parameters values
CPU frequency of the mobile device(fy) (GHz) 1.7
CPU frequency of the cloud (fc) (GHz) 3.6
Idle power of the mobile device (Pp) (W) 0.001
Computation power of the mobile device (Py) (W) 1.2
Computation power of the cloud (Pc) (W) 30
Data uploading power of the mobile device (P,,) (W) 0.5
Data downloading power of the mobile device (Pyon,) (W) 0.1
Uploading rata of the mobile (R,,) (kb/s) 6000
Downloading rata of the mobile (R,..,) (kb/s) 1000

4) PARAMETER SETTINGS FOR ALGORITHMS

In GA, we design 30 individuals in a population during
each iteration. The initial chromosome is generated randomly.
New individuals will be selected according to their fitness
value with a probability of their contribution to the quality
of the whole population. We use roulette wheel selection
strategy to selection the new individuals. The gene operators:
crossover rate is 0.6 and mutation is 0.1. Two-point crossover
method is applied to generate offspring. The maximum itera-
tion is 100 times.

In DPSO and EERA, 20 particles are created in each
iteration and the initial position is generated randomly. The
maximum iteration is 100 times. To guarantee the diversity
of the population, the learning parameter for self-experience
is set as 0.3 and the learning parameter for global experience
is set as 0.5. The best particle position is the position with
minimum UtilityCost. All the algorithms are running 10 times
with the same task graph and parameters and the average
results are regarded as the final results.

C. EXPERIMENTAL RESULTS
In this section, the simulation experimental results of the
proposed different heuristic/metaheuristic algorithms on

VOLUME 8, 2020

different basic measurement are demonstrated. Since the
UtilityCost of the workflow is proposed for balancing the
goal of minimizing the total energy consumption and goal
of minimizing the total execution time, thus the first key
measurement of their performance is the UtilityCost of the
workflow (UC). Meanwhile, in order to compare and analyze
the performance in more detail, we also employ two other key
measurements including the Energy Consumption of Mobile
Device (ECMD), and the ratio of the workflow Execution
Time to the Workflow Deadline (ET/WD).

1) RESULTS FOR UTILITYCOST OF MOBILE CLOUD
WORKFLOW

Fig.5 illustrates the UtilityCost (UC) results of different algo-
rithms on two graph structures. Fig.5(a) and Fig.5(b) show
the results on ten different task graphs (from 12 to 102 tasks)
when the relaxation factor k is equal to 2. Fig.5(c) and
Fig.5(d) show the results on ten different relaxation factors
(from 1 to 10) when the workflow scale n is equal to 42. From
the definition of UtilityCost, we can see that the UC value of
Local is equal to 1 all the time and hence it is represented by
a straight line. The results show that the smaller the value of
UC, the better the performance of these algorithms is.

From Fig.5(a) and Fig.5(b), we can see that the UC values
by all algorithms are lower than 1 for the balanced structure.
However, the UC values by GA and DPSO fluctuates signif-
icantly, for example, it is close to 0.8 in the scenario with
22 and 32 tasks by GA. Such a phenomenon indicates that the
process of finding the optimal solution is unstable in GA and
DPSO as both of them are employing random search process.
And for the general structure, the UC value is bigger than
1 with the smaller workflow size. For example, in the scenario
with 22 tasks, the UC value by GA is about 1.41 and the UC
value by DPSO is about 1.10 which are both larger than 1.
Except for them, the UC value by other algorithms including
HEFT, GE, GU, EERA all equals to 1 which indicates the
optimal resource allocation decision in this scenario is Local.

Clearly, when the workflow size is larger, the random
search algorithms become more efficient. In general,
for the balanced structure, the rank for the efficiency
in minimizing UC with different workflow sizes is
EERA>GE>GU>HEFT>DPSO>GA; for the general
structure, the rank is GE>EERA>GU>DPSO>HEFT>GA.

From Fig.5(c) and Fig.5(d), we can see that with the same
workflow size n = 42, the UC values by these algorithms
are very different. For example, in the scenario with k = 3
(balanced structure), the UC value by GA is about 0.96,
HEFT is about 0.38, GE is about 0.40, GU is about 0.63,
DPSO is about 0.35 and EERA is about 0.58. The difference
between the maximum value by GA and the minimum value
by DPSOis 0.61. And for the general structure, in the scenario
with k = 8, the UC value by GA is about 0.62, HEFT is
about 0.28, GE is about 0.37, GU is about 0.37, DPSO is
about 0.44 and EERA is about 0.08. The difference between
the maximum value by GA and the minimum value by EERA
is 0.53.

217017

IEEE Access

J. Li, X. Xu: EERA: An Energy-Efficient Resource Allocation Strategy for Mobile Cloud Workflows

12 g =w=local =—e—HEFT GE GU =>=GA ==—=DFSO =8=EERA

4 62 2 82 92

Number of Workflow Activities

(a) Balanced Structure, k=2

Workflow Deadline: k

(c) Balanced Structure, n=42

FIGURE 5. Comparison results on UtilityCost (UC).

In general, for the balanced structure, the rank for the
efficiency in minimizing UC with different relaxation fac-
tors is EERA>GE>HEFT>GU>DPSO>GA; for general
structure, the rank is EERA>HEFT>DPSO>GU>GE>GA.
Therefore, our EERA algorithm can achieve the best perfor-
mance among all these algorithms in minimizing the value
of UC.

2) RESULTS FOR ENERGY CONSUMPTION OF

MOBILE DEVICE

Fig.6 illustrates the energy consumption results of different
algorithms on two graph structures. Fig.6(a) and Fig.6(b)
show the results on ten different task graphs (from 12 to
102 tasks) when the relaxation factor k is equal to 2. Fig.6(c)
and Fig.6(d) show the results on ten different relaxation fac-
tors (from 1 to 10) when the workflow scale 7 is equal to 42
(namely 42 tasks).

From Fig.6(a) and Fig.6(b), the energy consumption of the
mobile device is increasing progressively with “Local”” when
n becomes bigger, which is consistent with the real-world
situation. All heuristic/metaheuristic-based algorithms can
reduce the energy consumption more effectively on the bal-
anced structure than the general structure. When the work-
flow size is small, the results of energy consumption by
HEFT, GE, GU, DPSO and EERA are similar except for GA.
For example, in Fig.6(a) with 22 tasks, the energy consump-
tion by Local is about 1.81J, GA is about 1.48], HEFT is
about 0.86J, GE is about 0.66J, GU is about 0.66J, DPSO

217018

GU =i GA =g DPSO e=imEERA

16 Y e SR P
e 0C2] =g HEFT GE

=0

=

GU et GA et DPS O eu@mEER A

2 32 42 52 62 2 82 92 102
Number of Workflow Activities
(b) General Structure, k=2

Local —e—HEFT GE GU ==GA =2=DPSO —=m=EERA

- 5 6 8 9
Worlflow Deadline: k
(d) General Structure, n=42

is about 0.74] and EERA is about 0.49]. When the workflow
size becomes larger, the difference of energy consumption by
different algorithms is becoming more apparent. For exam-
ple, in the ninth scenario with 92 tasks in Fig.6(a), the energy
consumption by Local is about 7.51J, GA is about 4.21J,
HEFT is about 2.55J, GE is about 1.25J, GU is about 2.46],
DPSO is about 3.05J and EERA is about 2.16]J. In general,
the performance of GA is the worst among them and the
performance of our EERA is excellent but second to GE.
For the general structure, the energy consumption by all
heuristic/metaheuristic-based algorithms have also decreased
compared with Local but not as significantly as for the bal-
anced structure. For example, in the scenario with 102 tasks
for general structure, the largest one by Local is about 10.88J,
and the smallest one by EERA is about 7.58], which is a
reduction of 30.33%. But for the balanced structure, in the
same scenario with 102 tasks, the largest one by Local is
about 8.33J, the smallest one by GE is about 1.73J, and our
proposed EERA is about 2.58] which is 69.03% lower than
the highest one and 31.9% lower than the DPSO algorithm.

In general, all heuristic/metaheuristic-based algorithms
can reduce the energy consumption. Specifically, for the
balanced structure, the rank for the efficiency in energy
saving with different workflow sizes is GE>EERA>GU>
HEFT>DPSO>GA; while for the general structure, the rank
is GE>EERA >GA>DPSO>HEFT>GU.

From the Fig.6(c) and Fig.6(d), with the same work-
flow size and different relaxation factor, the performance

VOLUME 8, 2020

J. Li, X. Xu: EERA: An Energy-Efficient Resource Allocation Strategy for Mobile Cloud Workflows

IEEE Access

By

—s—1l.ocal —e—HEFT' GE GU ==(GA =i DS == EERA b =¥e=local =e=HEFT GE GU =>=(A ==#=DPSO =@=EERA
8 "
10
7
6 8
=
=5 =
g Z 6
= 5]
&
=
3 3
!
2
1
0 > 0
12 22 32 42 52 62 72 82 92 102 12 7 12 42 52 02 7 82 0 102
Number of Workflow Activities Number of Workflow Activities
(a) Balanced Structure. k=2 {b) General Structure, k=2
4 . 3 3 3 3 y 4
o= ocal === HEFT GE GU =t (GA e DPS() =il EER A F P —— ar GU === A =em DPS() == FERA
s 35 [e i e T R—
" —— —— R
3 3
25 =25
z s,
2 5 e 2 2
o 1.5 ‘_'/o—c\
o= N
| i ,'-\/ \ :
" \ o A " g’_/—‘_/_/
0 > 0 >
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Workflow Deadline: k

(c) Balanced Stracture, n=42

Workflow Deadline: k
(d) General Structure, n=42

FIGURE 6. Comparison results on energy consumption of mobile device (ECMD).

by different algorithms are relatively stable, which indi-
cates that the relaxation factor k has a limited influ-
ence on the energy consumption of the mobile device.
Specifically, for balanced structure, the rank for the effi-
ciency in energy saving with different relaxation factors
is EERA>GE>HEFT>GU>DPSO>GA, while for the
general structure, the rank is EERA>DPSO>GE>GU>
HEFT>GA.

To sum up, the resource allocation strategy based on our
proposed EERA algorithm achieves the best overall perfor-
mance in reducing the energy consumption of the mobile
device.

3) RESULTS FOR EXECUTION TIME OF MOBILE

CLOUD WORKFLOW

Fig.7 illustrates the execution time results of different algo-
rithms on two graph structures. To focus on the comparison
results, we present the results of ET/WD (namely the value
of the Execution Time divided by the Workflow Deadline)
instead of the execution time itself. Fig.7(a) and Fig.7(b)
show the results on ten different task graphs (from 12 to
102 tasks) when the relaxation factor k is equal to 2. Fig.7(c)
and Fig.7(d) show the results on ten different relaxation fac-
tors (from 1 to 10) when the workflow scale n is equal to
42. The dashed line represents the case where the execution
time is equal to the workflow deadline, namely the value is
equal to 1.

VOLUME 8, 2020

From Fig.7(a) and Fig.7(b), we can see the execution time
by Local, GA, DPSO could be more easily exceeding the
workflow deadline, while the other algorithms can meet the
deadline. Specifically, for the balanced structure, in 6 scenar-
ios with 12, 42, 52, 72, 82 and 92 tasks, the workflow cannot
meet the deadline constrains by Local. In 4 scenarios with 32,
42,72 and 82 tasks, the workflow cannot meet the deadline
constrains by GA. In 2 scenarios with 72 and 82 tasks, the
workflow cannot meet the deadline constrains by DPSO.
In all other scenarios, the workflow can be delivered within
the deadline by algorithms including HEFT, GE, GU and
EERA. As for the general structure, GA and Local have
8 scenarios where the deadline constraints cannot be met
(n>22), while the DPSO only fails in 1 scenario (n = 72).
Except for these scenarios, all deadline constraints can be met
by algorithms.

We reckon the reason for the above results is because
the optimization target of both GA and DPSO is the Util-
ityCost rather than the deadline. The optimization tar-
get of HEFT is minimizing the execution time of all
workflow tasks which implicitly guarantees the satisfac-
tion of deadline constraints. Among them, our EERA
algorithm achieves the best performance because it can
guarantee the satisfaction of deadline constraints through
the calculation of PCPs. In general, for the balanced
structure, the rank for the efficiency in minimizing the
workflow execution time with different workflow sizes

217019

IEEE Access

J. Li, X. Xu: EERA: An Energy-Efficient Resource Allocation Strategy for Mobile Cloud Workflows

FT GE

1.6 5, ==Local =—e=HE

ET/WD

GU ==we=(GA ==p==DPSO e=f==FFRA

ocal =e=HEFT GE GU ==e=(GA ==t=DPSO ==@=EERA

12 22 32 42 52 62 72 82 92 102
Number of Workflow Activities

(a) Balanced Structure, k=2

-_5‘—-r—'_N-:\'L =—e—HEFT GE GU =e=GA ==—DPSO =—8=EERA

ET/WD
=

3 3 4 5 6 7 8 ¢
Workflow Deadline: k

(c) Balanced Structure, n=42

&

12 2 32 42 52 62 2 82
Number of workflow activities

(b) General Structure, k=2

GU wtps GA sy DPS O =i EER A

1.8 4 =mpemLocal g HEFT =g GE

ETIWD

(]

4 5 6 7] 9
Workflow Deadline: k
(d} General Structure, n=42

FIGURE 7. Comparison results on the ratio of execution time to workflow deadline (ET/WD).

is GE>EERA>GU>HEFT>DPSO>GA; for the general
structure, the rank the rank is GE>EERA>GA>DPSO>
GU>GA.

From Fig.7(c) and Fig.7(d), we can see that with the same
workflow size n = 42, the ratio of deadline violation is
higher when the relaxation factor becomes smaller. When
the relaxation factor becomes larger, the performance of all
algorithms is better. For the balanced structure, when k>7, all
algorithms can meet the deadline constraints. For example,
in the scenario with k = 8, the ET/WD by Local is about
1.02, GA is about 0.73, HEFT is about 0.69, GE is about 0.73,
GU is about 0.73, DPSO is about 0.83 and EERA is about
0.71. For the general structure, the ratio of ET/WD decreased
fast and its average is lower than the balanced structure. When
k>3, except for 2 scenarios (k = 5 by GA, k = 7 by DPSO),
the total execution time of the workflow can meet the deadline
in all the other cases. For example, in the scenario with k = 8§,
the ET/WD by Local is about 0.19, GA is about 0.26, HEFT
is about 0.41, GE is about 0.47, GU is about 0.47, DPSO is
about 0.15 and EERA is about 0.12.

In general, for the balanced structure, the rank for the
efficiency in minimizing the workflow execution time with
different relaxation factors is HEFT>EERA>GE>DPSO>
GU>GA,; for the general structure, the rank is HEFT>
EERA>GE>GU>DPSO>GA.

217020

4) COMPARISON RESULTS BETWEEN EERA AND DPSO
The proposed EERA algorithm is established based on the
PCPs and DPSO algorithm, thus in this part, we com-
pare EERA algorithm with DPSO algorithm individually to
demonstrate the performance of EERA algorithm. The aver-
age comparison results between proposed EERA algorithm
and DPSO are illustrated in Table 2, including three evalua-
tion measurements: UC, ECMD and ET/WD.

From Tab.2, we can see that when the relaxation factor
k is fixed to 2, the average UC, ECMD and ET/WD value
of EERA algorithm from a task graph with 12 nodes to a
task graph with 102 nodes are all improved on two different
graph structures. At the same time, when the task graph size is
fixed to 42 nodes, the average UC, ECMD and ET/WD value
of EERA algorithm with different relaxation factor k£ from
1 to 10 are also improved on two different graph structures.
The results have proved that the proposed EERA algorithm
performs better than the DPSO algorithm in improving the
UtilityCost of the MCC system, reducing the energy con-
sumption of the mobile device and speeding up the response
time of the workflow.

5) SUMMARY OF EXPERIMENTAL RESULTS

Given the experimental results illustrated above, it is obvi-
ous that there is not a single algorithm which has the

VOLUME 8, 2020

J. Li, X. Xu: EERA: An Energy-Efficient Resource Allocation Strategy for Mobile Cloud Workflows

IEEE Access

TABLE 2. The average comparison results (EERA vs DPSO).

k=2 n=42
balanced general balanced | general

ucC 34.67%T 11.99%T | 59.03%7T | 70.00%T
ECMD 38.52%1 11.83%T | 61.63%T | 61.23%%
ET/WD 41.43%7T 1220%T | 13.67%T | 23.40%%

best performance in every situation. Many factors, such as
workflow size, the target of optimization, and the workflow
structure can affect the performance of these resource allo-
cation algorithms. To sum up, we can have the following
conclusions:

o The workflow size has the most impact on the perfor-
mance of these algorithms, the graph structure is second,
and the relaxation factor has the least impact.

« When the workflow size is larger, the performance of
GA and DPSO becomes much dynamic. In contrast,
our EERA can maintain stable performance and in most
cases is the best one in both reducing the energy con-
sumption and meeting the workflow deadline. Accord-
ingly, EERA can achieve the best performance under the
measurement of UC.

Therefore, for mobile cloud workflow, we recommend the
green resource allocation strategy based on our proposed
EERA algorithm which can achieve the best performance
among all representative algorithms discussed in this article.

VI. RELATED WORK

In mobile cloud computing, response time is not the only
target for mobile applications, reducing the energy consump-
tion of the mobile device is also one of the most important
QoS dimensions which has attracted a lot of efforts from the
researchers [21], [22].

Earlier research works focus on designing computa-
tion offloading frameworks and strategies to dynamically
offload computing tasks from the resource-constrained
mobile devices to the nearby cloud computing servers to
improve the service quality or reduce the energy consump-
tion of the mobile device. CloneCloud [23], ThinkAir [24],
Cloudlet [9] and Jade [25] are pioneered and fundamen-
tal frameworks which use computation offload as a main
approach to improve the QoS of mobile applications. These
frameworks can partition the whole application into several
sub-tasks in coarse or fine granularity so as to achieve differ-
ent task offloading objectives such as decreasing execution
cost, maximizing throughput, reducing network latency or
minimizing energy consumption. Additionally, many task
offloading approaches have been proposed to allocate the
cloud resources and the mobile resources to the mobile appli-
cations based on task partition [26], [27]. However, most of
these studies focus on independent mobile applications are
not suitable for mobile cloud workflow applications intro-
duced in this article. Mobile cloud workflow is a mobile
application that can be recognized as a set of tasks in a partial

VOLUME 8, 2020

order to achieve a specific business goal. As discussed in
the Introduction section, mobile cloud workflow applications
often need human intervention to complete specific tasks.
In addition, a mobile cloud workflow system may involve a
group of devices with access to the cloud resources which
act as not only a service provider, but as a main computation
offloading handler. These features bring many challenges
for the resource management in mobile cloud workflow
systems.

Recently, a lot of attention has been paid to design energy
efficient resource allocation strategies for mobile cloud work-
flow based on those frameworks mentioned above [27], [28].
These strategies can be categorized into three types based
on their objectives: enhancing QoS, saving energy or the
hybrid [6], [10], [16], [29]-[31]. The work in [37] considers
the allocation problem in an edge cloud computing system as
an M/M/c queue and solves the problem form two angles: the
flat deployment and the hierarchical deployment to minimize
the overall average response time of the system applications,
which doesn’t consider the system energy consumption. The
work in [10] systematically analyzes the characteristics of
cloud-assisted mobile application workflows and indicates
that the task allocation problem becomes a critical step in
deciding the energy-footprint of the workflow. The authors
construct a quadratic binary program to model the task allo-
cation problem in MCC and then propose an implementa-
tion of the simulated annealing algorithm and the greedy
autonomous offload algorithm to find the approximate opti-
mal solution with minimum energy, which ignores the exe-
cution time of the workflow. The work in [16] investigates
the offloading problem which takes both the energy con-
sumption of the mobile device and the execution delay of
the application into consideration by formulating the problem
into a 0-1 integer linear programming (ILP) problem. The
authors in [31] model the task scheduling problem in MCC
as an energy consumption optimization problem and pro-
pose three different heuristic algorithms, such as greed-based,
group-based and genetic-based task scheduling algorithms,
to solve it. Guo S. et al. models the offloading problem as
an energy-efficiency cost (EEC) minimization problem with
task-dependency and time deadline constraints. And proposes
a dynamic and distributed eDors algorithm with three steps:
offloading selection, clock frequency control and power allo-
cation [6], [32]. These works above all take the energy
consumption of the end device as their optimization goals but
they ignore the task deadlines and the location constraints
introduced above in the paper. Yadav R. et al. proposed an
adaptive heuristics algorithm, specifically creates an upper
CPU utilization threshold to detect overloaded hosts and
dynamic VM selection algorithms to consolidate the VMs,
to minimize the total energy consumption and maximize
Quality of Service in mobile cloud computing [35]. However,
the work has focused on the single task but do not considered
the workflow tasks. And furthermore, the mobile device,
plays only a client role in the paper, has not participated in the
execution of the application task. The work in [36] proposes

217021

IEEE Access

J. Li, X. Xu: EERA: An Energy-Efficient Resource Allocation Strategy for Mobile Cloud Workflows

a novel Delay-constraint and Reverse Auction-based Incen-
tive Mechanism, named DRAIM to maximize the revenue
of Mobile Network Operator. Although the mobile device
has participated in the task execution, its optimization goal
is maximizing the revenue of Mobile Network Operator
which is different with this article. For scientific workflow
in MCC, the work in [29] propose a two-phases algorithm
with a cost adaptive VM management under the constraints
of deadline and budget, which focuses on the Service Level
Agreement contains the deadline and the resource usage and
is not consider the energy consumption. A mobility-enabled
and fault-tolerance offloading system is proposed in [30] to
make the offloading strategies for mobile service workflow.
These approaches have considered the location constraints
of the specific tasks but do not consider the task deadline
constraints result from the uncertainties during the execution
of the workflow.

The energy-efficient resource allocation strategy for
mobile cloud workflows in this article takes both the task
deadlines and the location constraints into consideration.
We systematically analyze and formulate the allocation prob-
lem into a minimization problem with the goal of minimizing
the UtilityCost to balance the conflict between the energy
consumption of the mobile device and the execution time of
the whole workflow.

VIi. CONCLUSION AND FUTURE WORK

In this article, to achieve an optimal balance between the
energy consumption and the QoS of the mobile cloud work-
flow application, we introduced a novel concept of ““Utility-
Cost” to represent the trade-off between energy consumption
and execution time, and formulated the resource allocation
problem into an optimization model with the goal of min-
imizing the UtilityCost while meeting the execution time
constraints for mobile cloud workflow. Further, we proposed
a new energy-efficient resource allocation algorithm named
EERA to find the approximate optimal offloading decision.
Comprehensive simulation experiments have demonstrated
that our proposed algorithm outperformed all other repre-
sentative algorithms including Greedy (GU and GE), HEFT,
GA and DPSO under various parameter configurations and
different workflow graph structures.

As dynamic network bandwidth can have a significant
impact on the data communication time, in the future, we will
investigate the effect of dynamic bandwidth between the
mobile device and the cloud on resource allocation decisions
and improve our strategy to be more adaptive and robust to
network related issues.

REFERENCES

[1] Cisco, “Visual networking index: Global mobile data traffic forecast
update 2017-2022,” Cisco, San Jose, CA, USA, White Paper white-
paper-c11-738429, 2019. [Online]. Available: https://www.cisco.com/c/
en/us/solutions/collateral/service-provider/visual-networking-index-
vni/white-paper-c11-738429.html

[2] X. Qiao, P. Ren, G. Nan, L. Liu, S. Dustdar, and J. Chen, “Mobile Web
augmented reality in 5G and beyond: Challenges, opportunities, and future
directions,” China Commun., vol. 16, no. 9, pp. 141-154, Sep. 2019.

217022

[3]
[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

P. Riti, “Mobile development,” in Practical Scala DSLs. Berkeley, CA,
USA: Apress, 2018, pp. 139-158.

A.-L.Jin, W. Song, and W. Zhuang, “‘Auction-based resource allocation for
sharing cloudlets in mobile cloud computing,” IEEE Trans. Emerg. Topics
Comput., vol. 6, no. 1, pp. 45-57, Mar. 2018.

D. C. Marinescu, “Big data, data streaming, and the mobile cloud,” in
Cloud Computing. San Mateo, CA, USA: Morgan Kaufmann, 2018, ch.
12, pp. 439-487.

S. Guo, J. Liu, Y. Yang, B. Xiao, and Z. Li, “Energy-efficient dynamic
computation offloading and cooperative task scheduling in mobile cloud
computing,” IEEE Trans. Mobile Comput., vol. 18, no. 2, pp. 319-333,
Feb. 2019.

H. Debnath, G. Gezzi, A. Corradi, N. Gehani, X. Ding, R. Curtmola,
and C. Borcea, “Collaborative offloading for distributed mobile-cloud
apps,” in Proc. 6th IEEE Int. Conf. Mobile Cloud Comput., Services, Eng.
(MobileCloud), Bamberg, Germany, Mar. 2018, pp. 87-94.

H. Yeganeh, A. Salahi, and M. A. Pourmina, “A novel cost optimization
method for mobile cloud computing by capacity planning of green data
center with dynamic pricing,” Can. J. Electr. Comput. Eng., vol. 42, no. 1,
pp. 41-51, Apr. 2019.

M. Whaiduzzaman, A. Naveed, and A. Gani, “MobiCoRE: Mobile device
based cloudlet resource enhancement for optimal task response,” IEEE
Trans. Services Comput., vol. 11, no. 1, pp. 144—154, Jan. 2018.

B. Gao, L. He, X. Lu, C. Chang, K. Li, and K. Li, “Developing energy-
aware task allocation schemes in cloud-assisted mobile workflows,” in
Proc. IEEE Int. Conf. Comput. Inf. Technol.; Ubiquitous Comput. Com-
mun.; Dependable, Autonomic Secure Comput.; Pervasive Intell. Comput.,
Liverpool, U.K., Oct. 2015, pp. 1266-1273.

N. K. Shukla, R. Pila, and S. Rawat, ““Utilization-based power consump-
tion profiling in smartphones,” in Proc. 2nd Int. Conf. Contemp. Comput.
Informat. (ICI), Noida, India, Dec. 2016, pp. 881-886.

S. Jukna and H. Seiwert, “Greedy can beat pure dynamic programming,”
Inf. Process. Lett., vol. 142, pp. 90-95, Feb. 2019.

H. Topcuoglu, S. Hariri, and M.-Y. Wu, ‘“‘Performance-effective and low-
complexity task scheduling for heterogeneous computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 13, no. 3, pp. 260-274, Mar. 2002.

D. Kumar, B. Sahoo, B. Mondal, and T. Mandal, “A genetic algorithmic
approach for energy efficient task consolidation in cloud computing,” Int.
J. Comput. Appl., vol. 118, no. 2, pp. 1-6, May 2015.

S.J. Nirmala and S. M. S. Bhanu, “Catfish-PSO based scheduling of scien-
tific workflows in IaaS cloud,” Computing, vol. 98, no. 11, pp. 1091-1109,
Jun. 2016.

X. Wang, J. Wang, X. Wang, and X. Chen, “Energy and delay tradeoff for
application offloading in mobile cloud computing,” IEEE Syst. J., vol. 11,
no. 2, pp. 858-867, Jun. 2017.

P. Balakrishnan and C. K. Tham, “Energy-efficient mapping and schedul-
ing of task interaction graphs for code offloading in mobile cloud com-
puting,” in Proc. IEEE/ACM Int. Conf. Utility Cloud Comput., Dec. 2013,
pp. 34-41.

W. Zhang and Y. Wen, “Energy-efficient task execution for application
as a general topology in mobile cloud computing,” IEEE Trans. Cloud
Comput., vol. 6, no. 3, pp. 708-719, Jul. 2015.

P. Zhao, H. Tian, and B. Fan, “Partial critical path based greedy offloading
in small cell cloud,” in Proc. IEEE VTC, Sep. 2016, pp. 1-5.

Z. Zhang, J. Wu, G. Jiang, L. Chen, and S. Lam, “QoE-Aware task
offloading for time constraint mobile applications,” in Proc. IEEE 42nd
Conf. Local Comput. Netw. (LCN), Singapore, Oct. 2017, pp. 510-513.
B. Zhou and R. Buyya, “Augmentation techniques for mobile cloud
computing: A taxonomy, survey, and future directions,” ACM Comput.
Surveys, vol. 51, no. 1, pp. 1-38, Apr. 2018.

S.Deng, L. Huang, H. Wu, and Z. Wu, “Constraints-driven service compo-
sition in mobile cloud computing,” in Proc. IEEE Int. Conf. Web Services
(ICWS), San Francisco, CA, USA, Jun. 2016, pp. 228-235.

B. G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:
Elastic execution between mobile device and cloud,” in Proc. 6th Conf.
Comput. Syst. (EuroSys), New York, NY, USA, 2011, pp. 301-314.

S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in Proc. IEEE INFOCOM, Orlando, FL, USA,
Mar. 2012, pp. 945-953.

H. Qian and D. Andresen, ‘“Extending mobile Device’s battery life by
offloading computation to cloud,” in Proc. 2nd ACM Int. Conf. Mobile
Softw. Eng. Syst., Florence, Italy, May 2015, pp. 150-151.

VOLUME 8, 2020

J. Li, X. Xu: EERA: An Energy-Efficient Resource Allocation Strategy for Mobile Cloud Workflows

IEEE Access

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

H. Wu, “Multi-objective decision-making for mobile cloud offloading:
A survey,” IEEE Access, vol. 6, pp. 3962-3976, 2018.

H. Kanemitsu, M. Hanada, and H. Nakazato, “Multiple workflow
scheduling with offloading tasks to edge cloud,” in Proc. Int.
Conf. Cloud Comput. (Cloud), San Diego, CA, USA, 2019,
pp. 38-52.

L. Li, Q. Guan, L. Jin, and M. Guo, “Resource allocation and task
offloading for heterogeneous real-time tasks with uncertain duration
time in a fog queueing system,” IEEE Access, vol. 7, pp. 9912-9925,
2019.

W.-J. Kim, D.-K. Kang, S.-H. Kim, and C.-H. Youn, “Cost adaptive VM
management for scientific workflow application in mobile cloud,” Mobile
Netw. Appl., vol. 20, no. 3, pp. 328-336, Jun. 2015.

S. Deng, L. Huang, J. Taheri, and A. Y. Zomaya, ‘“Computa-
tion offloading for service workflow in mobile cloud computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 12, pp.3317-3329,
Dec. 2015.

C. Tang, M. Hao, X. Wei, and W. Chen, “Energy-aware task scheduling
in mobile cloud computing,” Distrib. Parallel Databases, vol. 36, no. 3,
pp. 1-25,2018.

S. Guo, B. Xiao, Y. Yang, and Y. Yang, “Energy-efficient dynamic offload-
ing and resource scheduling in mobile cloud computing,” in Proc. 35th
Annu. IEEE Int. Conf. Comput. Commun. (INFOCOM), San Francisco,
CA, USA, Apr. 2016, pp. 1-9.

F. A. Omara and M. M. Arafa, “Genetic algorithms for task schedul-
ing problem,” J. Parallel Distrib. Comput., vol. 70, no. 1, pp. 13-22,
Jan. 2010.

F. Sun, F. Hou, N. Cheng, M. Wang, H. Zhou, L. Gui, and X. Shen, “Coop-
erative task scheduling for computation offloading in vehicular cloud,”
IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 11049-11061, Nov. 2018.
R. Yadav and W. Zhang, “MeReg: Managing energy-SLA tradeoff for
green mobile cloud computing,” Wireless Commun. Mobile Comput.,
vol. 2017, no. 2, pp. 1-11, 2017.

VOLUME 8, 2020

[36]

[37]

H. Zhou, X. Chen, S. He, J. Chen, and J. Wu, “DRAIM: A novel
delay-constraint and reverse auction-based incentive mechanism for WiFi
offloading,” IEEE J. Sel. Areas Commun., vol. 38, no. 4, pp. 711-722,
Apr. 2020.

E. Wang, D. Li, B. Dong, H. Zhou, and M. Zhu, “Flat and hierarchical
system deployment for edge computing systems,” Future Gener. Comput.
Syst., vol. 105, pp. 308-317, Apr. 2019.

JUAN LI received the M.S. and Ph.D. degrees from
the Computing Science School, Wuhan University,
‘Wuhan, China, in 2014 and 2018, respectively. Her
research interests include mobile edge computing,
mobile cloud computing, workflow scheduling,
and resource allocation technology.

XIAOLU XU received the M.S. degree from the
School of Power and Mechanical Engineering,
Wuhan University, Wuhan, China, in 2013. His
research interests include resource allocation algo-
rithm research in electrical power systems, and the
application design of mobile cloud application in
smart grid.

217023

