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ABSTRACT COVID-19 is a global epidemic. Till now, there is no remedy for this epidemic. However,
isolation and social distancing are seemed to be effective preventive measures to control this pandemic.
Therefore, in this article, an optimization problem is formulated that accommodates both isolation and social
distancing features of the individuals. To promote social distancing, we solve the formulated problem by
applying a noncooperative game that can provide an incentive for maintaining social distancing to prevent
the spread of COVID-19. Furthermore, the sustainability of the lockdown policy is interpreted with the help
of our proposed game-theoretic incentive model for maintaining social distancing where there exists a Nash
equilibrium. Finally, we perform an extensive numerical analysis that shows the effectiveness of the proposed
approach in terms of achieving the desired social-distancing to prevent the outbreak of the COVID-19 in
a noncooperative environment. Numerical results show that the individual incentive increases more than
85% with an increasing percentage of home isolation from 25% to 100% for all considered scenarios. The
numerical results also demonstrate that in a particular percentage of home isolation, the individual incentive
decreases with an increasing number of individuals.

INDEX TERMS COVID-19, health economics, isolation, social distancing, noncooperative game, Nash
equilibrium.

I. INTRODUCTION
The novel Coronavirus (2019-nCoV or COVID-19) is con-
sidered to be one of the most dangerous pandemics of this
century. COVID-19 has already affected every aspect of indi-
vidual’s life i.e. politics, sovereignty, economy, education,
religion, entertainment, sports, tourism, transportation, and
manufacturing. It was first identified in Wuhan City, China
on December 29, 2019, and within a short span of time,
it spread out worldwide [1], [2]. The World Health Organi-
zation (WHO) has announced the COVID-19 outbreak as a
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Public Health Emergency of International Concern (PHEIC)
and identified it as an epidemic on January 30, 2020 [3].
Till July 23, 2020, COVID-19 has affected 215 countries
and territories throughout the globe and 2 international
conveyances [4].

The recent statistics on COVID-19 also indicate that more
than 15, 371, 829 persons have been affected in different
ways [4], [5]. Currently, the ten most infected countries
are USA, Brazil, India, Russia, South Africa, Peru, Mexico,
Chile, Spain, UK, and these countries contributed more than
68% of worldwide cases. Since the outbreak, the total number
of human death and recovery to/fromCOVID-19 are 630, 138
and 9, 348, 761, respectively [4], [5] (till July 23, 2020).
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The fatality of human life due to COVID-19 is frightening
in numerous countries. For instance, among the highest mor-
tality rates countries, 70% of the mortality belongs to the top
8 countries due to COVID-19. Furthermore, the percentages
of affected cases for male and female are around 55.21%
and 44.79%, whereas these values are about 76% and 24%,
respectively in death cases globally [6]. Different countries
are undertaking different initiatives to reduce the impact of
the COVID-19 epidemic, but there is no clear-cut solution to
date.

One of the most crucial tasks that countries need to do
for understanding and controlling the spread of COVID-19
is testing. Testing allows infected bodies to acknowledge
that they are already affected. This can be helpful for tak-
ing care of them, and also to decrease the possibility of
contaminating others. In addition, testing is also essential
for a proper response to the pandemic. It allows carrying
evidence-based steps to slow down the spread of COVID-19.
However, to date, the testing capability for COVID-19 is
quite inadequate in most countries around the world. South
Korea was the second COVID-19 infectious country after
China during February 2020. However, mass testing may be
one of the reasons why it succeeded to diminish the number
of new infections in the first wave of the outbreak since it
facilitates a rapid identification of potential outbreaks [7]. For
detecting COVID-19, two kinds of tests are clinically carried
out: (i) detection of virus particles in swabs collected from
the mouth or nose, and (ii) estimating the antibody response
to the virus in blood serum.

This COVID-19 epidemic is still uncontrolled in most
countries. As a result, day by day, the infected cases and
death graph are rising exponentially. However, researchers
are also focusing on the learning-based mechanism for
detecting COVID-19 infections [8]–[14]. This approach can
be cost-effective and also possibly will take less time to
perform the test. Some other studies [15]–[23] focus on
finding the spreading behavior of COVID-19 by using known
epidemic models like Susceptible - Infectious - Recovered
(SIR), Susceptible - Infectious - Recovered - Suscepti-
ble (SIRS), Susceptible - Exposed - Infectious - Recov-
ered (SEIR), Susceptible-Infected-Hibernator-Removed
(SIHR), Susceptibl- Infected-Diagnosed-Ailing-Recognized-
Threatened-Healed-Extinct (SIDARTHE) etc. However, all
of these epidemic models are confined by the hypothesis of
constant recovery rates, and they also struggle to reveal the
system dynamics when there is a limited coupling between
subpopulations [24]. Moreover, These models are inadequate
to capture typically stochastic aspects, like fade-out, extinc-
tion, and lack of synchrony due to arbitrary delays [25].
Besides, the limitations of these models, they may present
the epidemic scenario but have little impact on reducing or
controlling the causes. However, the infected cases of the
COVID-19 can be reduced by maintaining a certain social
distance among the individuals. In particular, tomaintain such
social distancing, self-isolation, and community lockdown
can be possible approaches. Thus, it is imperative to develop

a model so that the social community can take a certain
decision for self-isolation/lockdown to prevent the spread of
COVID-19.

To the best of our knowledge, there is no study that focuses
on the mathematical model for monitoring and controlling
individual in a community setting to prevent this COVID-19
epidemic. Thus, the main contribution of this article is to
develop an effective mathematical model with the help of
global positioning system (GPS) information to fight against
COVID-19 epidemic by monitoring and controlling individ-
ual. To this end, we make the following key contributions:
• First, we formulate an optimization problem for maxi-
mizing the social utility of individual considering both
isolation and social distancing. Here, the optimization
parameters are the positions of individual.

• Second, we reformulate the objective function which
is incorporated with the social distancing feature of an
individual as a noncooperative game. Here, we show
that home isolation is the dominant strategy for all the
individuals (players) of the game. We also prove that the
game has a Nash Equilibrium (NE).

• Third, we interpret the sustainability of lockdown policy
with the help of our model.

• Finally, we evaluate the effectiveness of the proposed
approach with the help of extensive numerical analysis.

The remainder of this article is organized as follows.
In Section II, we present the literature review. We explain
the system model and present the problem formulation
in Section III. The proposed solution approach of the
above-mentioned problem is addressed in Section IV.
We interpret the sustainability of lockdown policy with our
model in Section V. In Section VI, we provide numerical
analysis for the proposed approach. We present the limitation
of the current study in Section VII. Finally, we draw some
conclusions in Section VIII.

II. LITERATURE REVIEW
COVID-19 is the seventh coronavirus identified to
contaminate humans. Individuals were first affected by the
2019-nCoV virus from bats and other animals that were
sold at the seafood market in Wuhan [26], [27]. Afterward,
it began to spread from human to human mainly through
respiratory droplets produced while individual sneeze cough
or exhaling [3].

In [15], the authors present a generalized fractional-order
SEIR model (SEIQRP) for predicting the potential outbreak
of contagious diseases alike COVID-19. They also present a
modified SEIQRPmodel in their work, namely the SEIQRPD
model. With the real data of COVID-19, they have shown that
the proposed model has a more reliable prediction capability
for the succeeding two weeks. In [16], the authors introduce a
Bayesian Heterogeneity Learning approach for Susceptible-
Infected-Removal-Susceptible (SIRS) model. They formu-
late the SIRS model into a hierarchical structure and assign
the Mixture of Finite mixtures priors for heterogeneity learn-
ing. They utilize the methodology to investigate the state

VOLUME 8, 2020 215571



A. K. Bairagi et al.: Controlling the Outbreak of COVID-19: Noncooperative Game Perspective

level COVID-19 data in the U.S.A. The authors induce
an innovative neurodynamical model of epidemics called
Neuro-SIR in [17]. The proposed approach allows the mod-
eling of pandemic processes in profoundly different pop-
ulations and contagiousness contexts. In [18], the authors
propose a mobility-based SIR model for epidemics consid-
ering the pandemic situations like COVID-19. The proposed
model considers the population distribution and connectiv-
ity of different geographic locations across the globe. The
authors propose a noble mathematical model for present-
ing the COVID-19 pandemic by fractional-order SIDARTHE
model in [19]. They prove the existence of a steady solution of
the fractional-order COVID-19 SIDARTHEmodel. They also
produce the necessary conditions for the fractional order of
four proposed control strategies. In [20], the authors propose
a conceptual mathematical model for the epidemic dynam-
ics using four compartments, namely Susceptible, Infected,
Hospitalized, and Recovered. They investigate the stability
of the equilibrium for the model using the basic reproduction
number for knowing the austerity. In [21], the authors develop
a pandemicmodel to inquire about the transmission dynamics
of the COVID-19. Here, they assess the theoretical impact of
probable control invasions like home quarantine, social dis-
tancing, cautious behavior, and other self-imposed measures.
They apply the Bayesian approach and authorized data to
figure out some of the model parameters. In [22], the authors
introduce a SIHR model to prognosticate the course of the
epidemic for finding an effective control scheme. The model
parameters are estimated based on fitting to the published
data of Hubei province, China. In [23], the authors present a
mathematical model for COVID-19 based on three different
compartments, namely susceptible, infected, and recovered
classes. They also present some qualitative viewpoints for
the model, i.e., the existence of equilibrium and its stability
issues.

Machine learning can play an important role to detect
COVID-19 infected individual based on the observatory
data. The work in [8] proposes an algorithm to investi-
gate the readings from the smartphone’s sensors to find the
COVID 19 symptoms of a patient. Some commons symp-
toms of COVID-19 victims like fever, fatigue, headache,
nausea, dry cough, lung CT imaging features, and shortness
of breath can be captured by using the smartphone. This
detection approach for COVID-19 is faster than the clinical
diagnosis methods. The authors in [9] propose an artificial
intelligence (AI) framework for obtaining the travel history
of individual using a phone-based survey to classify them as
no-risk, minimal-risk, moderate-risk, and high-risk of being
affected with COVID-19. The model needs to be trained
with the COVID-19 infected information of the areas where
s/he visited to accurately predict the risk level of COVID-19.
In [10], the authors develop a deep learning-based method
(COVNet) to identify COVID -19 from the volumetric chest
CT image. For measuring the accuracy of their system,
they utilize community-acquired pneumonia (CAP) and other
non-pneumonia CT images. The authors in [11] also use deep

learning techniques for distinguishing COVID-19 pneumonia
from Influenza-A viral pneumonia and healthy cases based
on the pulmonary CT images. They use a location-attention
classification model to categorize the images into the above
three groups. Depth cameras and deep learning are applied to
recognize unusual respiratory pattern of personnel remotely
and accurately in [12]. They propose a novel and effective
respiratory simulation model based on the characteristics of
original respiratory signals. This model intends to fill the
gap between large training datasets and infrequent real-world
data. Multiple retrospective experiments were demonstrated
to examine the performance of the system in the detection
of speculated COVID-19 thoracic CT characteristics in [13].
A 3D volume review, namely ‘‘Corona score’’ is employed
to assess the evolution of the disease in each victim over
time. In [14], the authors use a pre-trained UNet to fragment
the lung region for automatic detection of COVID-19 from
a chest CT image. Afterward, they use a 3D deep neural
network to estimate the probability of COVID-19 infections
over the segmented 3D lung region. Their algorithm uses
499 CT volumes as a training dataset and 131 CT volumes
as a test dataset and achieves 0.959 ROC AUC and 0.976 PR
AUC. The study in [28] presents evidence of the diversity
of human coronavirus, the rapid evolution of COVID-19,
and their clinical and Epidemiological characteristics. The
authors also develop a deep learning model for identifying
COVID-19. and trained the model using a small CT image
datasets. They find an accuracy of around 90% using a small
CT image dataset.

In [29], the authors propose a stochastic transmission
model for capturing the phenomenon of the COVID-19
outbreak by applying a new model to quantify the effec-
tiveness of association tracing and isolation of cases at con-
trolling a severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2)-like pathogen. In their model, they analyze
synopses with a varying number of initial cases, the basic
reproduction number, the delay from symptom onset to isola-
tion, the probability that contacts were traced, the proportion
of transmission that occurred before symptom start, and the
proportion of subclinical infections. They find that contact
tracing and case isolation are capable enough to restrain a new
outbreak of COVID-19 within 3 months. In [30], the authors
present a risk-sensitive social distance recommendation sys-
tem to ensure private safety from COVID-19. They formulate
a social distance recommendation problem by characterizing
Conditional Value-at-Risk (CVaR) for a personal area net-
work (PAN) via Bluetooth beacon. They solve the formulated
problem by proposing a two phases algorithm based on a
linear normal model. In [31], the authors mainly dissect the
various technological interventions made in the direction of
COVID-19 impact management. Primarily, they focus on
the use of emerging technologies such as Internet of Things
(IoT), drones, artificial intelligence (AI), blockchain, and 5G
in mitigating the impact of the COVID-19 pandemic.

Moreover, noncooperative game theory is used by
different authors for solving resource allocation problems in
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FIGURE 1. Exemplary System model. Isolation indicates staying at home
whereas social distancing measures the distance of a individual from
others.

communication [41], [42]. In [41], the authors represent the
resource allocation problem as a noncooperative game, where
every player desires to maximize its energy efficiency (EE).
In [42], the authors modeled the distributed resource alloca-
tion problem as a noncooperative game in which every player
optimizes its EE individually with the support of distributed
remote radio heads.

The works [8]–[20], [28]–[31] focused on COVID-19
detection and analyzed the characteristic of its respiratory
pattern. Hence, the literature has achieved a significant result
in terms of post responses. In fact, it is also imperative to
control the epidemic of COVID-19 by maintaining social
distance. Therefore, different from the existing literature,
we focus on the design of a model that can measure indi-
vidual’s isolation and social distance to prevent the epidemic
of COVID-19. The model considers both isolation and social
distancing features of individuals to control the outbreak of
COVID-19.

III. SYSTEM MODEL AND PROBLEM FORMULATION
Consider an area in which a setN of N individuals are living
under COVID-19 threat and must decide whether to stay at
home or go leave their homes to visit a market, shop, train
station, or other locations, as shown in Figure 1. Everyone has
a mobile phone with GPS. From analyzing the GPS informa-
tion, we can know their home locations of each individuals,
and longitude and latitude of these locations are denoted
by Xh, and Yh, respectively. We consider one time period
(e.g., 15 or 30 minutes) for our scenario and this time period
is divided into T smaller time steps in a set T . For each of
time step t ∈ T , we have the GPS coordinates X and Y of
every individual.

Now, the deviation from home for any individual i ∈ N in
between two time steps can be measured by using Euclidean
distance as follows:

δti =


√
(Xhi − X

t
i )

2 + (Y hi − Y
t
i )

2, if t = 1,√
(X t−1i − X ti )

2 + (Y t−1i − Y ti )
2, otherwise.

(1)

Thus, the total deviation from home by each individual i ∈ N
in a particular time period can be calculated as follows:

δi =
∑
t∈T

δti ,∀i ∈ N (2)

On the other hand, at the end of a particular time period,
the distance between an individual i ∈ N and any other
individuals j ∈ N , j 6= i is as follows:

d ji =
√
(XTi − X

T
j )

2 + (Y Ti − Y
T
j )

2. (3)

Hence, the total distance of individual i ∈ N from other
individuals Ni ⊆ N , who are in close proximity with i ∈ N ,
andNi is fixed for a particular time step, can be expressed as
follows:

di =
∑
j∈Ni

d ji , ∀i ∈ N . (4)

Our objective is to keep δminimum for reducing the spread
of COVID-19 from infected individuals, which is an isolation
strategy. Meanwhile, we want to maximize social distancing
whichmathematically translates intomaximizing d for reduc-
ing the chance of infection from others. However, we can use
log term to bring fairness [32], [33] in the objective function
among all individuals. Hence, we can pose the following
optimization problem:

max
X,Y

min
i∈N

log(Z − δi)ωd
(1−ω)
i (5)

s.t. δi ≤ δmax, (5a)

d ji ≥ dmin, ∀i, j (5b)

ω ∈ [0, 1]. (5c)

In (5), Z is a large number for changing the minimization
problem to maximization one, and Z > δi,∀i ∈ N . The
optimization variables X and Y indicate longitude, and lati-
tude, respectively, of the individuals. Moreover, the first term
in (5) encourages individual for isolation whereas the second
term in (5) encourages individual to maintain fair social
distancing. In this way, solving (5) can play a vital role in
our understanding on how to control the spread of COVID-19
among vast population in the society. Constraint (5a) guar-
antees small deviation to maintain emergency needs, while
Constraint (5b) assures aminimum fair distance among all the
individuals to reduce the spreading of COVID-19 from one
individual to another. Usually, local government or author-
ity can set the value of δmax, and dmin can be set up by
expertise body like the World Health Organization (WHO).
Constraint (5c) shows that ω can take any value between
0 and 1 which captures the importance between two key
factors captured in the objective function of (5). For example,
if COVID-19 is already spreading in a given society, then
most of the weight would go to isolation term rather than
social distancing. Here, we present a utility-based model
depending on the preventing mechanism like home isola-
tion and social distancing. This is an indirect approach to
combat an epidemic like COVID-19. We have no scope to
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combine traditional probabilities as described in epidemic
models (i.e., SIR, SIRS, SEIR, SIHR, SIDARTHE, etc.) like
infection and recovery in our utility-based model. The objec-
tive of (5) is difficult to achieve as it requires the involvement
and coordination among all theN individual. Moreover, if the
individuals are not convinced then it is also difficult for the
government to attain the objective forcefully. Thus, we need
an alternative solution approach that encourage individual
separately to achieve the objective and game theory, which is
successfully used in [34], [35], can be one potential solution,
which will be elaborated in the next section.

IV. NONCOOPERATIVE GAME SOLUTION
To attain the objective for a vast population, governments
can introduce incentives for isolation and also for social
distancing. Then every individual wants to maximize their
utilities or payoffs. In this way, government can play its role
for achieving social objective. Hence, the modified objective
function is given as follows:

U (δ, d) = α
∑
i∈N

log(Z − δi)+ β
∑
i∈N

log di, (6)

where α = α′ω and β = β ′(1 − ω) with α′ > 0 and
β ′ > 0 are incentives per unit of isolation and social distanc-
ing. In practice, α and β can bemonetary values for per unit of
isolation and social distancing, respectively. In (6), one indi-
vidual’s position affects the social distancing of others, and
hence, the individuals have partially conflicting interest on
the outcome of U . Therefore, the situation can be interpreted
with the noncooperative game [36], [37].

A noncooperative game is a game that exhibit a compet-
itive situation where each player (i.e., individual) needs to
make choices independent of the other individuals, given the
possible policies of the other individuals and their impact on
the individual’s payoffs or utilities. Now, a noncooperative
game in strategic form or a strategic game G is a triplet
G = (N , (Si)i∈N , (ui)i∈N ) [40] for any time period where:

• N is a finite set of individuals, i.e.,N = {1, 2, · · · ,N },
• Si is the set of available strategies for individual i ∈ N ,
• ui : S → R is the payoff function of individual i ∈ N ,
with S = S1 × S2 × ..× SN .

Theoretically, there may be many different strategies, but in
our case, we have considered two strategies, namely staying
at home and moving outside (visit market, shop, train station,
school/college etc.) for every individual.We useSi = {shi , s

m
i }

to represent the set of strategies for each individual iwhere shi
and smi indicate the strategies of staying at home and moving
outside for individual i ∈ N , respectively. The payoff or
incentive function of any individual i ∈ N in a time period
can be defined as follows:

ui(.) =

{
α logZ + β log d̃i, if strategy is shi ,
α log(Z − δi)+ β log di, if strategy is smi .

(7)

where d̃i =
∑

j∈Ni

√
(Xhi − Xj)

2 + (Y hi − Yj)
2.

TABLE 1. Game matrix for 2-individuals.

The Nash equilibrium [38] is the most used solution con-
cept for a noncooperative game. Formally, Nash equilibrium
can be defined as follows [39]:
Definition 1: A pure strategy Nash equilibrium for a

non-cooperative game G = (N , (Si)i∈N , (ui)i∈N ) is a strat-
egy profile s∗ ∈ S where ui(s∗i , s

∗
−i) ≥ ui(si, s∗−i),∀si ∈

Si,∀i ∈ N .
However, to find the Nash equilibrium, the following two

definitions can be helpful.
Definition 2 [40]: A strategy si ∈ Si is the dominant

strategy for individual i ∈ N if ui(si, s−i) ≥ ui(s′i, s−i),∀s
′
i ∈

S and ∀s−i ∈ S−i, where S−i =
∏

j∈N ,j6=i Sj is the set of all
strategy profiles for all individuals except i.
Definition 3 [40]: A strategy profile s∗ ∈ S is the dom-

inant strategy equilibrium if every elements s∗i of s
∗ is the

dominant strategy of individual i ∈ N .
Thus, if we can show that every individual of our game

G has a strategy that gives better utility irrespective of other
individuals strategies, thenwith the help of Definition 2 and 3,
we can say that Proposition 1 is true.
Proposition 1: G has a pure strategy Nash equilibrium

when α > β.
Proof: Let us consider a 2-individuals simple matrix

game as shown in Table 1 with the mentioned strategies.
For simplicity, we consider Laplacian distance 1 that each
individual can pass in any timestamp.

Thus, the utilities of P1:

u1(sh1, s
h
2) = α logZ + β log d1,

u1(sh1, s
m
2 ) = α logZ + β log(d1 ±1),

u1(sm1 , s
h
2) = α log(Z −1)+ β log(d1 ±1),

u1(sm1 , s
m
2 ) = α log(Z −1)+ β log(d1 ± 21), (8)

where ± indicates the movement of individual to other
individual and opposite direction, respectively. Now,

u1(sh1, s
h
2)− u1(s

m
1 , s

h
2)

= α log
(

Z
Z −1

)
+ β log

(
d1

d1 ±1

)
,

u1(sh1, s
m
2 )− u1(s

m
1 , s

m
2 )

= α log
(

Z
Z −1

)
+ β log

(
d1 ±1
d1 ± 21

)
. (9)

As α > β, so the following conditions hold from (9):

u1(sh1, s
h
2)− u1(s

m
1 , s

h
2) ≥ 0,

u1(sh1, s
m
2 )− u1(s

m
1 , s

m
2 ) ≥ 0, (10)

Hence, rewriting (10), we get the followings:

u1(sh1, s
h
2) ≥ u1(sm1 , s

h
2),

u1(sh1, s
m
2 ) ≥ u1(sm1 , s

m
2 ). (11)
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Thus, sh1 is the dominant strategy of P1. Moreover, for the
individual P2, the utilities are as follows:

u2(sh1, s
h
2) = α logZ + β log d2,

u2(sm1 , s
h
2) = α logZ + β log(d2 ±1),

u2(sh1, s
m
2 ) = α log(Z −1)+ β log(d2 ±1),

u2(sm1 , s
m
2 ) = α log(Z −1)+ β log(d2 ± 21). (12)

Now,

u2(sh1, s
h
2)− u2(s

h
1, s

m
2 )

= α log
(

Z
Z −1

)
+ β log

(
d2

d2 ±1

)
,

u2(sm1 , s
h
2)− u2(s

m
1 , s

m
2 )

= α log
(

Z
Z −1

)
+ β log

(
d2 ±1
d2 ± 21

)
. (13)

As α > β, so the following conditions hold from (13):

u2(sh1, s
h
2)− u2(s

m
1 , s

m
2 ) ≥ 0,

u2(sm1 , s
h
2)− u2(s

m
1 , s

m
2 ) ≥ 0, (14)

Hence, rewriting (14), we get the followings:

u2(sh1, s
h
2) ≥ u2(sh1, s

m
2 ),

u2(sm1 , s
h
2) ≥ u2(sm1 , s

m
2 ). (15)

Therefore, sh2 is the dominant strategy of individual P2.
When there are N -individuals (N > 2) in the game, every

individual still has the same two strategies as in the case of
a 2-individuals game. However, the dimension of the game
matrix, which is actually representing the payoff of every
individual for each strategy, will be changed from 2×2 to 2N .
The incentive of individual i ∈ N (takes strategy shi , without
considering others strategy), is given as follows:

ui(shi , . . . ) = α logZ + β log d̃i. (16)

However, if the individual i ∈ N takes the strategy smi , i.e., the
individual visits some crowded place like market, shop, train
station, school, or other location, then a person may come
in close contact with many others. Thus, the incentive of
individual i ∈ N with this strategy is given as follows:

ui(smi , . . . ) = α log(Z − δi)+ β log di, (17)

where δi is calculated from (2) and di is measured from (4)
for that particular location. Moreover, di < d̃i as these places
are crowded and individuals are in short distance with one
another. Hence, ui(shi , . . . ) > ui(smi , . . . ) as Z > Z − δi
and d̃i > di for any individual i ∈ N . That means, shi
is the dominant strategy for individual i ∈ N irrespective
of the strategies of other individuals in the game G. Thus,
there is a strategy profile s∗ = {sh1, s

h
2, · · · , s

h
N } ∈ S where

each element s∗i is a dominant strategy. Hence, by Defi-
nition 3, s∗ is a dominant strategy equilibrium. Moreover,
a dominant strategy equilibrium is always a Nash equilibrium
[40]. Hence, the game G has always a pure strategy Nash
equilibrium.

Thus, Nash equilibrium is the solution of the noncoopera-
tive game G. In this equilibrium, no individual of N has the
benefit of changing their strategy while others remain in their
strategies. That means, the utility of each individual i ∈ S
is maximized in this strategy, and hence ultimately maximize
the utility of (6). In fact, incentivizing the social distancing
mechanism is promoting social distancing to each individual.
To this end, maximizing U of (6) ultimately maximize the
original objective function of (5).

Moreover, the Nash equilibrium point has a greater impli-
cation on controlling the spread of COVID-19 in the society.
At the NE point, every individual stays at home, and that is
the only NE point in our game environment. So, if someone
gets affected by COVID-19, the individual will not go in
contact with others. Similarly, an unaffected individual has no
probability to come in contact with an affected individuals.
Unfortunately, the family members have the chance to be
affected if they don’t follow fair distance and health norms.

For calculating the utility of each player (i.e., individual)
i ∈ N in case of any strategy, the positional information ofNi
individuals who are in close proximity of i ∈ N are necessary.
In order to obtain this information, each individual i ∈ N
communicates with GPS satellite and it sends the information
of Ni,∀i ∈ N individuals to the corresponding player i ∈
N . Hence, GPS satellite needs to send

∑
i∈N |Ni| = C|N |

information, where C can be a fixed number to represent the
close-proximity individuals and equal for every i ∈ N , as a
whole for |N | individuals. Thus, the complexity of the game
is proportional to the number of players |N | of the game, and
will not increase exponentially.

V. SUSTAINABILITY OF LOCKDOWN POLICY WITH THE
SYSTEM MODEL
The sustainability of the lockdown policy can be interpreted
by using the outcome of the Nash equilibrium point that is
achieved in the noncooperative game in Section IV.

The total amount of incentive a particular time period is
presented in (6). In a particular day, we have Ts = 24×60

T0
time

period where T0 is the length of a time period in minutes.
Thus, we can denote the incentive of a time stamp ts in a
particular day p as follows:

U ts
p (δ, d) = α

∑
i∈N

log(Z − δi)+ β
∑
i∈N

log di. (18)

Hence, the amount of resources/money that is necessary to
incentivize individuals in a particular day, p can be expressed
as follows:

Up =
Ts∑
ts=1

U ts
p (δ, d). (19)

Now, if we are interested to find the sustainability of
lockdown policy for a particular country till a certain number
of days, denoted by P, we have to satisfy the following
inequality:

P∑
p=1

Up ≤ R0 +
P∑
p=1

rp, (20)
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TABLE 2. Value of the principal simulation parameters.

where R0 is the amount of resource/money of a particular
country at the starting of lockdown policy that can be used as
incentive and rp is the collected resources in a particular day,
p, of the lockdown period. Here, rp includes governmental
revenue and donation from different individuals, organiza-
tions and even countries. Moreover, the unit of α, β, R0 and
rp are same.

If we assume for simplicity that Up and rp are same for
every day and they are denoted by Ũ and r̃ , respectively, then
we can rewrite (20) as follows:

P× Ũ ≤ R0 + P× r̃ . (21)

Hence, if we are interested to find the upper limit of sustain-
able days for a particular country using lockdown policy, then
we have the following equality:

P× Ũ = R0 + P× r̃ . (22)

Thus, by simplifying (22), we have the following:

P =
R0

Ũ − r̃
. (23)

Here, the sustainable days P depends on R0, Ũ , and r̃ .
However, we cannot change R0 but government can predict r̃ .
Moreover, depending on R0 and r̃ , government can formulate
its policy to set α and β so that individuals are encour-
aged to follow the lockdown policy. Alongside, we cannot
continue lockdown policy infinitely based upon the limited
total resources. Hence, the governments should formulate and
update its lockdown policy based on the predicted sustainable
capability to handle COVID-19, otherwise resource crisis will
be a further bigger worldwide pandemic.

VI. NUMERICAL ANALYSIS
In this section, we assess the proposed approach using numer-
ical analyses. We consider an area of 1, 000 m × 1, 000 m
for our analysis where individuals’ position are randomly
distributed. The value of the principal simulation parameters
are shown in the Table 2.
Figure 2 illustrates a comparison between home isolation

(stay at home) and random location in the considered area for
a varying value of ω. In this figure, we consider two cases
of N = 500 and N = 1, 000. In both the cases, home isola-
tion (quarantine) is beneficial over staying in random location
and the differences between two approaches are increased
with the increasing value of ω. Moreover, the difference
of payoffs between two approaches are increased with the

FIGURE 2. Comparison of incentive (in log scale) for varying value of ω.

increasing value of ω as the more importance are given in
home isolation.

Figure 3 shows the empirical cumulative distribution func-
tion (ecdf) of incentives for different numbers of individuals.
The figure revels that the incentive values increase with the
increasing number of home quarantine individuals in all the
four cases. Figure 3a exhibits that the incentives are below
19, 000, and 20, 000 for 50%, and 48% sure, respectively, for
25% and 50% home quarantine cases whereas the incentives
are 90% sure in between 20, 500 and 21, 000 for 75% home
isolation case. Further, the same values are at least 21, 500
for 50% sure in case of full home isolation. Figure 3b depicts
that the incentive of being below 38, 000 is 40% sure for 25%
home isolation case, however, the same values of being above
40, 000, and 41, 000 are 40%, and 60%, sure, respective, for
50%, and 75% cases. Moreover, for 100% home isolation
case, the values are in between 42, 000 to 43, 000 for sure.
The incentives for 25%, 50%, 75%, and 100% home isola-
tion cases are above 57, 000, 59, 000, 61, 000, and 63, 000,
respectively, with probability 0.60, 0.65, 0.65, and 0.80,
respectively, as shown in Figure 3c. Additionally, the same
values are at least 77, 000, 79, 000, 81, 000, and 83, 500 with
0.50, 0.50, 0.72, and 1.00 probabilities, respectively, which
is presented in Figure 3d.

The total incentive (averaging of 50 runs) for varying
percentage of home isolation individuals with different sam-
ple size are shown in Figure 4. From this figure, we observe
that the total payoff increases with increasing number of
home isolation individuals for all considered cases. The
incentives are 578%, 571%, 571%, and 571% better from
home quarantine of 25% to 100% for N = 500, N = 1, 000,
N = 1, 500, and N = 2, 000, respectively. Moreover, for a
particular percentage of home isolation, the total incentive is
related with the sample size. In case of 50% individuals in
the home isolation, the incentive for N = 2, 000 is 97.08%,
42.50%, and 15.96%more than that ofN = 500,N = 1, 000,
and N = 1, 500, respectively.

215576 VOLUME 8, 2020



A. K. Bairagi et al.: Controlling the Outbreak of COVID-19: Noncooperative Game Perspective

FIGURE 3. Ecdf of incentives (in log scale) for different value of N with
α = 3.0 and β = 1.0 using 50 runs.

Figure 5 shows the average individual payoff for varying
parentage of home isolation individuals for different scenar-
ios. The figure exhibits that the average individual incentive
increases with an increasing percentage of home isolation
as the deviation δ decreases and hence, the value of home
isolation incentive increases. For N = 500, the incentive
of 100% home isolation is 85.25% more than that of 25%

FIGURE 4. Total incentive (average of 50 runs) for varying percentage of
home isolation individuals when α = 3.0 and β = 1.0.

FIGURE 5. Average individual incentive for varying percentage of home
quarantine individuals when α = 3.0 and β = 1.0.

home isolation. Moreover, in a particular percentage of home
isolation, the incentive decreases with an increasing number
of considered individuals as the social distancing decreases
due to the more number of individuals. In case of 50% home
isolation, the individual incentive for N = 500 is 102.96%
more than that of N = 2, 000.
Figure 6 shows the maximum possible lockdown period

for a varying number of individuals within a fixed amount
of resource R0. The figure reveals that with the increas-
ing percentage of home isolation individuals, the maximum
lockdown period significantly decreases for all considered
cases. The reason behind this is that the more individuals
are in home isolation, the more it is necessary to pay the
incentives. With a fixed amount of resources, a country with
less individuals can survive a longer lockdown period. With
more percentages of home isolation individuals, the num-
ber of lockdown period is less, and possible of spread-
ing of COVID-19 is also less. Therefore, the governments
can consider a trade-off between increasing expenditure as
a incentive and lockdown period. For 1, 000 individuals,
the maximum possible lockdown period for varying amount
of R0 and r̃ is presented in Figure 7. The figure also illus-
trates that with the increasing percentages of home isolation
individuals, the continuity of the lockdown period reduces for
every scenarios. However, for a particular percentage of home
isolation individuals where total number of individuals are
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FIGURE 6. Maximum possible lockdown period with varying number of
individuals when R0 = 5× 1023, r̃ = 0.10× Ũ , and using total incentive
shown in Figure 4.

FIGURE 7. Maximum possible lockdown period with varying R0 and r̃
with total payoff shown in Figure 4.

fixed, a country can continue higher lockdown period who
has more am amount of resources, R0. Additionally, r̃ also
play an important role to continue the lockdown period.

VII. DISCUSSION AND LIMITATION OF THE STUDY
The limitations of the current study are summarized as
follows:
• The governments are required to formulate and update
their lockdown policy over time while mitigating the
financial impact of COVID-19. From equations (20)
- (23) we observe that such a policy update requires
significant financial planning and prediction of the gov-
ernment revenue over a timespan while considering the
socio-economic conditions of the population. In other
words, the financial condition of the population has a
considerable impact on the success of any distributed
(i.e., less government control) or centralized (i.e., strict
government control) lockdown policies.

• The proposed noncooperative game solution provides an
analytical approach to attain the solution that keeps the
total deviation from home δ by an individual from a vast
population to the minimum for reducing the infection
risk of COVID-19. Besides, such a game solution pro-
vides a tractable evaluation for the sustainability of the
lockdown policy. However, like the other mathematical
models of epidemic diseases (i.e., SI, SIR, SIRS, SEIR),
incorporating the probabilities of infection and recov-
ery for COVID-19 in the noncooperative game setting
is still an open research question and requires further
investigation.

To this end, in the future, we will further study a stochastic
game setting by incorporating epidemic cases as a dynamics
of Markovian for capturing the uncertain behavior of pan-
demic. In particular, the policy for the government-controlled
epidemic models will be analyzed by the multi-agent nonco-
operative reinforcement learning for coping with an unknown
epidemic environment. Therefore, the government/institute
will capable of taking a proactive policy measurement for
enhancing the sustainability of any kind of epidemic.

VIII. CONCLUSION
In this article, we have introduced a mathematical model for
controlling the outbreak of COVID-19 by augmenting isola-
tion and social distancing features of individuals. We have
solved the utility maximization problem by using a noncoop-
erative game. Here, we have proved that staying home (home
isolation) is the best strategy of every individual and there is
a Nash equilibrium of the game. By applying the proposed
model, we have also analyzed the sustainability period of a
country with a lockdown policy. Finally, we have performed
a detailed numerical analysis of the proposedmodel to control
the outbreak of the COVID-19. In future, we will further
study and compare with extended cases such as centralized
and different game-theoretic models. In particular, an exten-
sive analysis between the government-controlled spread or
individual controlled spread under more diverse epidemic
models.
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