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ABSTRACT The automatic segmentation of the left ventricle in magnetic resonance (MR) images is the
basis of computer-aided diagnosis systems. To accurately extract the endocardium and epicardium of the
left ventricle from MR images, a method based on a dilated dense convolutional network (DDCN) has been
proposed in this article. First, to reduce memory consumption, computing time and the class imbalance
between the target and background, a clustering algorithm that combines the prior knowledge of the spatial
relationship between the slices has been proposed to crop the region of interest (ROI). Then, theDDCNmodel
with 8 dilated convolutional layers and dense connections, which is efficient with respect to its memory
consumption and training time, has been proposed to delineate the endocardium and epicardium. To compare
the DDCN model with other algorithms, 30 sequences of the MICCAI 2009 left ventricle segmentation
challenge database are used to train the proposed model and the other 15 sequences are used for testing. The
performance of the proposed method is evaluated by the percentage of ‘‘good’’ contours (PGC), average
Dice metric (ADM) and average perpendicular distance (APD). Our results show that for the endocardial
and epicardial contours, the PGCs are 99.49%±1.99% and 100%±0%, the APDs are 1.50±0.34 mm and
1.31±0.22 mm, and the ADMs are 0.93±0.03 and 0.96±0.01, respectively, which indicates that our method
provides contours with great agreement with the ground truth. In addition, the comparison results show that
ourmethod exhibits outstanding performance and possesses promising potential to be used in computer-aided
diagnosis systems for cardiovascular disease.

INDEX TERMS Segmentation, left ventricle, magnetic resonance image, dilated dense convolutional
network.

I. INTRODUCTION
Cardiovascular diseases are the leading cause of death in
many countries throughout the world [1]. The diagnosis of
these pathologies is dependent on cardiac images. Magnetic
resonance (MR) can provide high-quality images for the non-
invasive assessment of the left ventricle [2]. The automatic
segmentation of the left ventricle (LV) in MR images, which
consists of delineating the epicardium (the outer wall) and
endocardium (the inner wall), is the basis of computer-aided
analysis. Generally, there are several tissues in the image,
such as the myocardium, epicardium, endocardium, left
ventricle (LV) blood pool, and right ventricle (RV) blood
pool. Due to the motion of the heart, the rapid flow of blood,
the interference of image noise, and boundaries often being
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obscured, the segmentation of the epicardium and endo-
cardium remains a challenging task [3]. In recent years, many
researchers have made extensive research on the segmenta-
tion of the LV, and many methods have been proposed. These
methods can be categorized into two major categories: tradi-
tional segmentation methods and deep learning-based meth-
ods. Traditional methods mainly include boundary-based and
region-based methods, as well as hybrid methods [4]–[6].
These methods can use the information of adjacent slices to
improve the segmentation result; however, the segmentation
process depends on artificial features, which usually requires
experience and time to adjust these features. These methods
usually tend to perform poorly on data originating from a
database outside the training data [7].

In recent years, with the advances in convolutional neural
networks (CNNs), breakthroughs have been made in the LV
segmentation of MR images [8], [9]. H. Abdeltawab et al.
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proposed a fully convolutional U-Net that incorporates a
novel loss function to get the epicardium and endocardium
from MR images [10]. Romaguera et al. developed a fully
convolution neural network (FCN) similar to U-Net for LV
segmentation [11]. They obtained good segmentation results
only for the endocardium. Avendi et al. proposed an LV
segmentation method that combines a deformable model and
CNN [12], but only the endocardium was segmented.

To alleviate the class imbalance problem, some meth-
ods extracted ROI patches and used them to train FCN
models [7], [13]. In some other methods, images are first
processed by deep learning and then refined by traditional
methods. Ngo et al. proposed a novel method that combines
deep learning and a level set for the automated segmen-
tation of the LV [14]. The combination of these methods
brings together the advantages of both approaches. Lan et al.
obtained the coarse region of the LV with SegNet, and then
extracted the exact contour with a double snake model [15].
However, the division of the training set and the test set was
not clearly described.

Deepening the network layers and widening the network
structure are the common strategies adopted to improve the
performance of the CNN; however, DenseNet [16] did not
follow this fixed mindset. DenseNet greatly reduces the num-
ber of parameters in the network and alleviates the vanishing
gradient problem through feature reuse and bypass setting.
However, as the number of DenseNet features increases expo-
nentially with the number of network layers, it consumes a
lot of memory and wastes too much time in training. To solve
these problems, the combination of the dilated convolution
and DenseNet was used to delineate the right ventricle [17].
M. Khened et al. proposed a DenseNet-based FCN architec-
ture for cardiac segmentation, which is parameter and mem-
ory efficient [18]. They validated the proposed network on
three publicly available datasets: ACDC-2017, LV-2011 and
the 2015 Kaggle Data Science Bowl cardiac challenge data.

In this article, a novel automated segmentation method
has been proposed for delineating the epicardium and endo-
cardium in all slices of the end-diastole (ED) and end-systole
(ES) cardiac phases. First, to reduce the memory consump-
tion, computing time and class imbalance between the target
and the background, a clustering algorithm that combines the
prior knowledge of the spatial relationship between the slices
has been proposed to crop the region of interest (ROI). Then,
the DDCNmodel with 8 dilated convolution layers and dense
connections, which can further reduce memory consump-
tion and training time, has been proposed to delineate the
endocardium and epicardium.

II. MATERIALS AND METHODS
A. DATA SET
The LV images used in this study are from the dataset of the
cardiac short-axis cine MR images published by the MICCAI
2009 grand challenge on the Internet (http://sourceforge.net/
projects/cardiac-mr/files/) [19]. There are 45 cases in this

dataset, which are collected from Canada’s Sunnybrook
Health Sciences Centre (SHSC). They are divided into three
groups with an average of 15 cases in each group, including
4 heart failure with ischemia (HF-I) cases, 4 heart failure
without ischemia (HF-NI) cases, 4 hypertrophy (HYP) cases
and 3 normal (N) cases. TheseMR images were obtained dur-
ing 10- to 15-second breath-holds with a temporal resolution
of 20 cardiac phases over the heart cycle. Six to twelve short-
axis cine images were obtained from the atrioventricular ring
to the apex (matrix=256 × 256, thickness =8∼10 mm, and
FOV=320 mm×320 mm). Expert annotations are provided
for the endocardium in all slices in the ED and ES cardiac
phases and for the epicardium only in the ED cardiac phase.
These annotations are regarded as the ground truths of the
segmentation in our study.

B. THE FRAMEWORK OF THE SEGMENTATION
ALGORITHM
As shown in Figure 1, the automatic segmentation of the
LV (delineating the endocardium and epicardium) in an
MR image consists of two steps: ROI cropping and dilated
dense convolutional network (DDCN)-based segmentation.
The output of the ROI cropping is used as the input of
the DDCN. The LV segmentation is a dense classification
problem. In addition, the surrounding tissues of the LV sig-
nificantly dominate the image. The convolutional network
might be biased towards the majority class. To alleviate the
problem of the class imbalance between the desired object
and surrounding tissues, improve the classification (segmen-
tation) accuracy and reduce the computation, the regions of
interest (ROIs) including the LV are extracted as the input
images of the network. In the following sections, the ROI
cropping and the LV segmentation processes are introduced.

C. ROI CROPPING
As shown in Figure 1, the multislice MR image of the left
ventricle resembles an inverted pear. The region of the blood
pool in the basal slice at the top is large. In contrast, the region
of the blood pool in the apical slice at the bottom is small. Fur-
thermore, there is no significant difference between the blood
pool and the surrounding tissues. Therefore, the blood pool is
difficult to detect without using prior knowledge. Notice that
the LV blood pool is located in themiddle of themid-slice [4].
The ROI cropping process starts from the mid-slice image of
the cardiac MR image and proceeds to the direction of the
basal slice and the apical slice. In this process, we make use
of the strong spatial relationship between neighboring slices.
The procedure of ROI cropping is shown in Figure 2.

It is found that the position of the blood pool in the
mid-slice is generally located near the center of the slice.
Therefore, we first automatically specify an initial ROI with a
size of 110× 110 pixels at the center of the mid-slice. Then,
using the k-means clustering method, the image intensities
in the initial ROI are classified into three classes by two
thresholds [4]. In addition, the pixels with gray values above
the higher threshold are set to be the candidate pixels of

214088 VOLUME 8, 2020



S. Xu et al.: Left Ventricle Segmentation Based on a DDCNs

FIGURE 1. The overall flow chart of LV automatic segmentation (For the interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article).

the blood pool. To further optimize the location of the ROI,
a binary mask with the same size as the ROI is specified for
each slice. For the mid-slice, the mask is a circle with a radius
of 10 pixels at the center of the slice. If the gray level of the
center point of the ROI is lower than its mean value, then
a new center point with a gray level higher than the mean
value is searched up or right. For the other slices, the binary
mask is the blood pool area of the previous slice. For each
slice, the overlap rate between the detected blood pool area
and its corresponding mask is measured. If the overlap rate is
less than 0.2, the clustering threshold is decreased to obtain
a larger blood pool area until the overlap rate reaches 0.2.
For each slice, after the area of the blood pool is determined,
the center of the blood pool area is taken as the center point
of the ROI to obtain the ROI of the slice.

D. LV SEGMENTATION
As shown in Figure 1, The input of the network is ROIs
which including the LV. The architecture of the proposed
model for LV segmentation is made up of eight dense layers,
which are represented by the colored rectangles. Each layer
concatenates the feature maps of all previous layers and
its own feature maps as the input of all subsequent layers
(the colored arrows indicate the concatenations between lay-
ers), which greatly alleviates the vanishing gradient problem

and strengthens the feature propagation. The horizontal gray
arrow at the beginning of the network represents a 5× 5 con-
volution. In addition, the horizontal black arrow at the end
indicates the Softmax operation. The gray triangles between
layers in the middle part of the network represent the com-
bination of batch normalization (BN), a rectified linear unit
(ReLU), and a 3 × 3 dilated convolution. The width of the
gray triangle (variable D in Figure 1) represents the dilated
rate of the dilated convolution in each layer. The number in
the bottom right corner of the colored rectangle represents
the total number of feature maps of the current layer, which
is sum of the feature maps of the current layer and all previous
layers. For example, the total number of feature maps for
the first dense layer is 1+64=65, that for the second dense
layer is 1+64+64=129, and so on. As the layers continue to
deepen, the dilated rate correspondingly doubles, but the size
of the feature map in the entire network remains unchanged
at 110× 110 pixels.

The dilated convolution is a special form of the traditional
convolution in which the effective receptive field of kernels
is increased by inserting zeros (or holes) between each pixel
in the convolutional kernels [20]. The difference between the
dilated convolution used in the DDCN and the traditional
convolution is shown in Figure 3. From left to right are the
3 × 3 traditional convolution, the 3 × 3 convolution with a
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FIGURE 2. The flowchart of ROI extraction.

FIGURE 3. Comparison between the dilated convolution and traditional
convolution. (a) 3 × 3 convolution; (b) 3 × 3 dilated convolution with a
dilated rate of 2; (c) 3 × 3 dilated convolution with a dilated rate of 4 (For
the interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article).

dilated rate of 2 and the 3× 3 convolution with a dilated rate
of 4. Their corresponding receptive fields are 3 × 3, 7 × 7
and 15× 15. The number of parameters (red dot) associated
with each layer is identical. The dilated convolution supports
the exponential expansion of the perceptive field without any
loss of resolution or coverage [21].

Similar to other deep learning methods, data augmentation
is helpful to improvingmodel training, particularly when only
a few training samples are available. As shown in Figure 4,
in this study, we conduct a data augmentation strategy for the
ROIs by rotating 45, 90, 135, 180, 225, 270 and 315 deg,
flipping in the vertical and horizontal directions. Therefore,
there are another 9 different copies of the ROIs generated
from the described augmentation scheme.

E. SEGMENTATION EVALUATION
The performance of the segmentation model is evaluated
by comparing its accuracy with that of the ground truth

FIGURE 4. Data augmentation (For the interpretation of the references to
color in this figure legend, the reader is referred to the web version of
this article).

(manual annotations by experts) based on the software pub-
lished by the MICCAI Clinical Image Segmentation Grand
Challenge Workshop. The evaluation proposed for assessing
the algorithms submitted to the MICCAI 2009 LV segmen-
tation challenge is based on the following three measures:
1) the percentage of ‘‘good’’ contours (PGC), 2) the average
Dice metric (ADM) of the ‘‘good’’ contours, and 3) the
average perpendicular distance (APD) of the ‘‘good’’ con-
tours. A segmentation is classified as good if the APD is
less than 5 mm [12]. To facilitate comparisons with other
algorithms, we employed all these measures in this study.
The perpendicular distance measures the distance from the
autosegmented contour to the corresponding ground truth
averaged over all contour points. A low APD implies that the
two contours closely match. The Dice metric,DM = 2(Aseg∩
Agt)/(Aseg+Agt ) is a measure of contour overlap considering
the autosegmented contour areaAseg, the ground truth contour
area Agt, and their intersection. A high DM indicates a better
match between automated and manual segmentations. ADM
is the average value of the DM per slice. The PGC is the
ratio of the number of good contours to the total number of
contours. The contours from automatic algorithms that are
not considered to be good are excluded in the calculations
of the ADM and APD. Each measure is computed slice by
slice and a mean value and standard deviation for all slices
were calculated.

In addition, two critical parameters for cardiac diagnosis,
the left ventricle mass (LVM) and ejection fraction (EF),
are computed based on segmentation results and used for
correlation and Bland-Altman analyses [22]. The LVM and
EF are defined as follows.

LVM =
(
V ED
epi − V

ED
end

)
∗ 1.05 (1)

EF =

(
V ED
end − V

ES
end

)
V ED
end

∗ 100% (2)

where V ED
epi and V

ED
end represent the epicardial and endocardial

volumes in the end-diastole (ED) phase, respectively, while
V ES
end represents the endocardial volume in the end-systole

(ES) phase. Correlation analysis is performed to obtain the
slope and intercept equation and the coefficient of deter-
mination R2. For Bland-Altman analyses, the mean value
and the standard deviation (SD) of the differences between
the automatic segmentation results and the ground truth
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FIGURE 5. Automatic (solid green line) and manual (dotted red line) LV segmentation in the basial slice, mid-slice and apical slice for multiple cases
(various patient types) of the MICCAI 2009 (For the interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article). ED, end-diastole; ES, end-systole; SC-HF-I, heart failure with ischemia; SC-HF-NI, heart failure without ischemia; SC-HYP, hypertrophy; and
SC-N, normal heart.

are computed. The coefficient of variation (CV), defined as
the SD divided by the mean value, and the reproducibility
coefficient (RPC), defined as 1.96∗SD, are computed.

III. EXPERIMENTS AND RESULTS
A. IMPLEMENTATION DETAILS
Our model is implemented on a computer with an
Intel R© Core R© 2.6 GHz CPU, 32 GB of RAM, and the 64-bit
Windows 10 operating system. The development environ-
ment is TensorFlow 1.12 with CUDA 9.0 and cuDNN 7.0.
The learning rate is adjusted dynamically and linearly from
0.004 in the first epoch to 0.00001 in the 120th epoch. The
dropout rate was set to 0.2. The training data are shuffled
before each epoch.

To facilitate the comparison with the results of other
LV segmentation algorithms, our experiments are based on
45 sequences of theMICCAI 2009 left ventricle segmentation
challenge database. 30 sequences (the training and validation
datasets of MICCAI 2009) are used to train the proposed

model and the other 15 sequences (online dataset) are used
for testing.

B. SEGMENTATION RESULTS
Figure 5 illustrates the automatic and manual LV segmen-
tation results for four different types of patients in typical
slices (basial slice, mid-slice and apical slice) in the ED and
ES cardiac phases. The epicardial contour in the ES phase
is omitted by clinical experts and segmentation methods
because it is not used when computing the LVM and EF. Each
column corresponds to one patient with heart failure with
ischemia (SC-HF-I), one with heart failure without ischemia
(SC-HF-NI), one with hypertrophy (SC-HYP) and one with a
normal heart (SC-N). The automatic segmentation results are
shown using green solid lines, and the ground truth manual
segmentations drawn by experts are shown using red dotted
lines. As seen from Figure 5, for all types of cases, the seg-
mentation results of the LV epicardium and endocardium in
all slices of all cases are very close to the ground truth of
experts’ manual annotations.
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TABLE 1. Experimental results.

To further quantitatively analyze our segmentation results,
the statistics of the automatic segmentation results com-
pared to the ground truths in 15 testing sequences are
listed in Table 1. The mean±SD of the PGC (percentage of
good contours), APD (average perpendicular distance) and
ADM (average Dice metric) are listed for the online dataset.
These results show that for the endocardium and epicardium,
the percentages of good contours are 99.49%±1.99% and
100%±0.00%, respectively, which means that the results
of LV epicardial contour segmentation are good (APD is
less than 5 mm) for all slices and that the LV endocardial
contour segmentation results are good for almost all slices.
In addition, the APDs are 1.50±0.34mm and 1.31±0.22mm,
respectively, and the ADMs are 0.93±0.03 and 0.96±0.01,
respectively, which indicate that our method provides con-
tours that have great agreement with the ground truth.

A regression and Bland-Altman analysis are used to eval-
uate our segmentation results. Figure 6 shows the regres-
sion (left) and Bland-Altman plots (right) for the left ventricle
mass (LVM) and the ejection fraction (EF). The coefficient
of determination R2 for the LVM is 0.97, the spread of the
values is pretty low, and the slope is approximately 1.09.
In addition, the linear regression of the EF is similar to that
of the LVM. The level of agreement between our results
and the ground truths is represented by the interval of the
percentage difference between the mean±1.96SD numbers.
The mean and confidence interval of the difference between

FIGURE 6. Regression curve and Bland-Altman plot for the left
ventricle (LV) mass and the ejection fraction (EF); left: linear regression
and Bland-Altman plots of LV mass, right: linear regression and
Bland-Altman plots of EF.

the automatic andmanual LVM results are -6.2 g and (-27.2 g,
14.9 g), respectively. The CV and RPC are 8.4% and 16.5%,
respectively. For the EF, the coefficient of determination is
0.95, and the slope is 0.92. The mean and confidence inter-
val of the difference between the automatic and manual EF
results are -0.8 and (-9.8, 8.1), respectively. The CV and RPC
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TABLE 2. Comparison of our segmentation performance with the traditional segmentation methods and state-of-the-art technique using the MICCAI
database.

are 10.0% and 19.7%, respectively. The regression andBland-
Altman analysis depict a high correlation for the two clinical
cardiac indices. The high correlation between our results and
the ground truths show the accuracy and clinical applica-
bility of our framework for the automatic evaluation of LV
functioning. Additionally, for the Bland-Altman scatter plot,
the confidence intervals for LVM and EF are (-27.2, 14.9 g)
and (-9.8, 8.1), respectively. In addition, 0.0% (0/15) and
6.7% (1/15) are outside the confidence intervals for the LVM
and EF, respectively. All these results show that the results
of our algorithm are in good agreement with the manually
delineated results.

C. COMPARISONS
To verify the effectiveness of the segmentation algorithm
proposed in this article, we compare our proposed model with
Lu’s method [23], Hu’s method [24] and Ngo’s method [14]
on the same database of MICCAI 2009. Table 2 summarizes
the percentages of good contours (PGCs), the average Dice
metrics (ADMs) and the average perpendicular distances
(APDs) of these four methods. It can be seen that the PGC
of our method is not only much higher than those of the two
traditional methods, but it also improves that of the state-of-
the-art technique by 3.6% for the endocardium and 5.4% for
the epicardium. Considering that the ADM and APD are cal-
culated using the good contours, the higher the PGC, themore
slices that we have calculated in the experiment. In this case,
the ADM and APD of the endocardium with our method are
0.93 mm and 1.50 mm, respectively, which are still 0.04 mm
and 0.57 mm better than the best ADM and APD reported
by others. For the epicardium, its ADM and APD with our
method are 0.02 mm and 0.60 mm better than the best ADM
and APD reported by others. According to Student’s t-test,
the p-values for the distribution of the PGC, ADM and APD
metrics of our method and Hu’s algorithm are all <0.01,
which indicates that the difference is statistically significant.
Due to the lack of relevant details of Lu’s method [23] and
Ngo’s method [14], we have not been able to reproduce these
algorithms for the time being. And the p-values between our
results and them cannot be given. These performances show
that the results of our model are more accurate and robust than
those other algorithms.

To demonstrate the advantages of our proposed method,
we compared the derived contours from 5 cases (SC-HF-I-
05, SC-HF-I-06, SC-HYP-06, SC-HF-NI-11, and SC-N-06)
obtained with our method, Hu’s method, and experts’ man-
ual annotations. Lu’s and Ngo’s delineations are not given
because we have not been able to reproduce their algorithms
for the time being. Figure 7 shows the segmentation results
on 5 ROIs randomly selected from the above 5 cases. The
automatic segmentation results are shown by the green solid
lines and the ground truth manual segmentations drawn by
experts are shown by the red dotted lines. As it can be seen,
compared with Hu’s algorithm, our segmentation results are
closer to the manual results.

D. ABLATION STUDIES
The automatic segmentation model based on the DDCN has
been tested and verified in the previous section. To evaluate
each component of our proposed method, we also perform
ablation studies in terms of ROI cropping, the network archi-
tecture, and the dilated convolution.

To analyze the influence of ROI cropping on the segmenta-
tion results, two different methods are used to crop the ROIs
(Figure 8), which are then input into the same DDCN model.
The first method is to crop ROIs that are 190× 190 pixels at
the center of each slice. These ROIs contain the objects (blood
pool and myocardium) and almost all surrounding tissues in
the slice, which significantly dominate the image. The second
method is to crop ROIs that are 110×110 pixels as described
earlier in this article. For these ROIs, the number of pixels in
the object is roughly the same that of the surrounding tissues.
Table 3 shows the comparison results. It can be seen from
the table that the PGC, ADM and APD of the endocardium
(epicardium) segmentation results corresponding to our 110×
110 ROIs are 99.49% (100.00%), 0.93 (0.96) and 1.50 mm
(1.31 mm), respectively, which are better than the results
for the 190 × 190 ROIs of 98.60% (99.17), 0.92 (0.96) and
1.59 mm (1.56 mm), respectively. And the training time of
endocardium (epicardium) of 110×110 ROIs decreased from
1271 (615) second/epoch of 190 × 190 ROIs to 591 (298)
second/epoch.

For the second ablation study, our DDCNmodel with eight
dense layers is compared with structures have combinations
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FIGURE 7. Comparison of Left Ventricular MR Image Segmentation (For the interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article). SC-HF-I, heart failure with ischemia; SC-HF-NI, heart failure without ischemia; SC-HYP, hypertrophy; and SC-N,
normal heart.

TABLE 3. Comparison of the ROI segmentation results of the 190 × 190 and 110 × 110 ROIs.

of different numbers of blocks and layers. As seen from
Table 4, when the number of layers of the model is fixed,
the training time (second/epoch) of the model increases
rapidly as the number of blocks increases, but the correspond-
ing performance does not improve. When the number of
dense layers is no more than 6, the overall performance of the
model is increasing as the number of layers increases. How-
ever, when the number of dense layers is more than 6, the ben-
efit of increasing the number of layers is not significant, but
the training time has increased quickly. Compared with the
8-layer model, the 9-layer model has a decreased PGC and
a more than tripled training time. Therefore, we chose the
8-layer model.

For the third ablation study, we compare the dilated
convolution with the traditional convolution to illustrate its
efficiency. Figure 9 shows the loss curves and acc curves of

the dilated convolution (blue line) and traditional convolution
(orange line) on the training set (left column) and validation
set (right column). It can be seen that the dilated convolution
has a better convergence speed and final convergence result
than the traditional convolution.

IV. DISCUSSION
In this article, a segmentation schema is developed for LV
segmentation in MRI. First, a clustering algorithm that can
make full use of the relationship between adjacent slices to
accurately locate the blood pool area is proposed to crop
the ROI. Then, the DDCN model with 8 dilated convolu-
tional layers and dense connections is proposed to delineate
the endocardium and epicardium. Our proposed method is
compared with other traditional algorithms and deep learning
algorithms based on the widely used MICCAI 2009 left
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TABLE 4. Comparison of our eight dense layer structure model with other structures.

FIGURE 8. Original MR images and ROIs with sizes of 190 × 190 and
110 × 110 pixels.

ventricle segmentation challenge database. The comparison
results show that our method is very effective in the LV
segmentation of MR images.

The traditional LV segmentationmethods are usually based
on shape and appearance terms and tend to perform poorly on
images with obscured boundary, especially those slices with
LV outflow tract or apical slices with very small region of
blood pool. However, through annotated training, our DDCN
model can achieve promising results on these images. In addi-
tion, compared with other deep learning methods, our pro-
posed method has the following characteristics: 1) The ROI
cropping process can locate the blood pool area accurately
and improve the segmentation result. 2) The customized
densely connected network structure avoids the problem
of gradient vanishing, can effectively update the network
parameters, and improve the training effect. 3) The dilated

FIGURE 9. Training process of the dilated convolution and traditional
convolution (For the interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article).

convolution expands the receptive field, and enables our
model to learn the characteristics more fully to obtain precise
contours. All these characteristics effectively improved the
accuracy of LV segmentation.

As shown in Figure 1, the surrounding tissues of the LV
significantly dominate the original MR image. To alleviate
the problem of the class imbalance between the desired object
and surrounding tissues, improve the classification (segmen-
tation) accuracy and reduce the computation, the ROI con-
taining the region of the blood pool should be cropped from
the original image. In addition, the region of the blood pool
is large at the top and small at the bottom. When cropping the
ROI, blood pool region with various size should be contained,
so the size of the ROI cannot be too small. According to the
above considerations, the ROI with a size of 110×110 pixels
has been adopted tomake the pixels of object and surrounding
tissues roughly balanced. The results in Table 3 verify the
effectiveness of our ROI cropping. It shows that ROI cropping
can not only increase the PGC but also reduce the class
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imbalance and improve the segmentation result. In addition,
the ROI-based method can significantly reduce the memory
consumption and training time.

To verify that the DDCN model (with 1 block and 8 con-
volutional layers) is generalizable to variable clinical datasets
with different ROI sizes, we also conduct experiments on
another updated database MICCAI 2018. The ROIs with a
size of 80 × 80 pixels in MICCAI 2018 are collected from
3 hospitals affiliated with two health care centers (London
Healthcare Center and St. Josephs HealthCare). 15 of the
145 cases in theMICCAI 2018 have been used for testing, and
the PGC, ADM and APD of the endocardium (epicardium)
segmentation results are 100.00% (100.00%), 0.96 (0.97) and
1.31 mm (1.42 mm). Although the ROIs used in MICCAI
2018 and MICCAI 2009 come from different hospitals and
have different sizes, our DDCN model has achieved very
promising performance on both datasets, which verifies the
adaptability of our model to different datasets. In the future
research, we will further verify whether the optimal param-
eters (i.e., ROI size and convolution layer structure) of the
model vary with different datasets.

The DenseNet (with 3 blocks, each block has 5 convolu-
tional layers) with dilated convolutions was used to delineate
the right ventricle by Zhao et al. [17]. The architecture of our
DDCN model has a different structure from them. Consid-
ering the performance of LV segmentation and training time
(as shown in Table 4), a structure with 1 block and 8 con-
volutional layers has been adopted. Each layer concatenates
the feature maps of all previous layers and its own feature
maps as the input of all subsequent layers, which greatly
alleviates the vanishing gradient problem and strengthens the
feature propagation. Therefore, it can effectively update the
network parameters, and improve the training effect. This is
particularly important for segmentation of LV images with
obscured and incomplete boundaries.

The dilated convolution expands the receptive field of the
convolution kernel without any loss of resolution or coverage
while keeping the number of parameters identical. And the
expanded field enables our model to learn the characteristics
of endocardium and epicardium more fully to obtain precise
contours. In addition, using the dilated convolution instead
of the traditional convolution, the convergence speed and
final convergence result of our model have been significantly
improved (as shown in Figure 9).

As discussed above, ROI cropping, the network archi-
tecture and the dilated convolution ensure that our DDCN
model can achieve excellent performance in LV segmenta-
tion. Developing a pure deep learning method on a larger set
of clinical data is the subject of our future research.

V. CONCLUSION
To accurately extract the endocardium and epicardium of
the LV from cardiac MR images, a novel method for auto-
matic LV segmentation of cardiac MR images is proposed.
First, the ROI containing the blood pool is cropped based
on a clustering method that integrates the prior knowledge

about the spatial relationship between the adjacent slices.
The ROI is incorporated to reduce memory consumption,
computing time and the class imbalance between the target
and background. Then, a dilated dense convolution network
that combines the dilated convolution and dense connections
is proposed to delineate the endocardium and epicardium.
The segmentation results on the MICCAI 2009 are compared
with the results of the traditional algorithms and deep learning
algorithms (state-of-the-art). Excellent agreement and a high
correlation with the reference contours are obtained by our
method of left ventricle segmentation.
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