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ABSTRACT In this paper, we present an encoder-decoder architecture that exploits global and local
semantics for the automatic image colorization problem. For the global semantics, the low-level encoding
features are fine-tuned by the scene-context classification to integrate the global image style. Moreover,
the architecture deals with the uncertainty and relations among the scene styles based on the label smoothing
and pre-trained weights from Places365. For local semantics, three branches learn the mutual benefits at the
pixel-level, in which average and multi-modal distributions are respectively created from regression and
soft-encoding branches, while the segmentation branch determines to which object the pixel belongs. Our
experiments, which involve training with the Coco-Stuff dataset and validation on DIV2K, Places365, and
ImageNet, show that our results are very encouraging.

INDEX TERMS Image colorization, soft-encoding, u-net, scene-context classification, semantic
segmentation.

I. INTRODUCTION
Colorizing a gray-scale image not only brings a lot of special
semantics into that image, but also helps the image become
more vivid and emotional [1]. An image often contains many
objects, and a human can easily decide which color should
belong to each object in the image using their knowledge
about object meaning. However, most objects do not merely
have one color; for example, a shirt can be red, blue, yellow,
or many other colors. Humans will also predict object colors
based on a certain amount of subjective emotion, which is one
of the biggest challenges for a machine that is tasked with
mimicking both the knowledge and feeling of humans.

Because of this, previous colorization systems have often
involved a joint partnership with users, such as provid-
ing some prior knowledge by inputting color points [2]
or transferring colors from reference the gray-scale images.
Choosing an image that contains the correct object
details is too time-consuming, as is drawing color points.
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Therefore, automatic colorization based on the deep con-
volutional neural network without human involvement has
been introduced [3]–[6]. Given the vast benefits of the auto
colorization system, researchers have found many ways to
make computers understand the semantic information of
images during process to achieve effective auto-coloring
results. One typical method, [7] used a scene classification
from the Places365 database to train a model about the global
semantics of images. Moreover, [8] focused on both the
semantic composition and the local objects of a scene to color
arbitrary images using the VGG-16 network architecture.
In the method presented by Zhang et al. [9], they added to
their model the ability to compile the object-level semantics
with cross-channel encoding. In the above works, the seman-
tics were only discovered at the image level. By contrast,
current studies on semantic segmentation have reached the
pixel level by assigning labels to each pixel [10]. In the same
way, colorization is also a task that involves assigning colors
to each pixel based on a color probability distribution [11].
To improve the colorization method by combining these
concepts, aside from scene meaning, we recognize that the
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FIGURE 1. Some image results were colored by our proposed colorization method.

semantic segmentation task also plays a vital role in providing
semantic in pixel-level.

Our life experiences play an essential role in develop-
ing our information cognition model. Information, which
includes global and local types, is saved in our subconscious
and gradually form knowledge over time. When seeing an
image, we can analyze the scene type, which objects are
likely to be present, their material types, and more. Color
knowledge is one of the types of information that we store
in our brains throughout our lives. Therefore, it is easy for
human to fill a gray-scale picture with colors. However,
there are still many problems with how a machine automat-
ically chooses the correct colors in painting black-and-white
images. The computer only calculates the prediction based
on light and color correlation without regard to the object
semantics leading to color confusion. The inputted pictures
have many different sizes, so it is impossible to avoid scale
variation, which leads to color bleeding among boundaries
and color noises.

An example of the process is shown in Fig. 2 viewers can
observe a gray-scale input and easily guess some overview
information, such as the fact that it is outdoor scene having
the sky and the field, this is called scene semantic or global
information. In addition, the objects, such as the people, the
kite, the grass, and the sky, are called local information with
semantic segmentation. The combination of global and local
knowledge in scene semantic and semantic segmentation will
help the observers determine what the objects are in the image
and reference object models about the colors of the objects.

For this reason, we suggest a solution using both seg-
mentation and scene semantics to color images automat-
ically, as shown in Fig. 1. We are also interested in an
appropriate network that encourages these elements. In our
paper, we use the encoder-decoder architecture, as shown
in Fig. 3, due to the flexibility of the network in multi-task
learning. The low-level encoding features will be fine-tuned
by the scene-context classification branch in the middle of
the encoder and decoder branches. This means they contain
not only the encoding data of the input image, but also the
global style of the image, to help the decoder branch colorize

FIGURE 2. Semantic segmentation and scene-context classification in the
colorization problem. Given a gray-scale image, we colorize that image to
produce a color image (ground-truth) using semantic segmentation at
pixel-level (where pixels belong to items such as the kite, a person, grass,
etc.) and scene-context in the global style (meanings of the image based
on probability such as golf-course 42%, hay-field 19%, sky 11% and
others 28%).

images more precisely based on the global semantics of the
scene-context. For the pixel-level semantics, the output of the
decoder branch, which is in the form of 2D pixel mapping
features will be fine-tuned by the segmentation, regression,
and soft-encoding branches. Three branches will learn the
mutual benefits for the pixel-level meaning in segmentation,
the average color model in regression, and the bias color
model in soft-encoding to build robust 2D pixel mapping
features. In the implementation details, we use the U-net [12]
with the skip connection to help our proposedmodel converge
better and to avoid the vanishing problem caused by the dead
activation and deep network problems.

The main contributions in this study are:

• Propose an encoder-decoder architecture that uses the
scene-context classification and pixel-wise segmenta-
tion for image colorization.
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• For the scene-context semantics, we deal with the uncer-
tainty and the relations among scenes by label smoothing
using the prior probabilities from the pretrained-weight
in Places365. For the pixel-level semantics, we integrate
the mutual benefit learning from the pixel-wise segmen-
tation model, the average color model, and the bias color
model.

• We train the architecture on the Coco-Stuff dataset [13]
and validate it on DIV2K [14], Places365 [15],
ImageNet [16], and Internet collection images to ensure
it achieves the good results.

The rest of our paper includes five sections. In section 2,
we mention prior works related to the image coloriza-
tion problem. Next, in section 3, we describe our net-
work architecture, the colorization processing data used for
input, output, and semantics, and the multi-loss function.
Section 4 describes the implementation details of our pro-
posed method. The details of the experiments are given in
Section 5 along with a discussion of the results. Finally,
section 6 concludes our paper.

II. RELATED WORKS
Coloring old black and white photos to recreate historical
scenes can rescue a lot of cultural and memorial values from
the ravages of time and bring modern people closer to the
past. Colorization remains still one of themore exciting topics
among users of image editing software, as demonstrated by
the many coloring guides on the Internet. However, col-
orization using image editing software is costly and time-
consuming. A digital artist must spend a lot of time to colorize
old black and white photos, as he or she must start by making
many layers from the different regions of the image, and then
assign and adjust the colors for these regions to be more
suitable based on his or her own knowledge and imagination.
Computer researchers have launched many coloring applica-
tions in attempts to solve the various difficulties associated
with this type of colorization.

Previous studies have often referred to three conventional
approaches of colorization. The first kind is scribble-based,
which uses some color annotations on the image; the second
one obtains colors from a reference image to apply to a target
image; and the last one is automatic colorization based on
deep learning.

A. COLORIZATION BASED ON SCRIBBLES
This is a colorization method that involves automatically
propagating the colors of the initial scribbles to the same
color neighbor pixels. Levin et al. [2] initiated this method
in 2004 based on the hypothesis that surrounding pixels with
similar luminance will also have similar colors. Still, their
results showed color spilling status between objects. After
that, the method described in [17] alleviated this situation
by exploring edge information at the local level to prevent
colors from bleeding over boundaries. Some methods, such
as [18] and [19] promoted efficiency by propagating colors,

not only to neighboring pixels but also pixels having similar
patterns. Although images colorized using these methods will
be attractive to observers with natural and intensive detailed
colors, they require substantial amounts of time and labor.

B. COLORIZATION BASED ON EXAMPLES
Rather than drawing a lot of scribbles, the colorization way
using examples involves transferring colors from similar
images to the target images. Some of these methods measure
similarity between the reference and target images at pixel
level. Specifically, Charpiat et al. [3] chose some related color
images as inputs, then built the distribution probability of
reasonable colors for each pixel at local level, then finally
optimized the probability of the colored image by graph-cut.
With the same goal, Welsh et al. [20] transferred colors from
the reference images to both the target images and videos.
In contrast to the two methods described above, Liu et al. [4]
prepared reference images by automatically searching
the internet for adaptive photos. At the segment level,
Irony et al. [21] computed the color on the segment of
the example image that could be transferred to a target
pixel. Moreover, the method in [22] added a manual cap-
tion to segmentation to filter appropriate reference samples.
Although these methods produce nice and natural outcomes,
they require a lot of time to find suitable references evenwhen
using automatic web retrieval.

C. COLORIZATION BASED ON DEEP LEARNING
Recently, with the evolution of computer vision applications,
colorization has played an increasingly important role, and
it is continuously improved in attempts to meet the needs
of users. It has been applied to support advanced tasks,
such as [23], which uses color attributes to enhance object
detection performance, and [24], which builds a color cor-
rection application to produce more optimal results. Most
recently, in the comic industry, colorization methods have
been actively developed to substantially reduce costs and
labor [9], [25]–[27].

To reduce the manual effort required of previous methods,
the colorization process has leveraged machine deep learning
to learn color prediction. For example, [6] suggested an image
clustering technique for a large dataset and built a deep
neural architecture to be trained with image feature descrip-
tors. In recent times, semantics training for the machine has
been exploited to achieve better performance. For instance,
Iizuka et al. [7] constructed two branches based on deep
convolutional neural networks to incorporate global and
local features. To support semantics for the network,
Zhang et al. [11] manipulated a cross-channel encoding
scheme while Larsson et al. [8] designed a system that can
predict a color histogram for each pixel and that is pre-trained
for classification work. These methods achieved great results
when coloring complex images.

In summary, there are three main approaches to colorize
images. The first is colorization based on color scribbles of
users on the image based on similar luminance to map similar
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FIGURE 3. Semantic Image Colorization Model. It has the global scene-context classification Hclas to enhance the encoding feature Xenc from the
encoding E in the uncertainty by transferring the learning of the scene-context probability vector Ŷclas from the pre-trained weight on the large-scale
scene dataset. The 2D feature map Xmap is enhanced by learning the mutual benefits at the pixel level in the color regression model Hreg for the mean
color result Ŷab, the index color distribution model Hsoft for the bias color result under pixel-wise probability vector Ẑab, and the semantic
segmentation Hseg for the semantic matters with label mask prediction Ŷseg.

colors [2], exploring edge information [17], and propagating
colors at neighboring pixels or similar patterns [18] and [19].
The second is transferring colors from a reference image to
a target image by measuring the similarity between reference
and target images such as [3] using graph-cut optimization
from the distribution probability of each local pixel. The last
is an automatic colorization based on deep learning such as
hyper-column VGG network with the un-rebalanced loss [8],
two-stream architecture fusing global and local features with
scene-context classification [7], and the cross-channel encod-
ing scheme [11].

III. PROPOSED METHOD
In this section, we describe our proposed model, illustrated
in Fig.3 to tackle the multi-model using color distribution for
bias selection and color regression for the mean color result,
as well as semantic matters using the global scene-context
classification and pixel-level semantic segmentation. Then,
we describe the semantic colorization in detail such as the
index color distribution vector with the soft-encoding and
decoding scheme, the uncertainty scene-context data, and the
pixel-level semantic segmentation. Finally, we will mention
the multi-loss function for our proposed model.

A. SEMANTIC IMAGE COLORIZATION MODEL
Let p , (x, y) be the pixel location of the given grayscale
image Igray ∈ RH×W×1; then, our problem needs to find a
plausible color version IRGB (p) ∈ R3 in the CIE RGB color
space at pixel p. To simplify the color coherency problem
involving the association between the best-unsaturated color

IRGB (p) and corresponding gray level Igray (p), the CIE Lab
color space [28] is chosen based on the similarity in the
approximation about the color distance of the human percep-
tion and the distance of color coordinates in the color space.
It comprises three components: the L channel presenting the
lightness or grayscale axis and the a and b channels express-
ing the color axes with the orthogonal property. Therefore,
our problem becomes that of building amapping functionFreg
based on the convolutional neural network to predict the ab
values Yab (p) ∈ R2 at pixel p with a given grayscale level
XL (p) ∈ R expressed as below:

Ŷab = Freg (XL) (1)

ˆILab =
(
XL , Ŷab

)
(2)

Because of the multi-modal property of color distributions,
learning models often fall into the average effect in the
colorization process. The colorized results are grayish and
desaturated. Larsson et al. [8] address this problem by replac-
ing directly predicted a and b values in the per-pixel color
distribution. Due to the correlation between a and b channels,
Zhang et al. [11] use the 2D color distribution on the ab
channel as the prediction output. By soft-encoding schemeT,
they represent Yab (p) under the 2D color distribution on
the ab channels. Then, using grid-size 10, it is quantized to
1D vector representation Zab (p) ∈ RQ with Q = 313 in-
gamut values:

Zab = T (Yab) (3)
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Therefore, our image colorization model in the color dis-
tribution approach becomes:

Ẑab = Fsoft (XL) (4)

Ŷ
∗

ab = T−1
(
Ẑab

)
(5)

where T−1 is the inverse function of the soft-encoding
function T.
From intuitive observations, the colorized image at local

p is not only affected by spatial coherency but also by seman-
tic matters in the local and global scopes. This means that
the model must know the objects to which pixels belong,
such as trees, sky, ocean, houses, etc. (object localization),
as well as the place where the image has been captured such
as indoors, outdoors, a shopping mall, a kitchen, etc. (scene
semantics).

We need to incorporate the semantic segmentation Yseg ∈

RH×W×S and the uncertainty scene semantic Yclas ∈ RC

from the grayscale imageXL for the image colorization prob-
lem, where S and C are the numbers of segmentation and
scene classes, respectively. By adopting the encoder-decoder
architecture, an image colorization method integrated into the
semantic matters comprises the encoder E, the decoder D,
the classification block Hclas and the convolution blocks for
segmentation Hseg, regression colorization mapping Hreg,
and color distribution mapping Hsoft . Our joint model with
semantic matters can be expressed as follows:

Ẑab = Hsoft (D (E (XL))) = Fsoft (XL) (6)

Ŷab = Hreg (D (E (XL))) = Freg (XL) (7)

Ŷseg = Hseg (D (E (XL))) = Fseg (XL) (8)

Ŷclas = Hclas (E (XL)) = Fclas (XL) (9)

where Xenc = E (XL) is an encoding representation of the
grayscale image and Xmap = D (E (XL)) is the 2D feature
map of every pixel used to decode the image into ab values,
color distribution, and segmentation.

Our semantic image colorization model, illustrated
in Fig. 3 uses the shared convolution neural networks at the
encoder model E and the per-pixel feature map model D.
Therefore, a joint conditional distribution for colorization
output is modelled as follows:

p
(
Ẑab|XL

)
= p

(
Ẑab|XL ,Xenc,Xmap

)
(10)

As in the equation above, the color probability at pixel p
is calculated based on the gray-scale input XL , the 2D map
featureXmap for what and where the pixel belongs to, and the
uncertainty scene-context feature Xenc. In addition, the role
of Freg is the regularization factor for convergence to the
ground-truth value, and the Fsoft model plays the role of
making a the suitable selection of the color distribution
that satisfies the multi-modal property and the semantic
matters.

B. SEMANTIC COLORIZATION DATA
1) COLOR DISTRIBUTION DATA WITH THE
SOFT-ENCODING SCHEME
Soft-encoding Scheme: Because of themulti-modal property
in the colorization problem, the regression color values Ŷab
could not exactly express the different color versions of the
same things depending on the global and local scope in the
scene context. Larsson et al. [8] and Zhang et al. [11] suggest
using the color distribution on the a, b, or ab channels to deal
with this problem. Similar to in Zhang et al. [11], we also
quantize the 2D color space in the a and b channels by the
grid-size 10 into the 1D vector quantization with Q = 313
in-gamut values as shown in Fig.4.

FIGURE 4. Soft-encoding Process.

For further explanation, the left image in Fig. 4 is the
color space in the ab channel divided by a grid with a size
of 10. In total, there are 313 points in the grid expressing
the two coordinates a and b values when projecting onto the
a and b axes, respectively. Every point in the grid will be
numbered from 1 to Q=313. From there, we can express
the coordinate in the 2D ab space based on the ab color
index of every point in the grid. With the label smoothing
technique, the probability values in Zab (p) depend on the
distance between the ab coordinate with the nearest points
on the grid. We only take the top 5 ab color indices nearest
the ab coordinate of the pixel p, fill the probability under a
Gaussian distribution, and normalize it to 1.

Weighted color index values: To encourage the rare colors
in the image, we need to calculate the weighted term of
every color index q in the training dataset. Zhang et al. [11]
and Tram et al. [29] suggest to use the smoothness prior
distribution Psmooth to calculate the balance terms as follows:

Psmooth = Interp (P) ∗Gσ ,∑
Psmooth = 1,

P (q) =
Ntrain,q

Ntrain
(11)

where Ntrain,q and Ntrain are respectively the number of
occurrences of the color index q and the number of pixels
in the training dataset. Psmooth is calculated by applying the
interpolation operator interp (such as bicubic), smoothing
with convolution operator ∗ using Gaussian kernel Gσ , and
normalizing the value to 1.
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The weighted term w (q) at the color index q is derived
from Psmooth such that:

w (q) =
(
(1− λ)Psmooth +

λ

Q

)−1
,

E [w] =
Q∑
q=1

Psmooth (q)w (q) = 1 (12)

where λ ∈ [0, 1] is the tuning term for mixing the smoothness
probability Psmooth with the uniform distribution λ

Q , Q is the
number of color index values, and the expectation of the
weighted term w (q) is normalized to 1.

Decoding Scheme: Mode Scheme - Zab (p) at pixel loca-
tion p in the image is a quantized color distribution vector for
expressing the occurrence probability of the color index q.
Each such vector has a total of 313 probabilities correspond-
ing to the 313 bins of color index. Therefore, we can obtain
the prediction color index q∗ by the highest probability at
pixel location p as follows:

q∗ = argmax
q

Zab (p, q) (13)

This method often achieves inconsistent results in obtain-
ing the mode of color distribution. By contrast, the col-
orization result obtained using the mean value in the color
distribution is a grayish, desaturated color.

Annealed-Mean Scheme - To avoid this problem, the
annealed-mean distribution Z∗ab (p) at pixel location p is used
to obtain the color value in the color distribution:

Z∗ab (p, q) =
exp

(
log(

(
Z∗ab (p, q)

)
/T
)∑

q exp
(
log(

(
Z∗ab (p, q)

)
/T
) ,∑

q

Z∗ab (p, q) = 1 (14)

where T is the temperature term for tuning the color distribu-
tion for a stronger peak when T −→ 0 and for no change when
T = 1.

Therefore, the ab color value Y∗ab (p) at pixel location p is
the expectation value of Z∗ab (p):

Y∗ab (p) = Eab
(
Z∗ab (p)

)
(15)

In the Annealed-Mean Scheme, by choosing T −→ 1,
the colorization result becomes grayish, and desaturated.
When selecting T −→ 0, the result is similar to that obtained
using the mode scheme. In this paper, we choose T = 0.38,
the same value used by as Zhang et al. [11]. This maintains
the spatial constraint more than the mode scheme.

2) THE UNCERTAINTY SCENE-CONTEXT CLASSIFICATION
The main purpose of the scene-context classification is to
transfer the style of the global prior knowledge of the image
into the colorization image process. The global prior knowl-
edge is transferred from a large-scale dataset containing the
diversity scenecontext characteristics given by the scene type
such as indoors (kitchen, bedroom), outdoors (farm, pasture),
and objects as shown in Fig. 5.

FIGURE 5. The diversity scene-context characteristics in the COCO-Stuff
dataset.

In addition, the scene context also has the uncertainty
property, as each a scene brings to mind more than unique
meaning. For instance, for the image in Fig. 6, one personmay
think of it as a cafeteria, while person may imagine it like a
restaurant. In this way, the detailed contextual meaning of an
image will depend on the person to some extent. This is also
caused by the error stemming from the transfer learning from
the pre-train model, as is the case in Fig. 5 with the images
about the object description shown in the middle column.
Therefore, the uncertainty scene-context helps exploit the
relationship among the main scene-contexts in the large-scale
dataset dealing with the multi-modal property of image col-
orization under global coherent constraints. It also helps the
model learn incorrect scene-context, which decreases the
number of mistakes.

FIGURE 6. The uncertainty scene-context classification.

To train a machine to mimic the processes of the human
mind, we apply a technology called label smoothing from
Müller et al. [30] to improve the generalization and learning
speed of the network. This prevents the network from being
over-confident in the classification problem. According to
the traditional cross-entropy classification, the one-hot vector
consists of two values in which ‘‘1’’ presents the correct class
and ‘‘0’’ indicates the incorrect class. However, with the label
smoothing technique, the label yhot of the one-hot encoded is
replaced with a mixture of yhot and the uniform distribution.
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In this paper, instead of using the mixture of one-hot
encoding and the uniform distribution as described above,
we fill the top five highest probabilities from the pre-trained
VGG16 model [31] on the Places [15] and normalize the
values to 1 as shown on Fig. 6. We may transfer knowledge
from the scene domain network to our colorization model
under uncertainty, and therefore improve the model’s gener-
alizability.

3) THE PIXEL-LEVEL SEMANTIC SEGMENTATION
Aside from the global semantic features for style transferring
in the uncertainty scene-context, the colorization process is
affected by the semantic matters in the local scope at the pixel
level. It means that the pixel belongs to the object and stuff
types. In human vision, one uses their experiences with the
objects in an image to make a colorized image suitable for
the scene global coherent constraint.

In Fig. 7, with the scene-context classification, the uncer-
tainty scene-context is calculated from the pre-trained
weight on Places365 [15] for an image on Coco-Stuff [13].
It shows the three possible contexts for the image corre-
sponding to with the top three highest probabilities. Using
the label smoothing, we prevent the occurrence of errors
when transferring learning, and set up the relationship
between the scene types of soccer field, park, and golf
course.

FIGURE 7. Per-pixel Semantic-Segmentation and uncertainty
classification on Coco-stuff dataset.

Moreover, in the image details, a multi-model is shown
with three colorization styles in the ‘‘person’’ label. For the
stuff label, there are ‘‘tree’’, ‘‘grass’’ and ‘‘sky-other’’ labels
affecting the scene-context. There is also small object label
with a ‘‘frisbee’’ label. The content label mask helps the
model to learn the local description and enhance the decod-
ing feature map Xmap to boost the accuracy in the complex
scenes.

In practice, a color image could be segmented better than
a gray-scale image [32]. Although our input system involves
a gray-scale image, the semantic segmentation model takes
advantage of the colorization model to improve the segmen-
tation results. On the other hand, it helps the other models
exploit the semantic pixels in terms of where they belong to
and what the objects and stuff are.

C. MULTI-LOSS FUNCTION
Our joint colorization model has the goal of image coloriza-
tion in the multi-modal property integrating the semantic
matters. For this reason, our joint loss Ljoint in Eq. 16 is
the weighted sum of the category cross-entropy loss for the
color distribution Lsoft , the mean-square error loss for color
regression Lreg, the soft-dice loss for semantic segmenta-
tion Lseg and the category cross-entropy loss for the uncer-
tainty scene classification Lclas with the label smoothing
technique [30].

Ljoint = α1Lsoft + α2Lreg + α3Lclas + α4Lseg (16)

where αi is the weighted term used to adjust the impor-
tance among colorization regression, distribution, semantic
segmentation, and scene classification losses.

To minimize the errors of the per-pixel 2D color distribu-
tions caused by the prediction Ẑab and ground-truth Zab on
ab channels, we use the weighted category cross-entropy loss
for Lsoft as in [11]:

Lsoft
(
Zab, Ẑab

)
= −

∑
p

w
(
q∗
) Q∑
q=1

Zab (p, q) log Ẑab (p, q) ,

where q∗ = argmax
q

Zab (p, q) (17)

where, Zab (p)/Ẑab (p) is the ground-truth/prediction of the
color distribution vector at pixel location p, Zab (p, q)/Ẑab
(p, q) is the color probability at bin q of Zab (p)/Ẑab (p), q∗

is the bin in the color distribution vector Zab with the highest
probability, and w (q∗) is the weighted term to encourage the
rare color.

With the regularization role in the regression model Freg,
Lreg is the mean-square-error loss used to measure the con-
vergence between the predicted and ground-truth colors:

Lreg
(
Yab, Ŷab

)
=

1
H×W

∑
p

∥∥∥Yab (p)−Ŷab (p)
∥∥∥2
2

(18)

where H andW are the height, and width of the input image,
respectively.

Here, the model Freg has the role of approximating
the common colorization result to be suitable in terms of
semantic matters by using the scene-context model and the
per-pixel semantic segmentation model, while the model
Fsoft addressed the multi-model properties in the coloriza-
tion process. It can produce a vibrant colorized image that
can fool human vision. However, it can also make the
mistake of over-aggressive colorization, requiring a fix by
an annealed-mean from the color distribution based on the
weighted average over the color probability bins.

For the per-pixel semantic segmentation model Fseg,
we use softmax dice loss [33] to calculate each class mask
and the average yield as final score Lseg:

Lseg
(
Yseg, Ŷseg

)
=1−

2
∑

p Yseg (p) Ŷseg (p)∑
p Yseg (p)2+

∑
p Ŷseg (p)2

(19)
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FIGURE 8. Implementation Details of Semantic Image Colorization Model using U-Net.

It is difficult for the Fseg model to predict segmentation
under a gray-scale image instead of the RGB domain, as is
common. However, using per-pixel fusing among regression
colorization and distribution helps the segmentation model
learn the color information better, which strengthens the accu-
racy in segmentation. On the other hand, the segmentation
model also supplies the per-pixel semantic for the coloriza-
tion process.

Finally, for the uncertainty scene-context classification
model Fclas, the category cross-entropy loss is used to
calculate Lclas:

Lclas
(
Yclas, Ŷclas

)
= −

C∑
i=1

Yclas,ilogŶclas,i (20)

where C is the number of scene types andYclas,i/Ŷclas,i is the
ground-truth/prediction of scene probability on class i.
The model Fclas transfers the global meaning in the scene

(indoor/outdoor, kitchen room, etc.) into the colorization pro-
cess through the low-level encoding feature Xenc. Based on
the pre-trained weight on Places365 [15], the ground-truth
Yclas is used to calculate the scene-context probability under
the uncertainty condition with the label smoothing tech-
nique [30]. This means that instead of giving the correct class
with probability 1, we assign the top 5 highest probabilities
by Gaussian distribution and normalize the values to 1. The
benefit of label smoothing is not only in enhancing the accu-
racy of the correct label, but also in learning the relationship
with nearest scene-contexts under the uncertainty in labeling
the scene type.

In summary, by multi-loss Ljoint , the overall model will
learn the mutual benefits among the specific models Fsoft ,

Freg, Fseg, and Fclas. The colorization process will address
the semantic matters in a per-pixel manner by Fseg as well
as a global scene-context by Fclas. Moreover, the colorization
process produces the common frequency pattern by Freg inte-
grated in the multi-modal colorization distribution by Fsoft .

IV. IMPLEMENTATION DETAILS
In this section, we describe our network architecture in further
details. Our implementation for automatic image colorization
based on learning from the per-pixel scene-semantic and
global scene-context is described in Fig. 8. The input of our
model is the grayscale image XL with size H × W × 1.
The outputs of model are scene-context classification Ŷclas
with size H × W × C where C = 365 the number of
scene classification classes, the color regression Ŷab on ab
channel with size H × W × 2, the color distribution Ẑab
with size H × W × Q where Q = 313 the number of bins
in the soft-encoding scheme, and the semantic segmentation
mask Ŷseg with size H ×W × S where S = 183 the number
of segmentation classes.

The colorization problem could be considered as a
semi-supervised learning process that involves learning the
colorization features by making the gray-scale version of a
color image as the input data and then learning the color
version of that same image. In the testing phase, we use the
learning model to predict the gray-scale image without the
color version.

Therefore, in the first step, we construct the colorization
data by transforming the color image IRGB into ILab in the
CIE Lab color space. This space has three coordinates: L rep-
resents the gray-scale axis, the a axis represents the green–red
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component, and the b axis indicates the blue–yellow compo-
nent. We choose this color space because its metric is conve-
nient for measuring the correlation between the L lightness
channel and the ab color channel. With this context, the input
image XL ∈ RH×W×1 is the lightness channel IL . The col-
orization task only needs learn the regression color valuesYab
in the a and b channels Iab. Based on the global scene-context
style and the pixel-level semantic matters, we suggest the
index color distribution vector Zab for multi-model solving,
the uncertainty scene-context vector Yclas by transferring
learning for the global style, and semantic segmentation Yseg
for the pixel-level semantic matters. The details are described
in Section III-B.

We choose the U-net structure [12] as the platform for
building our network, as it has many advantages. For one,
this network is suitable for a completely automated col-
orization task because it can be trained end-to-end. Further,
we also leverage the architecture including the contracting
path named E (XL) that can capture context to encode the
lightness channel to the low-level encoding features Xenc,
and the expanding path named D (Xenc), of which precise
localization decodes the encoding features into the 2D feature
map Xmap.
For details, Eenc (XL) uses the back-bone VGG16 [31],

comprised of four convolution blocks with two convolution
layers using kernel 3×3 and one batch normalization layer as
well as one convolution block in the middle for the encoding
feature. After every encoding block, the resolution of the
image is reduced to half its value by the striding 2 in the last
convolution in the block and the number of filters double.
D (Xenc) consists of four decoding blocks containing one
up-sampling layer, and three convolution layers. After every
decoding, the up-sampling layer doubles the resolution and
the number of filters decreases by half. There are also skip
connections between the last convolution in the encoding
block and the first convolution layer in the decoding block
at the same depth level. It helps our model avoid the broken
connection when the features from the below-decoding block
are transferred feature to the upper-decoding block by van-
ishing or the dying-ReLU problem.

For the uncertainty scene-context classification
Hclas (Xenc), it puts it in the middle of the U-Net model
to enhance the Xenc. The classification branch includes the
2D global average pooling layer, two dense layers, and the
soft-max layer outputting the one-hot vector containing the
probabilities of scene-context occurrence.

The color distribution branchHsoft (Xdec), the color regres-
sion branch Hreg (Xdec), and the semantic segmentation
branch Hseg (Xdec) are placed after the decoding model
D (Xenc), and they have the input set to be the 2D feature
map Xdec. By using the convolution layer 1 × 1 with the
same number of filters as the output values (two for color
regression, 313 for color distribution, and 183 for semantic
segmentation), they produce the output at the pixel level with
same size as the gray-scale input. They are only different
from the activation layer with the tanh function for color

regression and the softmax function for color distribution and
segmentation.

V. EXPERIMENTS AND DISCUSSION
A. DATASETS
Our experiments were performed on the COCO-Stuff
dataset [13] in Fig.9. The COCO-Stuff is a subset of the
COCO dataset for large-scale object detection, segmentation,
and captions with more than 118,000 images for training and
5,000 images for the validation set. It consists of 172 classes
involving 80 things, 91 stuff, and one class unlabeled.We also
convert each image to the size of 224×224 before the training
process.

FIGURE 9. Semantic-Segmentation in COCO-Stuff Dataset [13].

For scene ground-truth, we used the pre-trained weight on
the VGG16 model of the Places365-Standard dataset [15].
We predicted the scene probabilities of 5.000 images from
theCOCO-Stuff validation set, obtained the top five proba-
bilities and normalized the value to 1. Fig. 10 shows some
images and classes of Places365-Standard with 1.8 million
images having a train set, as well as 365 different classes of
scene/location. Each class has from 3,068 to 5,000.

FIGURE 10. Scene-Context Classification in Places365 dataset [15].

For colorization testing, we built the first 1000 images
from the validation sets of four datasets: the ImageNet [16],
Places365 [15], and Coco-Stuff [13], as well as 100 images of
the high-resolution validation set in the DIV2K dataset [14]
shown in Fig.11. In addition, we obtained some images from
the Internet for validating the colorization results. The images
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FIGURE 11. DIV2K Dataset [14].

that were published on the Internet were a wide range of life
and legacy images.

Table 1 lists the numbers of images used for training,
validation and testing in this study.

TABLE 1. Number of images in training, validation and testing datasets.

B. ENVIRONMENTAL SETUP, TRAINING DETAILS
Environment: Our development environmentwas Python 3.7
using Tensorflow Keras 2. We used a desktop PC with
Intel Corei5 8400 with 32 GB of RAM and a GeForce
GTX 1080 8GB RAM graphics card.

Training Scheme: In this study, we did not use
cross-validation due to training on the large dataset
Coco-Stuff and testing on the different test sets from DIV2K,
Place365, ImageNet, Coco-Stuff dataset.

Training Data: We trained the model on 118,000 images
of the COCO-stuff training set, and validated the model on
5,000 images. Each input was resized to at most 256 pixels.
Some of the techniques used for data augmentation are ran-
dom contrast, brightness, random horizontal flip, rotate, scale
and translate.

Training Details: To overcome over fitting when learning
multi-task, the model training consisted of two stages for:
in the first stage, training began with an initial learning rate
of 0.0004 using a reduce learning rate on plateau at every
five epochs with 0.95 decay, then the model was fine-turned
again by using a Cycle Learning Rate with an initial learning
rate of 0.0008 and next values of the learning rate cyclically
varying within a range of [0.0008, 0.00001] in the period of
eight epochs for optimizing colorization, semantic scene, and
semantic segmentation. Every configuration required three
days off training time. Some optimization functions were
applied for learning such as Adam, SGD and RMSProp;
Adam and RMSProp provided better results than SGD.

C. EVALUATION METRICS AND COMPARISON METHODS
Evaluation Metrics: Following previous papers, we used
two kinds of evaluation metrics: quantitative and quality
metrics.

FIGURE 12. Cumulative histograms of L2ab distance (lower = fewer pixels
with errors). The results for our methods are better on ImageNet, DIV2K,
Places365, and COCO-Stuff.

For the quantitative metrics, we divided them into
two small groups: similarity metrics and the perceptual
approach. There are two similarity metrics used in this study:
Peak Signal-to-Noise Ratio (PSNR), the Structural Similar-
ity Index (SSIM) [34], and the L2 distance of ab channel,
as shown below:

PSNR
(
I, Î
)
= 10 log10

2552

MSE
(
I, Î
) (21)

MSE
(
I, Î
)
=

1
P

∑
p

(
I (p)− Î (p)

)2
(22)

L2
(
I, Î
)
=

√∑
p

(
I (p)− Î (p)

)2
2P

(23)

SSIM (I, Î) =
(2µIµÎ + C1)+ (2σIÎ + C2)

(µ2
I + µ

2
Î
+ C1)(σ 2

I + σ
2
Î
+ C2)

(24)

where I and Î are the ground-truth and prediction images,
respectively; P is the number of image pixels; C1 and C2
are the numerical stabilizing constants; and µ and σ are the
mean and standard variance of an image, respectively. For
a color image, we computed these metrics on every channel
and obtained the average result. PSNR and SSIM evaluations
were performed on RGB color images. L2 was evaluated
based on the ab color channel.

These similarity metrics quantify the reconstruction qual-
ity and structural similarity of ground truth and images filled
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FIGURE 13. Successful cases of the DIV2K high-resolution validation. Our results were more vibrant and
had more precise edges than the other methods. Moreover, the yellow color noise also was reduced in our
ClasRegSoft versions comparison on RegSoft version.

FIGURE 14. Fail cases of the DIV2K high-resolution validation. The fail cases often fell into images with rare
colors, so the predicted colors were either pale or wrong. In addition, red noises also occurred.

with predicted colors. However, according to our observa-
tions, they do not sufficiently reflect the visual quality.

Therefore, we added another form of evaluation involving
the perceptual approach in the quantitative metrics as follows:

First, we used the semantic interpretability [7], [11] by
classification accuracies in the ImageNet and Places365 datasets
for the colorized images. We used Top1-Acc with
VGG16 pretrained weight on ImageNet and Places365.

Secondly, we also used Fréchet Inception Distance [35] to
measure the semantic distance between the colorized output
and the realistic natural images.

Finally, our method was also evaluated by the percep-
tual metric of Learned Perceptual Image Patch Similarity
(LPIPS) described by Zhang et al. [36] (with AlexNet back-
bone, version 0.1). This metric assesses howwell metrics cor-
respond with human perceptual judgments under traditional

distortions: noise, photometric, blur, warping and compres-
sion by computing the cosine distance from the normalized
vector features.

For the quality metrics, we used the visual performance
to show the success cases as well as the failure cases for com-
parison. We evaluated the visual performance on four pub-
lic datasets DIV2K, ImageNet, COCO-Stuff, and Places365.
We also showed the colorization results on legacy and life
images collected from the Internet.

In terms of comparison methods, our method was com-
pared to three robust colorization methods Iizuka et al. [7],
Larsson et al. [8], and Zhang et al. [11], as presented
in Table 2.

We also took the pre-trained weights issued by that these
authors predict colors for images and compared them to our
predictions, as listed in Table 2. Despite differences in the
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FIGURE 15. Successful cases of the ImageNet ctest1k. Our results were closer to the original photos than
the others.

FIGURE 16. Fail cases of the ImageNet ctest1k. For the images with more details, our results met difficulties
for colorization with incorrect colors and noise occurrences. These defects are similar to the results of
Iizuka et al. [7] and Larsson et al. [8].

TABLE 2. Comparison Methods.

training dataset, all of the images are collected from the
Internet and show a variety of activities, things, and scenes
in nature. In this study, we also conducted an ablation study
to evaluate several model designs in our proposed method, as
listed in Table 2.

We explored the effect of every branch on the colorization
result. For the RegSoft design, we only kept the regression
and the color distribution branch with branches (2) + (3),

as shown in Fig. 8. For ClassRegSoft, we added one more
classification branch to our model with branches (1) + (2) +
(3). Finally, the SegClassRegSoft design had all branches (1)
+ (2)+ (3)+ (4), including the regression, color distribution,
classification, and segmentation branches, respectively.

We have four kinds of outputs in our model. The seman-
tic segmentation provided the label mask for determining
the semantic of pixels in the image, while the classifi-
cation scene-context determined the global context of an
image. These branches helped our model learn the semantic
colorization.

For the colorization results, our model returned from
branch 2 with colorization regression. The output of this
branch provided an average result with desaturation and a
grayish effect. However, with using the classification and
segmentation, this branch gave a better result, as shown in
the success cases of ImageNet at Fig.15with at least noise and
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FIGURE 17. Successful cases of the Places365 ctest1k. The colors in our results were good enough to
produce some vivid photos.

FIGURE 18. Fail cases of the Places365 ctest1k. Our results had some red noise in RegSoft, and ClasRegSoft
version. However, the results were enhanced in SegClasRegSoft version.

more colors in ClassRegSoft and SegClassRegSoft comparing
to RegSoft design.

Finally, the soft-encoding result in branch 3 returned the
color distribution of the ab channels. The colorization result
was calculated based on the weighted average between the
probability values and the corresponding intensity in every a
and b channel by Eq. 15. Using the annealing-mean scheme,
we adjusted the probability values in the role of the weighted
term by the exponent function controlled by temperature
term T by Eq. 14. The benefits of this scheme are that
it keeps the spatial constraints and removes the noise by
the weighted average effects. When T reaches 1, the color
probabilities almost stay the same, leading to average effects.
When T reaches 0, the higher probability values are increased
substantially more than the lower values by the exponent
function effect. The colorization result gave a more vibrant
result with few artifacts.

D. EXPERIMENT 1: QUANTITATIVE COMPARISONS ON
SIMILARITY METRICS
Tables 3 and 4 list our results of the quantitative compar-
isons on Similarity Metrics. For PSNR and SSIM, higher
values are the better. For L2ab lower values are better. The
method of Larsson et al. gave almost better PSNR results
on ImageNet, DIV2K, and COCO-Stuff (23.335, 23.49, and
23.773 respectively) and SSIM results on ImageNet and
DIV2K (0.869, and 0.929, respectively). However, our meth-
ods provided the best results on the L2ab metric for DIV2K,
Places365, and COCO-Stuff with values of 0.068, 0.442, and
0.223, respectively. The result shows that semantic segmen-
tation played an important role in enhancing the colorization
results, and it helped our method improve the accuracy of the
ab channels.

Fig. 12 shows comparisons of the error distributions of
L2ab on comparison datasets. Our fully automatic method
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FIGURE 19. Successful cases of the COCO-Stuff ctest1k. Our SegClasRegSoft could distinguish food and others,
so instances of color bleeding slightly decreased.

FIGURE 20. Fail cases of the COCO-Stuff ctest1k. In a few images with low quality and many small objects, our
methods were not successful.

dominates all competing approaches by version SegClasReg-
Soft, except for the ImageNet dataset.

E. EXPERIMENT 2: QUALITY COMPARISONS
1) DIV2K HIGH-RESOLUTION VALIDATION
We showed some successful and fail cases on DIV2K
high-resolution validation in Figs.13 and 14, respectively.
The results obtained with our version SegClassRegSoft were
improved more than our previous methods. The colors
in our pictures were more vibrant and had more precise
edges than the other methods. We also reduced the yellow
color noise that occurred in our RegSoft and ClasRegSoft
versions.

2) ImageNet ctest1k
We first used 1,000 images from the ImageNet validation
set to make the ImageNet ctest1k. Although Zhang et al.
[11] and Larsson et al. [8] performed training on ImageNet,
we obtained some successful cases that were closer to the
original photos than their results.

The pictures in ground-truth shown in Fig. 16 with many
more details also cause many difficulties for automatic
colorization through our methods or others. In Fig. 16,
we observed incorrect colors and noise again in the
fail cases. These defects are similar to the results of
Iizuka et al. [7] and Larsson et al. [8] on the ImageNet
validation set.
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FIGURE 21. Colorization Images on Internet. In the chicken image at column 5, our result showed the more detail at the
edge comparison on Zhang’s method. By pixel-wise semantic segmentation, we achieved the better result in enhancing the
semantic objects in the image.

TABLE 3. Similarity results on ImageNet ctest1k and DIV2K high-resolution validation.

TABLE 4. Similarity results on Place365 and COCO-Stuff ctest1k.

3) Places365 ctest1k
The reason we conducted experiments on the Places365
ctest1k is that it was leveraged for machine learning by
Iizuka et al. [7]. Therefore, we also attempted coloring on the
first 1,000 images of the Places365 validation set. In general,
the colors in our results were good enough to produce some
vivid photos, as shown below.

4) COCO-STUFF ctest1k
Finally, there can be no shortage of experiments with the
COCO-Stuff validation set. In the first image from the top
in Fig. 19, which we evaluated compared to an original
grayscale image, our SegClasRegSoft could distinguish food
and others, so instances of color bleeding slightly decreased.

To have evaluations from different aspects, we selected a
few images having low quality and small objects, but our
methods were not successful, as shown on Fig. 20.

F. EXPERIMENT 3: INTERNET AND LEGACY RESULTS
We had a feeling that high-quality images would be advan-
tageous. We randomly collected high-quality images from
the Internet to make the ground-truth in the first line in
Fig. 21. It can not be denied that the results are slightly
better than those from Zhang et al. Our results in the first,
fifth, sixth, and seventh columns had less noises colors.
In the third column, our method predicted various colors
for vegetables and fruits while the predictive colors by
Zhang et al. had an excess of reddish brown. We compared
with only Zang et al. because their predictions regarding
colors look better than the other methods from the above
experiments.

We also challenged ourselves by trying to color old histor-
ical images without colors. The results in Fig. 22 were not
vivid due to brightness and quality, but our methods made
these old images a bit more pleasing.
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FIGURE 22. Legacy Colorization Images.

FIGURE 23. Segmentation Visualization.

G. EFFECTS OF SEGMENTATION ON COLORIZATION
RESULTS
Fig. 23 shows visualizations of the segmentation results when
our model colorized the image, they show that our model
could capture the semantic segmentation to enhance the col-
orization results.

VI. CONCLUSION
In this paper, we proposed the encoder-decoder architecture
to deal with the global and local semantics in the coloriza-
tion problem. The encoding features are affected by the
scene-context classification to bring the global image style
to the image colorization in the global semantics. Moreover,
it used the pre-trained weight from Places365 to exploit the
uncertainty and relations among the scene labels by using
the label smoothing from the top five probabilities in its
prediction.

The image colorization at the pixel-level was fine-tuned by
the semantic segmentation of both objects and the kinds of
scenes from the Coco-Stuff dataset. This helped our model
exploit the meanings of what objects the pixels belong to,

such as a car or kite (objects) and a field or sky (scene).
The final color version is the result of the mutual bene-
fit learning of the semantic segmentation model with the
average colorization model in the regression branch and the
color distribution model in a soft-encoding branch where
our model addresses the multi-model problem in coloriza-
tion. Our validation experiments in ImageNet, DIV2K, and
Places365 show good results.

In this study, we met the difficulties for image colorization
in the cases such as many complex patterns, rare colors, many
objects. It leaded to noise occurrences, incorrect colors and
some regions without colorization. In the future, we will
enhance the bias in the color selection from the color distri-
bution model by the optimization process from multi-scale
outputs. Moreover, we will use the generative model to col-
orize images better.
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