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ABSTRACT It is a challenging problem to detect the apple in natural environment using traditional object
recognition algorithms due to occlusion, fluctuating illumination and complex backgrounds. Deep learning
methods for object detection make impressive progress, which can automatically extract the number, pixel
position, size and other features of apples from the images. In this paper, four deep learning recognition
models, Faster RCNN based on AlexNet, Faster RCNN based on ResNet101, YOLOv3 based on DarkNet53
and improved YOLOv3 were employed to carry out recognition experiments on red and green apple under
three illumination and two image sharpness conditions, with the transfer learning to accelerate the training
process. The results showed that improved YOLOv3 model had the best recognition effect among the four
detection models. F1 value of red apple recognition was 95.0%, 94.6% and 94.1% for normal, insufficient
and excessive illumination, respectively, and F1 value of green apple recognition was 94.9%, 94.0% and
91.1%. There were F1 value of 92.8% and 92.1% for red and green apple recognition in blurred images,
respectively. Moreover, improved YOLOv3 algorithm still had the better performance for occlusion, spot,
overlap and incomplete apples, with a recognition recall rate higher than 88.5%. It can be concluded that
improved YOLOv3 algorithm can provide a more efficient way for apple detection in natural environment.

INDEX TERMS Deep learning, image process, apple detection, faster RCNN, YOLOv3.

I. INTRODUCTION
Apple is a kind of fruit consumed and grown worldwide
because of its delicacy and high nutrition [1], [2]. In 2017,
China produced more than 49 percent of the world’s apples,
ranking first in the world [3]. However, apple harvest depends
extensively on manual operation with the high labour inten-
sity and the low efficiency, which has restricted the devel-
opment of apple industry in China [4]–[6]. With the rapid
development of smart farming and large-scale planting in
recent years, apple harvesting robots have provided a mean
to reduce harvest costs while improving labour productivity
[7]–[9]. Therefore, it is of great significance to recognize
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the apples rapidly and accurately for real-time automatic
harvesting [10].

Numerous studies have been reported on the apple
detection. Peng et al. [11] used the SVM classifier to classify
and identify fruits based on the extracted feature vectors.
Sengupta and Lee [12] developed an algorithm includ-
ing Hough circle detection, texture classification based on
SVM and other false positive removal techniques to detect
immature citrus in green canopy under natural conditions.
Sun et al. [13] designed an apple target segmentation method
by fusing fuzzy set theory and themanifold ranking algorithm
to carry out the recognition of green apples in similar back-
ground areas. Lv et al. [14] conducted the detection of apple
fruit by OTSU dynamic threshold segmentation method,
edge detection and improved RHT transformation method.
Ji et al. [15] developed a new classification algorithm based
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on SVM to detect about 89% of fruits with an average recog-
nition time of 352 ms. Although these methods can be used
for apple recognition, their overall performances are still far
from satisfactory due to changes in illumination, branches
and leaves masking.

Recent developments in deep learning technique have
proved its powerful ability for object recognition under the
complicated background [16]–[19]. Dias et al. [20] proposed
CNN + SVM method for apple flower detection, which
could also achieve accurate identification even in scenarios of
different flower species and illumination conditions. Fu et al.
[21] developed a kiwifruit detection system for field images
by using Faster RCNNwith ZFNet, which had a good robust-
ness against the subjectivity and limitation of the features
selected manually. Xiong et al. [22] applied faster RCNN
to detect the green citrus in different quantities, sizes and
illumination angles. Peng et al. [23] proposed an improved
SSD fruit detection model to accurately detect various types
of fruits in the natural environment. Tian et al. [24] proposed
an improved YOLO-V3 model for detecting apples during
different growth stages in orchards with fluctuating illumina-
tion, complex backgrounds, overlapping apples, and branches
and leaves. However, current research on apple recognition
using deep learning technique is at its early stage, and there
are few reports on apple classification detection under differ-
ent algorithms and different conditions.

The main object of this study was to explore the feasibility
of applying deep learning technique for apple recognition.
Images were first acquired from two cultivars of apple in
different illumination conditions. Then four deep learning
methods were developed to detect the apples under vari-
ous conditions. The ability of different models to recognize
apples was analyzed and evaluated in the end.

II. MATERIALS AND METHODS
A. IMAGE ACQUISITION
There were two cultivars of apples, ‘Honeycrisp’ with red
colour and ‘Fuji’ with green colour, growing at a commercial
apple orchard in Prosser, Washington State, USA. Image
acquisition was conducted in different illumination condi-
tions covering the sunny, cloudy and different times of the
day in October, 2017. All the images were acquired using
smartphone camera (iphone 7 Plus, Apple Inc., Cupertino,
CA, USA) with 4032 × 3024 pixels. There were 849 apple
images collected from various viewing direction of camera
including 609 red apple images and 240 green apple images.

B. DATASET PRODUCTION
Images were divided into training dataset, validation dataset
and test dataset. Original images were selected to produce the
test dataset. For red apples, the test dataset had 200 images
selected equally from original images under normal, exces-
sive, and insufficient illumination, and blurred images. Sim-
ilarly, there were 80 images selected as the test dataset for
green apples. Figure 1 showed some red and green apple

FIGURE 1. Red and green apples in (a) normal, (b) excessive,
(c) Insufficient, and (d) blurred image.

FIGURE 2. Incomplete/small fruit sample annotation.

images in different conditions. Then the remaining images
were used to augment for training dataset and validation
dataset.

C. IMAGE AUGMENTATION
To recognize the apples from the uneven sunlight and
complex background, original images were augmented and
expanded to get enough data for extracting the features effec-
tively and avoiding overfitting, including brightness enhance-
ment and reduction, contrast enhancement and reduction,
saturation enhancement and attenuation, and noise points
addition. Image augmentation was achieved in Python 2.7
by writing an image processor. As a result of the image
augmentation, red and green apple images were expanded
to 3096 and 1280 images, respectively. Table 1 illustrated the
number of images created by various augmentation methods.
Then these images were randomly split into training and
validation sets in a ratio of 5:1.

D. MAN-MADE ANNOTATION OF SUPERVISED LEARNING
The categories and the location of samples were labeled man-
ually in term of bounding boxes according to the principle
of minimum tangential rectangle. In case of occlusion from
leaves and other apples, annotation was applied to cover
the whole apple, even for some incomplete or small fruit.
Figure 2 showed an example of image annotation, includ-
ing some incomplete or small fruit. The image annotation
software used in this study was LabelImg, which saved the
annotation file in the format of ‘xml’.

E. DEEP LEARNING ALGORITHM FOR APPLE DETECTION
Compared with traditional image recognition methods, target
detection and recognition technology based on deep learning
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TABLE 1. Number of apple images created by various augmentation
methods.

FIGURE 3. Image processing procedures of Faster RCNN for apple
recognition.

has the advantage of learning features through deep convo-
lution neural network, direct regression through end-to-end
training, high accuracy and real-time performance, and is
good at discovering complex structures in high-dimensional
data. The more data is used to train deep learning model,
the stronger robustness and generalization of the model
will be.

1) FASTER RCNN ALGORITHM FOR APPLE DETECTION
Faster RCNNevolves fromRCNNand Fast RCNN [25]–[27].
It innovatively uses the region proposal networks to integrate
feature extraction, candidate box selection, border regression
and classification into one network [28]. In this experiment,
Faster RCNN structure was mainly composed of convolution
layers, region proposal networks (RPN), ROI pooling layers,
and classification and regression layers. A feature map was
initially produced by AlexNet and ResNet101, respectively,
and non-maximum suppression was applied to eliminate
bounding box. Figure 3 illustrated image processing proce-
dures of Faster RCNN for apple recognition.

The loss function of the RPN is defined as follows:

smoothL1(x) =

{
0.5x2 |x| ≤ 1
|x| − 0.5 otherwise

(1)

L({Pi}{Ti}) =
1
Ncls

∑
i

Lcls(Pi,P∗i )

+σ
1
Nreg

∑
i

P∗i Lreg(Ti,T
∗
i ) (2)

FIGURE 4. Architecture of YOLOv3 for apple detection.

where, i is the index of an anchor in a mini-batch and Pi is
the predicted probability of anchor i being an object. The
ground-truth label P∗i is 1 if the anchor is positive, and is 0 if
the anchor is negative. Ti is a vector representing the 4 param-
eterized coordinates of the predicted bounding box, T∗i is that
of the ground-truth box associated with a positive anchor.
The outputs of the cls and reg layers consist of {Pi} and {Ti}
respectively. The two terms are normalizedwithNcls andNreg,
and a balancing weight σ . The classification loss Lcls is log
loss over two classes (apple vs. not apple). For the regression
loss, we use Lreg(Ti,T ∗i ) = R(Ti − T ∗i ) where R is the robust
loss function (smoothL1) defined in equation (1).

2) YOLOV3 ALGORITHM FOR APPLE DETECTION
YOLO is the single-stage detector to deal with object detec-
tion by direct regression from input images to class probabil-
ities and bounding box coordinates [29]. YOLOv3 detection
algorithm discarded the pooling layer and the fully connected
layer, and used DarkNet53 for multi-scale prediction of the
apple feature instead of Softmax [30]. There were three fea-
ture maps adopted to detect large, small and medium-sized
apples in Figure 4.

The loss calculation of YOLO during training is as follows:
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YOLO network adopts square Loss, where S is the number
of partitioned grids, B is the number of bounding boxes
predicted by each grid cell, C is the number of categories of
bounding boxes, λ is the loss coefficient, `objij is the judgment
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FIGURE 5. Architecture of Improved YOLOv3 for apple detection.

FIGURE 6. Training loss curve (a) and mAP score curve (b) of
AlexNet+Faster RCNN algorithm.

of whether the jth bounding box in the ith grid is responsible
for this object.

3) THE IMPROVED YOLOV3 ALGORITHM
The classic yolov3 detection network uses darknet-53 as a
feature extraction network. It contains 53 convolution layers,
which are powerful but have a deep network layer and a large
computational cost. To improve the speed of training, reduce
the redundancy of the network and misrecognition of small
objects in the background, an improved yolov3 model was
proposed by removing the full connected layer of darknet53
and the detection branch of 8 times down-sampling scale
according to the typical requirements of apple identification.
The improved yolov3 network framework was shown in fig-
ure 5.

III. RESULT AND ANALYSIS
A. EXPERIMENTAL ENVIRONMENT
Four detection models, AlexNet+ Faster RCNN, ResNet101
+ Faster RCNN, DarkNet53 + YOLOv3 and the improved
YOLOv3 were used for apple recognition. They were trained
and tested in NVIDIA GeForce GTX1080Ti platform, and
performance of each model was improved greatly by CUDA
toolkit 9.0 and CUDNN library 7.0. Images were analyzed
using MATLAB 2018b and Python 2.7.

B. PARAMETER SETTING AND MODEL TRAINING
Because it is laborious to re-collect the training data and
rebuild the models, transfer learning method is used to

FIGURE 7. Training loss curve (a) and mAP score curve (b) of
ResNet101+Faster RCNN algorithm.

FIGURE 8. Training loss curve (a) and mAP score curve (b) of
DarkNet53+YOLOv3 algorithm.

FIGURE 9. Training loss curve (a) and mAP score curve (b) of improved
YOLOv3 algorithm.

accelerate the training process [31], [32]. Table 2 showed the
initial parameter settings of the models. The performance of
each model was assessed during training process in terms of
mean average precision (mAP) and training loss.

Figure 6-9 showed the curves of training loss and mAP
of the four models, respectively. AlexNet + Faster RCNN
model fitted and was nearly stable when loss value dropped
from 1.7319 to 0.2 after 3000 iterations, and the maximum
value of mAP was 98%. ResNet101 + Faster RCNN model
was nearly stable when loss value decreased from 2.5 to
0.15 after 200 iterations, and the maximum value of mAP
was 85%. DarkNet53 + YOLOv3 model reached stability
when loss value tended to 0 from 600 after 100 iterations,
and the maximum value of mAP was 99%. The improved
YOLOv3 model was nearly stable when loss value decreased
from 1750 to 0 after 200 iterations, and the maximum value
of mAP was 99.4%. Therefore, AlexNet + Faster RCNN
model had the slowest fitting process and took a long time
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FIGURE 10. Examples of apple detection in different illumination
conditions by (a) AlexNet + Faster RCNN, (b) ResNet101 + Faster RCNN,
(c) DarkNet53 + YOLOv3, and (d) improved YOLOv3 algorithms.

to train. While ResNet101 + Faster RCNN had the faster
fitting speed, but its mAP value was low, and the training
effect was slightly worse than the other three models. The
improved YOLOv3 model had the fastest fitting speed and
good training effect, which performed well in the training
process.

C. EVALUATION
Four indicators, i.e., precision (P), recall (R), error (E), F1
score were applied to evaluate apple recognition performance
of these models. Among them, F1 score took both accuracy
and recall into account. The larger F1 score was, the better
performance of the model was. These indicators were defined
as follows.

P =
TP

TP+ FP
(4)

R =
TP

TP+ FN
(5)

E =
FP

TP+ FP
(6)

F1 =
2PR
P+ R

(7)

where, TP, FP, and FN represent the true positives, false
positives, and false negatives, respectively.

D. COMPARISON EXPERIMENTS OF DIFFERENT MODELS
1) APPLE DETECTION IN DIFFERENT ILLUMINATION
CONDITIONS
Illumination was one of the key factors to capture objects in
computer vision. Figure 10 presented a few test images for
apple recognition in different illumination conditions using
four algorithms. Illumination intensity in red and green apple
images from left to right was normal, excessive, and insuf-
ficient, respectively. It could be observed from these images
that red and green apples were recognized well.

The recognition results were further described in detail
in Table 3. As shown in Table 3, improved YOLOv3 algo-
rithms obtained the best performance of apple recognition

TABLE 2. Initial parameter setting of models.

FIGURE 11. Examples of apple recognition in clear and blurred images by
(a) AlexNet + Faster RCNN, (b) ResNet101 + Faster RCNN, (c) DarkNet53
+ YOLOv3, and (d) improved YOLOv3 algorithms.

with higher precision, higher recall, lower error and higher F1
score in each illumination condition, followed by DarkNet53
+ YOLOv3, ResNet101 + Faster RCNN and then AlexNet
+ Faster RCNN. Green apple recognition performance was
slightly worse in comparison with red apple, with slightly
lower accuracy rate and higher error. It might be because
green apples had similarity in color to leaves and branches.
As to all, the best recognition results occurred in the red
apple in normal illumination conditions, and the performance
of green apple recognition was worst in excessive illumi-
nation, with F1 scores of 83.4%, 88.4%, 89.9% and 91.1%
for AlexNet + Faster RCNN,ResNet101 + Faster RCNN,
DarkNet53 + YOLOv3 and improved YOLOv3 algorithms,
respectively. This could be attributed to the fact that the colour
or texture features were not obvious or even concealed due to
the spot or reflection area formed on the apple surface by the
excessive illumination.

2) APPLE DETECTION IN BLURRED IMAGES
There were some blurred images captured from long-range or
in bad weather such as fog and strong wind. As a comparison
with previous images in normal illumination, four methods
trained were adopted to recognize the apples in blurred test
images from the same condition, as shown in Figure 11. The
left was clear and the right was blurred for red and green apple
images.
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TABLE 3. Apple recognition results in different illumination conditions.

TABLE 4. Apple recognition results in blurred images.

The recognition results were further described in detail in
Table 4. It was found in Table 4 that all tested methods could
be applied to detect the red and green in blurred images,
providing F1 score of 81.6% at least. Improved YOLOv3
method still achieved the best performance on both red and
green apple recognition with higher precision, higher recall,
lower error and higher F1 score, followed by DarkNet53 +
YOLOv3, ResNet101+ Faster RCNN and AlexNet+ Faster
RCNN respectively. Compared F1 value in the normal illu-
mination shown in Table 3, there was an obvious decrease in
the F1 values in Table 4, which might indicate that the sharp-
ness had a great influence on the recognition effect of apple
targets.

3) APPLE RECOGNITION WITH VARIOUS INTERFERENCE
CONDITIONS
Compared with the clear and complete apples in the images,
it was relatively difficult for recognizing the apples with
various interference conditions. There were occluded apples,
light spotted apples, overlapped apples, and incomplete
apples to be recognized by the four models (Figure 12), and
performances of whichwere evaluated in term of the indicator
R as shown in Table 5.

It could be found in Table 5 that four models still had the
accurate recognition results for apple with various interfer-
ence conditions, among which DarkNet53+YOLOv3 model
and improved YOLOv3 model have better recognition effect.
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FIGURE 12. Examples of (a) occluded, (b) light spotted, (c) overlapped,
and (d) incomplete apples recognition.

TABLE 5. Apple recognition results under various interference conditions.

In the case of incomplete apples in the images, recognition
recall rate decreased significantly for the four recognition
models due to appearance features missing, up to 88.5%.
Generally speaking, the improved YOLOv3 model performs
better than the other three algorithms under most interference
conditions due to model simplification and computational
cost reduction.

IV. CONCLUSION
In this study, four different detection methods, AlexNet +
Faster RCNN, ResNet101 + Faster RCNN, DarkNet53 +
YOLOv3 and improved YOLOv3 were used to detect red
and green apples in natural environment. Illumination con-
ditions and image sharpness, occlusion and so on were used
as control variables, and recognition accuracy, recall rate,
false recognition rate and F1 value were used as evaluation
indexes to compare the recognition effect of the four detection
models in various complex natural environments. Through
the analysis of experimental data, the following conclusions
could be drawn:

1) The four recognition models based on deep learning
algorithms used in this paper had good recognition effect
on apples under various complex environments, which could
provide technical support for automatic fruit picking in
orchard.

2) The F1 value of improved YOLOv3 model was not
less than 91.1% in different illumination conditions, which
indicated that the improved YOLOv3 model was more
suitable for apple detection in the natural environment
than Faster RCNN algorithm and the original YOLOv3
algorithm.

3) Compared with different illumination conditions, the
F1 values of four models for apple detection in blurred
image had a decline at different levels. This showed that
image sharpness had the greater impact on the recognition
effect.

4) Future work will focus on developing the models to
further improve the detection accuracy. A larger dataset and
effective sample preprocessing are beneficial for establishing
a robust model.
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