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ABSTRACT An adaptive fault-tolerant control method considering actuator fault is proposed for a class
of strict-feedback nonlinear time-delay systems. The prescribed performance is introduced by error trans-
formation, which guarantees the transient performance of the system. Pade approximation and intermediate
variables are used to eliminate the effect of input delay on the system performance. The universal approxi-
mation nature of fuzzy logic systems is used to approximate the unknown function in the system. A general
fault model is introduced to describe the partial fault and stuck fault that may occur during the operation
of the systems. The controller based on backstepping can ensure that the system operates normally with
actuator fault. Through the Lyapunov function, all signals in the designed closed-loop system can be proved
to be semi-globally uniformly ultimately bounded, and the tracking error can quickly converge to a compact
set near the origin. Compared with the non-fault-tolerant control system, the simulation results show the
effectiveness of the proposed control strategy.

INDEX TERMS Adaptive control, fault-tolerant, prescribed performance, time-delay nonlinear system.

I. INTRODUCTION
The adaptive control technology of nonlinear systems has a
huge impact on the industrial field, and has also obtained
a lot of meaningful results [1]– [4]. The backstepping
method is applied to different types of nonlinear systems to
enhance the application range of adaptive control technology
[5]–[7]. However, there are usually unknown items in prac-
tical systems, we can get better adaptive tracking perfor-
mance through combining the approximation performance of
neural networks or fuzzy logic systems [8]–[13].The calcu-
lation based on Lyapunov function ensures the stability of
systems [14].

Considering the safety and reliability of the control system,
there are many researches on adaptive fault-tolerant control
for actuator fault [15]–[17]. In engineering systems, the actua-
tor is an indispensable part of the system operation. The actu-
ator is an important factor to determine whether the system
operate normally or not. Because of the scale and complexity
of modern systems, the occurred fault will cause incalcula-
ble loss. So it is very important to study the fault-tolerant

The associate editor coordinating the review of this manuscript and

approving it for publication was Jinquan Xu .

control [18], [19]. In actual systems, there are many uncertain
factors which include the time, number and type of faults.
Hence, it is necessary to design a systemmodel with unknown
parameters and actuator faults [20]–[22]. Aiming at a class
of nonlinear systems with unmeasurable states, the problem
of fault-tolerant control is researched [23]. Reference [24]
solved a problem of fault-tolerant control caused by actuator
failure and interference in high-speed train traction system
with unknown time-varying parameters. In [25], a fuzzy con-
trol method for uncertain time-delay active steering system
with actuator fault is proposed.

The fault-tolerant control solves the problem of actua-
tor fault. However, the signal fluctuation and the possi-
ble external interference may have a serious effect on the
transient performance of the system. In order to solve this
problem, the prescribed performance control method based
on error transformation is proposed [26]–[28]. This method
can ensure that the tracking error is always in the preset
region. Meanwhile, the overshoot and the convergence speed
of the system will meet the given conditions. At present,
the prescribed performance has been widely used in most
of nonlinear systems [29]–[31]. Because of its advantages
of both the steady and transient performance of the system,
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the prescribed performance method is more indispensable in
the fields of robot flexible joint control [32], aircraft attitude
tracking [33] and so on. Therefore, it is necessary to preset
the performance of the nonlinear system with actuator fault,
which can effectively reduce the tracking error of the system
and improve the system performance [34], [35]. In [36],
a class of adaptive robust fault-tolerant control is proposed by
combining the fault model with the prescribed performance,
which can ensure the steady and transient performance of the
system even if the actuator occurs a fault.

From the previous results, these methods are rarely used
in nonlinear time-delay systems [37]–[40]. However, many
actual systems inevitably have time-delay phenomenon.
So time-delay and time-delay system are common practi-
cal problems in engineering technology, which has a great
research significance [41]–[45]. Inspired by aforementioned
works, this paper presents an adaptive fault-tolerant control
technique for nonlinear time-delay system with prescribed
performance, which solves the problem that the system can
remain stable with actuator fault, and the steady and transient
performance of the system are also guaranteed. The main
contributions are summarized as follows.

1) Different from the previous researches [46], the problem
of adaptive tracking control for time-delay nonlinear systems
is investigated by combining backstepping, fault-tolerant
control and prescribed performance.

2) Compared with the methods of non-fault-tolerant
control system [47], [48], the experimental results show the
superiority of the proposed method. Once the fault occurs,
the non-fault-tolerant controller loses the control of the sys-
tem after the violent fluctuate. However the fault-tolerant
controller proposed in this paper recovers the control effect
on the system rapidly after the short fluctuation. Therefore,
it can be proved that the proposed control strategy is effective.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. PROBLEM FORMULATION
Consider a class of strict-feedback nonlinear time-delay
systems as follows:
ẋi(t) = fi(x i(t))+ gi(x i(t))xi+1(t)+ di(x i(t), t)

(1 ≤ i ≤ n− 1),
ẋn(t) = fn(xn(t))+ gn(xn(t))u(t − τ )+ dn(xn(t), t),

y(t) = x1(t),
(1)

where x i = [x1, x2, . . . , xi]T ∈ Ri (1 ≤ i ≤ n− 1) and xn =
[x1, x2, . . . , xn]T ∈ Rn are the system states. fi(·) and gi(·) are
smooth, bounded and unknown nonlinear functions. di(·) is
unknown and bounded external disturbance. u is the system
input. τ is an input time-delay which is a positive constant.
y is the system output. For simplicity, fi(·), gi(·) and di(·) are
abbreviated as fi, gi and di below.
Assumption 1: When 1 ≤ i ≤ n, the function gi satisfies

gi > 0, and there are positive constants gm and gM such that:

0 < gm ≤ |gi(x i)| ≤ gM (1 ≤ i ≤ n). (2)

Remark 1: The unknown constants gm and gM in the
assumption 1 are only used for analysis which are not used
to design controllers.

B. ACTUATOR FAULT
During the operation of the system, actuator fault is
inevitable. It is necessary to consider actuator fault at the same
time. In this section, two types of actuator fault are considered
in the system model [20], [23], named lock-in-place and loss
of effectiveness, which can ensure that the system operates
normally even the actuator fault. This method effectively
improves the security and stability of the system. The fault
model is as follows:

vs(t) = ηsvs(t), t ≥ ts, s ∈ {1, 2, . . . ,m}
(loss of effectiveness),

vk (t) = uk , t ≥ tk , k ∈ {1, 2, . . . ,m}
(lock-in-place).

(3)

There are m actuators in the system. Among them,
vi(i = 1, . . . ,m) is the actual control instruction of the
ith actuator; vs is the designed value of the sth actuator;
ηs(0 < ηs < 1) is the effective proportion after losing partial
effectiveness of the sth actuator. uk represents the constant
value after the kth actuator has a lock-in-place fault, and ts
and tk represent the time when the actuator occurs fault.
Assumption 2: Each actuator has at most one fault during

the operation of system. And once a fault occurs, the fault
type will not change.
Assumption 3: At most m − 1 actuators in the system are

lock-in-place at the same time to ensure that the remaining
actuators can achieve the required control target.

The actuator fault model can be described as
vj(t) = ηjvj(t)+ βj(uj − ηjvj(t)), j ∈ {1, 2, . . . ,m}. (4)

In the system, u(t) = qT v(t), q = [q1, q2, . . . , qm]T . qj is
known control gain. v(t) = [v1(t), v2(t), . . . , vm(t)]T . When
βj = 0, the jth actuator has a lock-in-place fault. In other
hand, when βj = 1, the jth actuator loses effectiveness.

C. PRESCRIBED PERFORMANCE AND ERROR
TRANSFORMATION
In this section, the tracking error z1 of the system is lim-
ited by prescribed performance and error transformation,
so that the tracking performance of the system can meet
the expected performance requirements. This method can
effectively improve the transient performance of the control
system.
Definition 1 [27]: The continuous smooth function ρ(t) :

R+→ R+ (called a performance function) is strictly decreas-
ing, and satisfies lim

t→∞
ρ(t) = ρ∞ > 0.

Define the performance function as ρ(t) = (ρ0−ρ∞)e−lt+
ρ∞, and take 4 ∈ [0, 1], then the constraint inequalities are:{

−4ρ(t) < z(t) < ρ(t), z(0) > 0,
−ρ(t) < z(t) < 4ρ(t), z(0) < 0.

(5)

For simplicity of calculation, the constraint inequalities
are transformed into an unconstrained form through the error
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transformation function. The error transformation function is
defined as

z(t) = ρ(t)S(δ), (6)

where δ is the transformed error. The error transformation
formula S(δ) is smooth, invertible and strictly increasing
function. And it satisfies the following conditions:{

−M < S(δ) < 1, z(0) > 0,
−1 < S(δ) < M , z(0) < 0.

(7)
lim

δ→−∞
S(δ) = −M ,

lim
δ→∞

S(δ) = 1,

z(0) > 0.

(8)


lim

δ→−∞
S(δ) = −1,

lim
δ→∞

S(δ) = M ,

z(0) < 0.

(9)

D. FUZZY LOGIC SYSTEMS
The fuzzy logic systems [49], [50] are described as follows:
Rl : If x1 is F l1, and x2 is F

l
2, and . . . , and xn is F

l
n,

Then y is Gl ,l = 1, 2, . . . ,N ,
where x = [x1, x2, . . . , xn]T and y are the input and output
of the fuzzy logic systems. F li and G

l are fuzzy sets. N is a
positive constant which represents the number of fuzzy rules.
By the singleton fuzzifier and the center average defuzzifier,
then we get:

y(x) =

∑N
l=1 yl

∏n
i=1 µF li

(xi)∑N
l=1[

∏n
i=1 µF li

(xi)]
, (10)

where yl = maxµGl
yl∈R

(yl), µF li (xi) and µGl are membership

functions. The membership functions are defined as:

ϕl =

∏n
i=1 µF li

(xi)∑N
l=1[

∏n
i=1 µF li

(xi)]
. (11)

The fuzzy logic system can be expressed as:

y(x) = W Tϕ(x), (12)

where W T
= [y1, . . . , yN ] = [W1, . . . ,WN ], ϕ(x) =

[ϕ1(x), . . . , ϕN (x)]T , and W is the weight.
Lemma 1 [37]: Assume a continuous function f (x) is

defined in a compact set, the fuzzy logic system satisfies:

sup
x∈�
|f (x)−W Tϕ(x)| ≤ ε, (13)

where ε is the minimum approximation error.
Lemma 2 [34]: The function V : [0,∞)→ R satisfies the

inequality

V̇ ≤ −0V +M , ∀t ≥ 0, (14)

where 0 and M are positive constants, then

V (t) ≤ V (t0)e−20(t−t0) +
M
0
≤ V (t0)+

M
0
, ∀t ≥ 0.

(15)

FIGURE 1. Control method block diagram.

III. CONTROLLER DESIGN AND STABILITY ANALYSIS
The block diagram of the proposed control method is shown
in Fig.1. Firstly, the strict-feedback nonlinear time-delay sys-
tem is transformed to eliminate the influence of the input
delay on the system performance. The coordinate transfor-
mation and Pade approximation [51] are introduced to com-
pensate the input delay, and the Laplace transform is applied
to the system with input delay, we have

L{u(t − τ )} = e−τ$L(u(t)) = (e−τ$/2/eτ$/2)L(u(t)).
(16)

Based on the Pade approximation method, then

(e−τ$/2/eτ$/2)L(u(t)) ≈
1− τ$/2
1+ τ$/2

L{u(t)}, (17)

where $ is a Laplace variable, and L{u(t)} is a Laplace
transform of u(t).
Remark 2: This paper solves the problem of small delay

with limitation based on Pade approximation. Due to the
small delay time, there is e−τ$ − 1−τ$/2

1+τ$/2 ≈ 0.
The intermediate variable xn+1 is defined and satisfies the

following equation:
1− τ$/2
1+ τ$/2

L{u(t)} = L{xn+1(t)} − L{u(t)}. (18)

The (18) can be simplified as:

L{xn+1(t)} = 2L{u(t)} −
τ$

2
L{xn+1(t)}. (19)

The inverse Laplace transform of (19) is obtained:

ẋn+1 =
4
τ
u−

2
τ
xn+1. (20)

Define the variable λ = 2
τ
, we can get

ẋn+1 = 2λu− λxn+1. (21)

In summary, the system (1) can be transformed into:
ẋi = fi + gixi+1 + di, 1 ≤ i ≤ n− 1,
ẋn = fn + gn(xn+1 − u(t))+ dn,
ẋn+1 = 2λu− λxn+1,
y = x1.

(22)

Remark 3: Different from the state vectors xi(i =
1, 2, . . . , n), the defined xn+1 is not a real variable of the
system. It is an intermediate variable used to eliminate the
system instability caused by the unknown time delay τ in the
system.
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The error equations are:
z1 = x1 − yr ,
zi = xi − αi−1, (i = 2, 3, . . . , n− 1),
zn = xn − αn−1 + gmxn+1/λ,

(23)

where αi are virtual control variables.
Step 1: The derivative of tracking error is

ż1 = ẋ1 − ẏr = f1 + g1x2 + d1 − ẏr . (24)

According to (6), we can get

δ1 = S−1(
z1
ρ
). (25)

Then

δ̇1 =
∂S−11

∂( z1
ρ
)
1
ρ
(ż1 −

ρ̇z1
ρ

). (26)

Combining (24), the result is

δ̇1 =
∂S−11

∂( z1
ρ
)
1
ρ
(f1 + g1x2 + d1 − ẏr −

ρ̇z1
ρ

). (27)

In summary, the derivative of the equivalent error model of
the original system equation is:

δ̇1 = r1(f1 + g1x2 + d1 − ẏr + h1), (28)

where r1 =
∂S−11
∂( z1

ρ
)
1
ρ
and r1 > 0; h1 = −

ρ̇z1
ρ

is a known

function about state and time.
Select the Lyapunov function as

V1 =
1
2r1

δ21 +
gm
2γ1

θ̃T1 θ̃1. (29)

The derivative of V1 is

V̇1 = δ1(f1 + g1x2 + d1 − ẏr + h1)−
gmθ̃1
γ1

˙̂
θ1

= δ1(F1 + g1x2)−
gmθ̃1
γ1

˙̂
θ1, (30)

where F1 = f1 + d1 − ẏr + h1. θ̂1 is the estimate of θ1, θ̃1 is
the estimation error, and θ̃1 = θ1 − θ̂1.
Because f1 and d1 in the system are unknown, the designed

virtual controller α1 cannot be constructed with F1. Using
the approximation characteristic of the fuzzy logic system to
approximate F1, we can get:

F1 = W ∗T1 ϕ1 + ε1, (31)

where ε1 > 0 is the fuzzy approximation error. z2 = x2 − α1
is substituted into (30), then

V̇1 = δ1(W ∗T1 ϕ1 + ε1 + g1z2 + g1α1)−
gmθ̃1
γ1

˙̂
θ1. (32)

According to the Young inequality, there are:

δ1W ∗T1 ϕ1 ≤
1
2
δ21‖ W1‖

2ϕT1 ϕ1 +
1
2
. (33)

δ1ε1 ≤
gm
2
δ21 +

1
2gm

ε21. (34)

Let θ1 =‖ W1‖
2/gm, then

δ1W ∗T1 ϕ1 ≤
gmθ1
2
δ21ϕ

T
1 ϕ1 +

1
2
. (35)

Combining the above formulas, we can get

V̇1 ≤ δ1gm(
θ̂1

2
δ1ϕ

T
1 ϕ1 +

1
2
δ1+α1)+

gmθ̃1
γ1

(
γ1

2
δ21ϕ

T
1 ϕ1−

˙̂
θ1)

+ gmδ1z2 + χ1. (36)

where χ1 = 1
2gm
ε21 +

1
2 . The virtual control law is designed

as:

α1 = −
θ̂1

2
δ1ϕ

T
1 ϕ1 −

1
2
δ1 − c1δ1. (37)

The adaptive law is

˙̂
θ1 =

γ1

2
δ21ϕ

T
1 ϕ1 − σ1θ̂1, (38)

where c1,σ1 are positive design parameters, we can get

V̇1 ≤ −c1gmδ21 +
σ1gm
γ1

θ̃1θ̂1 + δ1z2gm + χ1. (39)

Step i: The derivative of zi is

żi = fi + gixi+1 + di − α̇i−1. (40)

Select the Lyapunov function as

Vi = Vi−1 +
1
2
z2i +

gm
2γi
θ̃Ti θ̃i. (41)

where θ̂i is the estimate of θi, θ̃i is the estimation error, and
θ̃i = θi−θ̂i. The definition of θi is given below. The derivative
of Vi is

V̇i = V̇i−1 + zi(fi + gixi+1 + di − α̇i−1)−
gmθ̃i
γi

˙̂
θi. (42)

Then

V̇i ≤
i−1∑
j=1

(−cjgmι2j + χj +
σjgm
γj

θ̃jθ̂j)

+ zi(Fi + gmzi+1 + gmαi)−
gmθ̃i
γi

˙̂
θi, (43)

where ι1 = δ1, ιj = zj(2 ≤ j ≤ i− 1), χj = 1
2gm
ε2j +

1
2 (1 ≤

j ≤ i− 1), Fi = gmzi−1 + fi + di − α̇i−1. θ̂i is the estimate of
θi, θ̃i is the estimation error, and θ̃i = θi − θ̂i.
Using the approximation characteristic of the fuzzy logic

system to approximate Fi, we can get that

Fi = W ∗Ti ϕi + εi, (44)

where εi > 0 is the fuzzy approximation error. According to
the Young inequality, there are

ziW ∗Ti ϕi ≤
1
2
z2i ‖ Wi‖

2ϕTi ϕi +
1
2
. (45)

ziεi ≤
gm
2
z2i +

1
2gm

ε2i . (46)
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Let θi =‖ Wi‖
2/gm, then

ziW ∗Ti ϕi ≤
gmθi
2

z2i ϕ
T
i ϕi +

1
2
. (47)

We have

V̇i ≤
i−1∑
j=1

(−cjgmι2j + χj +
σjgm
γj

θ̃jθ̂j)+
gmθi
2

z2i ϕ
T
i ϕi +

1
2

+
gm
2
z2i +

1
2gm

ε2i + zizi+1gm + zigmαi −
gmθ̃i
γi

˙̂
θi.

(48)

Simplify the equation (48), we can obtain

V̇i ≤
i−1∑
j=1

(−cjgmι2j + χj +
σjgm
γj

θ̃jθ̂j)

+ zigm(
θ̂i

2
ziϕTi ϕi +

1
2
zi + αi)

+
gmθ̃i
γi

(
γi

2
z2i ϕ

T
i ϕi −

˙̂
θi)+ zizi+1gm + χi. (49)

Design the virtual control law as

αi = −
θ̂i

2
ziϕTi ϕi −

1
2
zi − cizi. (50)

The adaptive law is

˙̂
θi =

γi

2
z2i ϕ

T
i ϕi − σiθ̂i, (51)

where ci,σi are positive design parameters. we can get

V̇i ≤
i∑

j=1

(−cjgmι2j + χj +
σjgm
γj

θ̃jθ̂j)+ zizi+1gi. (52)

Step n: The derivative of zn is

żn = fn + gn(xn+1 − u)+ dn − α̇n−1 − gmxn+1 + 2gmu

≤ fn + gmu+ dn − α̇n−1. (53)

Select the Lyapunov function as

Vn = Vn−1 +
1
2
z2n +

gm
2γn

θ̃Tn θ̃n +
∑
j/∈K

ηj

2γ
κ̃T κ̃, (54)

where θ̂n is the estimate of θn, κ̂ is the estimate of κ , and
θ̃n = θn − θ̂n, κ̃n = κn − κ̂n. K is the set of actuators with
lock-in-place faults, that is, when j ∈ K (j = 1, 2, . . . ,m),
the ith actuator has lock-in-place fault. The derivative can be
obtained as

V̇n ≤
n−1∑
j=1

(−cjgmι2j + χj +
σjgm
γj

θ̃jθ̂j)+ zn(Fn + gmu)

−
gmθ̃n
γn

˙̂
θn −

∑
j/∈K

ηj

γ
κ̃ ˙̂κ, (55)

where Fn = gmzn−1 + fn + dn − α̇n−1.

Using the approximation characteristic of the fuzzy logic
system to approximate Fn, we can get that

Fn = W ∗Tn ϕn + εn, (56)

where εn > 0 is the fuzzy approximation error. According to
the Young inequality, we can get

znW ∗Tn ϕn ≤
1
2
z2n‖ Wn‖

2ϕTn ϕn +
1
2
. (57)

znεn ≤
gm
2
z2n +

1
2gm

ε2n. (58)

Let θn =‖ Wn ‖
2/gm, where θn is an unknown constant,

we have

znW ∗Tn ϕn ≤
gmθn
2

z2nϕ
T
n ϕn +

1
2
. (59)

The fault control laws can be designed as:

vj = κT ζ (j = 1, . . . ,m), (60)

where κ = [κ1, κ2, κ3]T , ζ = [u, qT ]T . And it should satisfy

u =
∑
j/∈K

(ηjκT ζ )+
∑
j∈K

ūj, j ∈ {1, 2, . . . ,m}. (61)

So

V̇n ≤
n−1∑
j=1

(−cjgmι2j + χj +
gmσj
γj

θ̃jθ̂j)+
gmθn
2

z2nϕ
T
n ϕn +

1
2

+
gm
2
z2n +

1
2gm

ε2n + zngm(
∑
j/∈K

(ηjκT ζ )+
∑
j∈K

uj)

−
gmθ̃n
γn

˙̂
θn +

∑
j/∈K

ηj

γ
κ̃(
γ

2
z2nζ − ˙̂κ). (62)

Design the control law as

u = −
θ̂n

2
znϕTn ϕn −

1
2
zn − cnzn. (63)

Adaptive law:

˙̂
θn =

γn

2
z2nϕ

T
n ϕn − σnθ̂n. (64)

Fault adaptive law:

˙̂κ =
γ

2
z2nζ − σ κ̂, (65)

where γn, γ , σn, σ are positive design parameters.
Along with (60) (63) and (64), (65) becomes

V̇n ≤
n∑
j=1

(−cjgmι2j + χj +
gmσj
γj

θ̃jθ̂j)+
∑
i/∈K

ηjσ

γ
κ̃κ̂, (66)

where χj = 1
2gm
ε2j +

1
2 (1 ≤ j ≤ n).

κ̃jκ̂j = κ̃j(κj − κ̃j) ≤
1
2
κ2j −

1
2
κ̃2j , (67)

In the same way:

θ̃jθ̂j ≤
1
2
θ2j −

1
2
θ̃2j (68)
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FIGURE 2. Schematic diagram of tubular heat exchanger.

Substituting (67) and (68) into (66) results in

V̇n ≤ −
n∑
j=1

(cjgmι2j +
gmσj
2γj

θ̃2j )−
∑
j/∈K

ηjσ

2γ
κ̃2

+

n∑
j=1

(χj +
gmσj
2γj

θ2j )+
∑
j/∈K

ηjσ

2γ
κ2, (69)

where ι1 = δ1, ιj = zj(j = 2, . . . , n).
Choose00 = min1≤j≤n{cjgm,

gmσj
2γi
,
ηjσ

2γ },M0 =
∑n

j=1(χj+
gmσj
2γj
θ2j ) +

∑
j/∈K

ηjσ

2γ κ
2, then equation (69) is equivalent

to:

V̇n ≤ −00Vn +M0. (70)

According to Lemma 2, there are

Vn(t) ≤ Vn(t0)+
M0

00
. (71)

When actuators have fault, a change of κ causes a change
of Vn. Since the actuators can only have limited faults dur-
ing operation, κ and Vn changed value are finite. So Vn is
always bounded. It can be concluded that initial conditions
and all signals in the closed-loop system are always bounded.
The designed controller can ensure tracking performance and
tracking error converge to a compact set of the origin.

IV. ANALYSIS OF SIMULATION RESULTS
Take the heat exchange process of tubular heat exchanger
for kerosene [52] as an example. The schematic diagram of
tubular heat exchanger is shown in Fig.2. Assume that there
is no heat loss during the process of heat exchange, and the
flow rate of fluid always keeps constant. The model of heat
exchanger systems with flow delay are established as:{
M1C1Ṫ12 = F1C1(T11 − T12)+ K12A(T22 − T12),
M2C2Ṫ22 = F2C2(T21 − T22)− K12A(T22 − T12),

(72)

where Mi is the fluid mass in the tube, Ci is the fluid heat
capacity, Ti is the temperature and Fi is the flow rate. A
is the average heat conduction area.The thermal conduc-
tivity is K12. The control variable is the flow rate F2 of
hot water through the heat exchanger. The controlled vari-
able is the temperature T12 of kerosene at the outlet of the

heat exchanger. Then the derivative can be obtained as
Ṫ12 = −(

F1
M1
+

K12A
M1C1

)T12 +
K12A
M1C1

T22 +
F1
M1

T11,

Ṫ22 =
K12A
M2C2

T12 − (
F2
M2
+

K12A
M2C2

)T22 +
F2
M2

T21.

(73)

The transfer function of the control system is:

G(s) =
T12(s)
F2(s)

=
a2b2

(s− a1)(s− a2)− a2b1
, (74)

where a1 = −(
F1
M1
+

K12A
M1C1

), a2 =
K12A
M1C1

, b1 =
K12A
M2C2

,
b2 =

T21−T22
M2

.Due to the delay of heat transfer, the third-
order inertia delay heat exchanger is obtained by improving
the system order to shorten the delay:

G(s) =
K

(Ts+ 1)3
e−τ s =

a2b2
(s− a1)(s− a2)− a2b1

, (75)

where K is the system gain, T is the time constant and
τ is the delay time. After Laplace Inverse Transformation,
the systems equation are:

ẋ1(t) = x2(t),
ẋ2(t) = x3(t),
ẋ3(t) = f (x)+ bu(t − τ ),
y(t) = x1(t),

(76)

where f (x) = − 3
T x3 −

3
T 2 x2 −

3
T 3 x1, b =

K
T 3 , T = 15,

K = 3.734 ∗ 104, τ = 0.001. x = [x1, x2, x3] is system state
vector.

The fuzzy membership functions are defined as:
µF1

i
(xi) = exp[−(xi+2)2/4],µF2

i
(xi) = exp[−(xi+1)2/4],

µF3
i
(xi) = exp[−x2i /4], µF4

i
(xi) = exp[−(xi − 1)2/4],

µF5
i
(xi) = exp[−(xi − 2)2/4], i = 1, 2, 3.

The initial conditions are [x1(0), x2(0), x3(0)]T =

[0.6, 0, 0]T , θ̂1(0) = θ̂2(0) = θ̂3(0) = 0.2, and the
reference signal is yr = sin(t). The performance function
is ρ(t) = (1 − 10−1)e−0.5t + 10−1. The system parameters
are: γ1 = γ2 = γ3 = 0.02, γ = 0.2, c1 = c2 = c3 = 8,
σ1 = σ2 = σ3 = σ = 0.2. Assume that the actuator 1 has
the loss of effectiveness fault when t = 10s, and the fault
parameter is η1 = 0.6. Actuator 2 has a lock-in-place fault
when t = 15s, and the fault parameter is u2 = 10. The two
control gains are q1 = 0.5 and q2 = 0.5 respectively.
Compared with the proposed method in [53], the effective-

ness of the proposed method in this paper is verified. The
simulation results are shown in Fig.3-Fig.8. Fig.3 shows the
tracking of the system output. The solid line in Fig.4 is the
tracking error, the dashed lines are the preset error limits.
Fig.5 shows the system state vectors. Fig.6 is the adaptive
laws, and Fig.7 is the input control. Fig.8 is the control signals
of two actuators. Wherein, Fig.(a) is the simulation results of
non-fault-tolerant system(NFT) of nonlinear time-delay sys-
tems with prescribed performance, and Fig.(b) is the simula-
tion results of adaptive fault-tolerant control(FT) of nonlinear
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FIGURE 3. State variable x1 and reference output yr .

FIGURE 4. Tracking error z1 and performance function ρ(t).

FIGURE 5. State variables x1, x2 and x3.

FIGURE 6. Adaptive laws θ1, θ2 and θ3.

time-delay systems with prescribed performance proposed in
this paper.

Actuator 1 experiences the loss of effectiveness fault at
t = 10s. At this time, the signal of the non-fault-tolerant
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FIGURE 7. System input u.

FIGURE 8. Actuator inputs v1 and v2.

system in Fig.(a) fluctuates violently, which causes the track-
ing error to exceed the preset range, so that the system
loses control. The fault-tolerant system can adjust quickly
and restore the stability of the system, which can be seen
in Fig.(b). Actuator 2 has a lock-in-place fault at t = 15s.
Meanwhile, the non-fault-tolerant system Fig.(a) is still out
of control, while the fault-tolerant system Fig.(b) continues
to track the reference signal stably after the small fluctuation,
and the tracking error remains within the preset range.

V. CONCLUSION
In this paper, an adaptive fuzzy fault-tolerant control method
backstepping-based is proposed for the strict-feedback non-
linear time-delay control system with prescribed perfor-
mance, which can ensure the system operates normally with
actuator fault. This method also greatly improves the stability
and safety of the system, and can be more widely used
in the actual system. It is proved that the adaptive fuzzy
fault-tolerant controller can guarantee the steady performance
and the transient performance of the system in the case of
actuator fault. At the same time, variables in the closed-loop
system are bounded. What’s more, the tracking error con-
verges to a compact set of the origin. Finally, compared with
the non-fault-tolerant system, the simulation results show
that the fault-tolerant control system can adjust quickly after
the actuator suddenly breaks down in the operation process,
so that the system can quickly return to normal after a short
fluctuation. Furthermore, the range of fluctuation is slight and
does not affect the actual production quality, which proves

that the method has better control performance.The method
proposed in this paper is only applied to the time-delay
systems with constant and small delay. So this method still
has some limitations. In practical systems, there are many
time-varying delay systems in addition to the time-delay
systems. Due to the complexity and diversity of time-varying
delay systems, there are still a lot of gaps and problems in this
field. In the future, we will continue to study the transient and
steady performance of time-varying delay systems with fault-
tolerant.
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