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ABSTRACT Evaluating the effect of blanket jamming is at the core of performance analysis and
jamming/anti-jamming design for radar. Restricted to diverse jamming types and radar’s applications, it is
challenging to put forward a unified framework for quantitative evaluation. To address this issue, we come
up with a composite evaluation by combining the robust time-frequency analysis (RTFA) and peak to
average power ratio (PAPR). In term of signal-level evaluation, RTFA is exploited to analyze the echoes
directly, providing the time-frequency (TF) spectrum for calculating two-dimensional image entropy. For
system/application-level evaluation, we derive the variation of signal to jamming ratio (SJR) in radar
processing chain, and thus define the PAPR to associate SJR with target detection, a type of common
and fundamental application that usually affects the other subsequent ones. To refine composite evaluation,
we modify the traditional RTFA by leveraging joint sparse model with convolution framelets to improve TF
concentration and to avoid the crossing terms; meanwhile, we derive the quantitative relationship between
SJR and detection probability, leading to theoretical guarantee of PAPR for evaluation. Finally, the feasibility
and the superiority of the proposed evaluation approach are validated in numerical experiments.

INDEX TERMS Effect evaluation, robust time-frequency analysis, peak to average power ratio, composite
evaluation, convolution framework.

I. INTRODUCTION
Evaluating the effect of jamming on radar, i.e., exploring
evaluation indices to quantitatively assess the performance
of radar in complex electromagnetic environment [1]–[3],
is central to performance analysis and jamming/anti-jamming
design for radar systems. It is well-known that electromag-
netic jamming widely exists and has remarkable influence
on radar systems, including changing the echo waveforms,
decreasing the signal to noise rate (SNR) of the receiver, mis-
directing the radar antenna, and so on. When the jamming is
targetedly designed, the performance of radar would become
worse [4]. For this reason, it is desirable to perform accurate
and fast analysis on the variation of radar performance under
different jamming types and parameters via effect evaluation
of jamming. What’s more, jamming/anti-jamming design [5],
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[6] greatly depends on the recognition of jamming types,
the estimation of jamming parameters, and even the recovery
of original jamming signals, which is also closely related to
effect evaluation of jamming on radar.

Evaluating the effect of jamming on radar is challenging,
although it has been studied from theories to practical appli-
cations during the past several decades [7], [8]. To begin with,
there are various jamming types with different parameters.
For instance, the passive jamming and the active jamming [9]
are two major types, while the later contains diverse blanket
jamming types, such as frequency-modulation (FM) noise,
amplitude-modulation (AM) noise, phase-modulation (PM)
noise, and radio frequency (RF) noise. Another issue for
evaluation comes from the complex processing chain of radar
system as well as its numerous applications. This chain refers
to lots of processing steps, e.g., digital/analog filtering, inter-
mediate frequency and down-converting (IFDC), matched fil-
tering, moving target identification (MTI), etc. [10], [11], and
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the applications include target detection, tracking, recogni-
tion and so on [12], [13]. For these reasons, to our best knowl-
edge, there is no efficient and unified evaluation framework
to explore the general rules on effect of jamming on radar.
It is worth noting that the blanket jamming has attracted more
and more attentions for its great degree of flexibility [14] and
that pulse Doppler (PD) radar plays a leading role in practical
applications [15], so the evaluation can be limited to blanket
jamming and PD radar. Despite this constraint, the difficulty
in evaluation still remains.

To address these issues, the evaluation methods with
different indices have been proposed in the viewpoint of
signal (i.e. signal-level evaluation), which directly focus
on radar echoes or their transforms. For instance, wavelets
weight correlation coefficient of signals has been exploited
to demonstrate the jamming effectiveness for moving tracked
vehicles [16]. Indeed, many popular physical quantities, such
as bandwidth, SNR, SJR, entropy, etc., are always used to
measure the quality of signals with jamming [17], [18]. These
signal-level evaluation methods, however, quickly become
impractical as they often must require distinct signal models
and algorithms or rely on good observation conditions (e.g.
high SNR or complete data). Although feature extraction and
recognition of jamming types [19], [20] offers new insights
to effect evaluation by calculating entropy feature to restrain
AM jamming [21] or extracting spectrum feature to recognize
deception jamming [22], it still comes with no guarantee of
feature precision due to extreme jamming environment (e.g.
jamming with high intensity or unknown types). Although
signal-level evaluation methods are explicit and simple, they
still fail to have a direct link to practical applications of
radar systems, resulting in the lack of pertinence to specific
applications or systems.

Another type of popular approaches for effect evaluation
is in the sense of systems and applications (i.e. system/
application-level evaluation), where concrete systems or
applications, such as moving target detection (MTD),
constant false-alarm rate (CFAR) detection, target tracking
correlation, and so on, are usually taken into account. Their
success comes from the fact that the variation of the indices of
the systems or applications can present the behavior of jam-
ming. They, however, rely on numerous simulations or exper-
iments with various parameters or conditions [10], and thus
have high cost of time, computation and software/hardware.
We refer to [7], [8], [11] for more details. Even if their
pertinences to specific systems or applications have been
enhanced greatly, there are few opportunities to extend or
transfer their achievements to other cases. This limitation
arises from the fact that they seldom put emphasis on jam-
ming mechanism and thus fail to uncover the universal rules
on effect of jamming on radar. Although the data-driven
methods, e.g., convolutional neural networks [23], [24] and
principle competent analysis [25], are utilized to address this
issue by exploring the information hidden in the data (namely
samples), this hurdle has not been completely tackled due to
their black-box property.

In this work, we propose a novel evaluation method via
associating signal-level evaluation and system/application-
level evaluation together, aiming at simultaneously (i) keep-
ing and combining the superiorities of the aforementioned
two evaluation approaches and (ii) overcoming their respec-
tive drawbacks. To do so, we put forward a composite eval-
uation method based on RTFA and PAPR, where RTFA is
exploited to directly analyze the TF spectrum of radar echoes
for calculating the two-dimensional (2D) image entropy [26],
[27] and PAPR determines a system/application-level eval-
uation by associating the SJR in radar processing chain
and the performance of target detection. When they are
combined together via normalization and weighted averag-
ing, the composite parameters (i.e., normalization factors
and weighting coefficients) are estimated from the sam-
ples, equipping the composite with data-adaptive property.
Hence, we can derive a unified framework of evaluating
the effect of jamming on radar and thus achieve the first
aim (i). To refine the composite evaluation and accomplish
the second objective (ii), we modify the traditional RTFA
for signal-level evaluation and give theoretical guarantee
of PAPR for system/application-level evaluation. On the
one hand, different from the conventional RTFA [28]–[30],
the modified RTFA can enhance the TF concentration, avoid
the artifacts arising from the crossing terms and even cope
with incomplete data in light of joint sparse model with
convolution framelets, ultimately improving the precision of
signal-level evaluation. On the other hand, target detection,
usually viewed as a type of common and fundamental appli-
cation that always affects the subsequent ones in radar, is used
for the system/application-level evaluation to highlight the
pertinence, and then we establish the quantitative relationship
between SJR and detection probability by PAPR. Despite the
well-defined PAPR [31], to the best of our knowledge, it is
the first attempt to give theoretical guarantee of PAPR for
evaluation. In the end, numerical experiments are designed
to validate the feasibility and superiority of the proposed
approach.

In summary, our contributions are as follows:
1) In term of signal-level evaluation, RTFA is exploited to

estimate TF spectrum for calculating two-dimensional
image entropy, where joint sparse model with con-
volution framelets is leveraged to improve TF
concentration.

2) For system/application-level evaluation, we derive the
variation of SJR in radar processing chain, and thus
define the PAPR to associate SJR with target CFAR
detection, leading to theoretical guarantee of PAPR for
evaluation.

3) Composite evaluation based on RTFA and PAPR is
proposed by computing the normalization factors and
weighting coefficients from the training data and its
feasibility and superiority is validated in numerical
experiments.

The remainder of the paper is organized as follows.
In Section II, we briefly overview the signal models for
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blanket jamming and PD radar. And then, Section III
presents the evaluation approach in the sense of signal,
i.e., signal-level evaluation, where the modified RTFA is
proposed to analyze TF spectrum for calculating the 2D
image entropy. In Section IV, we establish the quantitative
relationship between SJR and detection probability by PAPR
for system/application-level evaluation. The composite eval-
uation as well as the estimation of composite parameters are
formulated in Section V. Section VI provides the numerical
experiments to illustrate the feasibility and superiority of the
proposed method. The conclusions are drawn in Section VII.
The notations and definitions employed in the paper are

summarized in Table 1, where the lower-case letters denote
scalars, boldface column lower-case letters denote vectors,
and boldface upper-case letters denote matrices.

TABLE 1. Summary of frequently used symbols in this paper.

II. SIGNAL MODELS
In this section, we aim to briefly overview the signal models
for blanket jamming and PD radar, providing the basis for
evaluating the effect of blanket jamming. Unless otherwise
specified, the symbols j, c, f0, and t denote the unit imagi-
nary number, the speed of light, carrier frequency, and time,
respectively. For the sake of conciseness, we directly list the
signal models for blanket jamming, i.e., RF noise, AM noise,
FM noise and PM noise, as follows. RF noise, usually gen-
erated by filtering the white Gaussian noise (WGN), has the
signal model of the form

JRF(t) = U (t) exp[j(2π f0t + φ)], (1)

where the amplitude U (t) and the phase φ are indepen-
dent random variables, satisfying Rayleigh distribution over
[0,+∞) and uniform distribution over (−π, π), respectively.
However, according to this model, it is impractical to generate
RF jamming with high power and wide bandwidth. For this
reason, it is more popular to exploit other types of blanket
jamming by modulating the related parameters by noise with
different distributions. One of them is the AM jamming, i.e.,

JAM(t) = [U + U (t)] exp[j(2π f0t + φ)], (2)

where U (t) satisfies generalized stationary random process
over [−U ,+∞) while φ, also independent with U (t), satis-
fies an uniform distribution over (0, 2π ). Besides, FM jam-
ming is usually modulated in a similar manner, and thus
modeled as

JFM(t) = U exp[j(2π f0t + 2πK1

∫ t

0
u(s)ds+ φ)], (3)

where the amplitudeU and the frequencymodulation ratioK1
are constant numbers. Denotations u(t) and φ are independent
with each other and satisfy generalized stationary random
process and uniform distribution over (0, 2π ), respectively.
The last type of blanket jamming is the PM noise with the
signal model

JPM(t) = U exp[j(2π f0t + K2u(t)+ φ)], (4)

where the amplitude U and the phase modulation coefficient
K2 are also constant numbers. For u(t) and φ, they follow the
same meaning to that for FM jamming.

It is worth noting that any of the blanket jamming above
has similar statistical character to WGN, when they are
performed on radar systems. This mainly stems from the
band-limited property of radar and will be discussed in
section 4.1 for more details. Even so, different modulation
modes of the four types of blanket jamming rely on different
hardware systems, leading to different jamming parameters,
e.g. intensity and bandwidth, for diverse application scenar-
ios. Both of their similarity and difference provide conve-
nience for effect evaluation by removing the redundancy and
focusing on the critical details in blanket jamming.

When the echoes with blanket jamming come into radar
systems, they are first processed by several steps before
specific applications. It is well-known that these process-
ing steps and the related applications are determined by the
radar systems themselves, and so, at this point, we take
into account the PD radar endowed with linear frequency
modulation (LFM) signal for target detection as well as the
subsequent applications (e.g. tracking). Despite various PD
radar systems, the success of the considered PD radar above
results from its good trade-off between ranging and velocity
measurement. Furthermore, the processing chain in this radar
system includes IFDC, matched filtering, MTI, CFAR detec-
tion and so on, and then we directly present the signal models
of the major steps as follows.

For this PD radar, we start from the LFM signal

s(t) = rect(t/T ) exp[j2π(f0t + kt2/2)], (5)

where rect(·) is the rectangle envelope function and the
symbols T , f0, and k denote the time duration, the carrier
frequency and the frequency modulation ratio, respectively.
When the target with radial range R(t) is assumed to have
unit radar cross section (RCS), its echo can be given by

se(t) = s(t − t0), (6)

214506 VOLUME 8, 2020



T. Li et al.: Evaluating Effect of Blanket Jamming on Radar Via RTFA and PAPR

where t0 = 2R(t)/c is the time-delaying amount. With IFDC
on se(t), the signal is then formulated as

sr (t) = rect
(
t − t0
T

)
exp

[
j2π

(
−f0t0 +

k(t − t0)2

2

)]
,

(7)

Given the matched filter with response function h(t) =
s∗(t1 − t), where ∗ is the conjugate operator and t1 is the
reference time, the filtered signal of sr (t) can be expressed
as

x(t) = sr (t)~ h(t), (8)

where ~ is the convolution operator. Accordingly, the range
of the target can be estimated from the signal x(t), and also
its radial velocity can be measured by the MTD on x(t),
i.e., filtering x(t) with narrow-band filter banks.

When the radar works in jamming and noise environment,
the echo in (6) becomes

s̃e(t) = se(t)+ J (t)+ n(t), (9)

where J (t) is the blanket jamming signal and n(t) is the
noise arising from the other sources such as radar itself and
ground/sea clutter. Despite the similar processing of s̃e(t)
to se(t) in PD radar, the performance of radar in jamming
environment is usually degraded, suggesting the necessity of
evaluating the effect of blanket jamming on radar. What’s
more, when n(t) is comparable to J (t) in intensity, the former
can not be ignored (illustrated in Fig. 6). In practice, the inten-
sity of J (t), however, is usually much higher that of n(t),
especially when the jamming is deliberately designed. To be
honest, even if it is difficult to ignore n(t) in s̃e(t), we can also
combine J (t) and n(t) together as both of them have similar
statistics to WGN. For these reasons, we simplify (9) as

s̃e(t) = se(t)+ J (t), (10)

where n(t) has been omitted for conciseness.
The signal models of blanket jamming and the related

processing steps in PD radar provide a forward model for
evaluating the effect of jamming on radar. With this knowl-
edge, in the following sections we will first research on
the evaluations based on RTFA and PAPR, respectively, and
then combine them by taking a weighted average with nor-
malization factors and weighting coefficients estimated from
samples.

III. EVALUATION BASED ON RTFA
Radar echoes with jamming directly carries the jamming
information, allowing us to analyze the effect of jamming
on radar in the sense of signal. It is also well-known that the
TF spectrum of signal is of utmost importance in processing
of echoes and recognition of jamming [16], [17], [19], [20],
since the desirable TF spectrum of echoes strongly supports
the good behavior of radar and the jamming also degrades
the radar by destroying its normal TF spectrum. Starting
from this point, we aim to implement the evaluation with the

center of TF spectrum in this section. We first introduce the
conventional RTFA methods and focus on their drawbacks,
despite their superiorities. To address the limitations of con-
ventional RTFA, we propose the modified RTFA approach by
joint sparse model with convolution framelets. Based on the
TF spectrum estimated by the proposed RTFA, a signal-level
evaluation index, namely the 2D image entropy, is exploited
to assess the effect of jamming on radar accurately. For
clarity, we denote the (column) vector and the matrix by bold
lowercase and uppercase letters, respectively, and also the
symbols R and C indicate the real space and complex space,
respectively.

A. CONVENTIONAL RTFA
To derive RTFA, we start from the conventional TF analysis
for TF spectrum. Despite diverse TF analysis methods, they
can be mainly categorized into three types, i.e., linear TF
analysis, bilinear TF analysis and data-driven TF analysis
(e.g. empirical mode decomposition). Linear TF analysis usu-
ally has low TF concentration while bilinear TF analysis can
not remove the coupling effect that results from the crossing
terms. For the data-driven type, even if it has high degree of
flexibility on TF models, it lacks theoretical guarantee and so
has much room for improvement of the robustness. Besides,
it is difficult for conventional TF analysis to have good
performance in extreme conditions, such as strong jamming
and data missing. In this case, RTFA [28]–[30] provides a
novel idea in framework of compressive sensing (or termed
compressed sensing) to improve the robustness and accuracy
of TF analysis.

To avoid the crossing terms of TF analysis for signals with
multiple components, we start from one of the linear TF anal-
ysis methods, namely short time Fourier transform (STFT).
Given the signal x(t), its discrete formula, determined by
sampling, can be written as x = [x1, x2, · · · , xM ]T , where
the superscript T is the transpose of matrices or vectors.
According to STFT, the TF spectrum S = [s1, s2, · · · , sM ]
of x can be expressed by

Sm,n =
N−1∑
k=0

xm+k · exp (−j2πkn/N ), (11)

wherem = 1, 2, · · · ,M and n = 1, 2, · · · ,N are the discrete
time and frequency, respectively, and the length-N rectangu-
lar window is utilized. For the sake of brevity, equation (11)
can be reformulated into matrix form

sm = F · xm, m = 1, 2, · · · ,M , (12)

where xm = [xm, xm+1, · · · , xm+N−1]T is the mth signal
patch extracted from original signal x. Clearly, some of the
signal patches have the entries located outside of x, and thus
we can rearrange the original signal end to end to address this
problem. It is worth noting that F ∈ CN×N is the full-rank
Fourier basis and has the inverse matrix F−1, so (12) can be
rewritten as

xm = F−1 · sm, m = 1, 2, · · · ,M . (13)
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Namely, the signal patch xm can be linearly represented on
the basis F−1 and the representation coefficient vector is sm.
Despite the linearity of STFT, it has much room for

improvement of TF concentration and robustness. For this
reason, RTFA is put forward to overcome these drawbacks
by introducing the following optimization model

min
sm
‖sm‖1 s.t. ‖xm − F−1 · sm‖22 < ε, (14)

where m = 1, 2, · · · ,M , ‖ · ‖1 is the `1 norm, and ε > 0 is
the parameter of error bounding. In fact, these optimization
models can be numerically solved, respectively, and each
solution is actually an estimation of the corresponding col-
umn of the TF spectrum S. Notice that, in contrast to STFT
in (11), RTFA can not only inherit its merit of avoiding the
crossing terms, but also improve the TF concentration and
the robustness by imposing the sparse constraint on spectrum
estimation. Despite these superiorities, RTFA by (14) still
has two major drawbacks: the sparse prior of original signal
is explored locally, i.e., enforcing sparse constraint on each
signal patch, and the computation complexity is high due to
numerous optimization models.

An alternative method for RTFA can address the issues
above by utilizing the joint sparse prior and the core is joint
representation of x by its signal patches {xm}Mm=1, i.e.,

x =


x1

xN+1
...

xKN+1



=


F−1 0 · · · 0
0 F−1 · · · 0
...

...
. . .

...

0 0 · · · F−1




s1
sN+1
...

sKN+1

 , (15)

where K = [M/N ] is the maximum integer that is no more
thanM/N . With this linear representation of x, a joint sparse
model can be built and solved in a similar manner to (14),
allowing us to explore the joint sparse prior of x and to reduce
the computation cost by executing sparse recovery algorithm
only once. Nevertheless, the signal patches used in (15) do
not overlap with each other, and thus only some entries of
{sm}Mm=1, namely some columns in S, are achieved, resulting
in low time resolution of TF spectrum. It is also worth noting
that the first equality in (14) do not hold strictly, because
the right may be longer than the left. Although it has little
or no effect on the aforementioned model and algorithm,
the linear representation of x still has a minor defect, i.e., the
representation basis (or dictionary) may not match original
signal. In fact, the key point of tackling the two hurdles
in joint sparse model lies in the exact sparse representation
dictionary for x, on which the sparse representation coeffi-
cients of x can be estimated for S. Following this argument,
we propose the modified RTFA using convolution framelets
in next subsection.

B. MODIFIED RTFA
To tackle the issues in conventional RTFA, we put forward
the modified RTFA in framework of convolution framelets.
Notice that the models in (13) can be rearranged column by
column as a matrix format

X = 8 · S, (16)

where X = [x1, x2, · · · , xM ], S = [s1, s2, · · · , sM ] and
8 = F−1, and so the corresponding optimization model with
joint sparse prior can be expressed as

min
S
‖S‖1 s.t. ‖X−8 · S‖22 < ε. (17)

Formally, this method for RTFA has achieved the joint sparse
model with exact representation of X by 8 and S, however,
despite the dependence of X on x, original signal x is not
equivalent to X, suggesting the joint sparse constraint of S
for X is invalid for x. Indeed, the optimization model in (16)
can be decomposed into the models in (14) equivalently, so it
fails to solve the aforementioned problems in the essence.

Despite the hurdles of (15) and (16), they provide an exact
representation model and a special structure of X, namely
the Hankel matrix. When the relationship between x and
X can be achieved by this structure, we can also have that
between x and S as well as the exact sparse representation
dictionary, based on which the joint sparse model can be
obtained accordingly. For the Hankel matrix, we have the
following lemma:
Lemma 1: Assume x = [x1, x2, · · · , xM ]T ∈ RM and its

corresponding Hankel matrix is defined by

X =


x1 x2 · · · xM
x2 x3 · · · x1
...

...
. . .

...

xN xN+1 · · · xN−1

 ∈ RN×M ,

where N is the length of signal patches for x and N < M .
And also, let ~ be circular convolution operator and (·)− be
the flip operator, namely (v−)n = v−n for any vector v. Then,
we have

1) xm = 1
N

∑N
i=1Xm−i+1,i, for m = 1, 2, · · · ,M ;

2) X · v = x~ v−, for any v ∈ RN ;
3) aT (b~c) = bT (a~c−), for any a,b ∈ RM and c ∈ RN .

The proof is simple and we omit it. It can be seen from
Lemma 1 that the quantitative relationship between x and X,
as well as their property with respect to any given vector, has
been shown exactly and the related equality for the operator
~ has been also formulated for further investigation of con-
volution framelets.

For the sake of clarity, we first present the representation
lemma for x and X:
Lemma 2: Assume that U ∈ RN×N and V ∈ RM×M

are orthogonal matrices, and let {ui}Ni=1 and {vj}Mj=1 be their
column vectors, respectively. For any vector x ∈ RM and its
Hankel matrix X ∈ RN×M , where N < M , we have

1) X = U0VT , where 0ij = xT (ui ~ vj);
2) x = 1

N

∑N
i=1

∑M
j=1 0ijui ~ vj.
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The proof is also presented in Appendices. It is well-known
that singular value decomposition (SVD) has been widely
applied in matrix analysis for signal processing, and so
it is amazing that the Hankel matrix X in Lemma 2 has
a SVD-like decomposition. This decomposition, however,
is more general as U and V are arbitrary orthogonal matrices.
Accordingly, x also has a new representation formula on the
vector set {ui ~ vj|i = 1, 2, · · · ,N , j = 1, 2, · · · ,M},
which actually corresponds to a tight frame termed convo-
lution framelets. The following lemma provides a theoretical
guarantee:
Lemma 3 ( [32]): Assume that U ∈ RN×N and V ∈

RM×M are the orthogonal matrices, respectively, and denote
by {ui}Ni=1 and {vj}Mj=1 their column vectors, respectively.
If N < M , the vectors ui ~ vj for i = 1, 2, · · · ,N and
j = 1, 2, · · · ,M form a tight frame for RM with frame
constant N .
With lemma 2 and lemma 3, let’s now go back to the rep-

resentation problem of X in (16). To explore the joint sparse
prior and reduce the computation cost for RTFA, we have a
new linear representation of x using convolution framelets.
Theorem 1: Assume that x ∈ CM and its Hankel matrix

is X ∈ CN×M . Also let 8 ∈ CN×N and E ∈ RM×M be
the inverse Fourier basis and the unit matrix, respectively.
If X = 8 · S holds for S ∈ CN×M , then we have the linear
representation x = 6s, where s is the vectorization of S and
6 is the convolution framelets constructed from 8 and E.
The proof is shown in Appendices. It is worth noting that
the signal x, as well as X, in the lemmas above is assumed
to be located in the real space, while it has been extended
into the complex space in Theorem 1, since almost all of the
signals used in effect evaluation of blanket jamming on radar
are complex. Moreover, as shown in Theorem 1, convolution
framelets offers an exact representation of x, i.e., x = 6s,
which leads to a quantitative and direct relationship between x
and its TF spectrum S and so avoids the loss of time/frequency
resolution. More importantly, the sparseness of x can be
enhanced by the over-completeness of convolution framelets,
improving the performance of the sparsity-based models and
algorithms.

Based on convolution framelets, the proposed optimization
model for RTFA can rewritten as

min
s
‖s‖1 s.t. ‖x−6s‖22 < ε. (18)

This model can be numerically solved by sparse recovery
algorithms, such as OMP, BP, SP, and so on [33], [34]. Once
the solution ŝ is achieved, then the TF spectrum S can be
estimated by reshaping ŝ into a matrix of dimension N ×M .
As we have argued, the proposed method for RTFA can not
only avoid the artifacts from the crossing terms by using
linear representation instead of the bilinear one, but also
improve the TF concentration as well as the robustness to
noise and data-missing by enforcing joint sparse constraint
via convolution framelets. Meanwhile, in contrast to conven-
tional RTFA, the computation complexity can also be reduced

by the proposed RTFA as the model size has been decreased
and the algorithm is executed only once.

Finally, we aim to a remark on the convolution framelets
used for the proposed RTFA. Although the modified RTFA
starts from STFT, namely the Fourier basis is used to con-
struct convolution framelets, many popular bases, e.g., Gabor
basis, wavelet basis, etc., can be also unitized for the mod-
ified RTFA. Specifically, if the matrix 8 in Theorem 1 is
regarded as the representation basis for x in the dimension
of frequency, the matrix E is actually the representation basis
in the dimension of time, which can be also replaced by other
bases. In this case, we can make use of the modified RTFA to
achieve the generalized TF spectrum, providing high degree
of freedom in effect evaluation of blanket jamming on radar.

C. EVALUATION INDEX: 2D IMAGE ENTROPY
Now let us go back to our original task, i.e., evaluating
the effect of blanket jamming on radar. Since the modified
RTFA provides the accurate TF spectrum of the echoes with
jamming, a quantitative index is definitely needed to assess its
quality for effect evaluation. It is well-known that the echoes
with different jamming types or parameters always have dif-
ferent TF spectrums, namely that with different intensities or
distributions.When the TF spectrums are regarded as images,
we can directly exploit the image entropy to measure the
difference on TF spectrums. In fact, entropy is first proposed
in information theory and its success results from the fact that
entropy means the richness of information.

There are two types of image entropy and the first is
one-dimensional (1D) image entropy with the definition∑L

i=0 pi log pi, where L is the image gray level and pi is ratio
of the pixels with gray i to the total. The 1D image entropy
can measure the concentration of image energy, while it fails
to reflect the energy distribution. For this reason, we take into
account the second image entropy, i.e., the 2D image entropy
[26], [27]. Formally, it is defined as

H = −
L∑
i=0

L∑
j=0

pij log pij (19)

with

pij =
f (i, j)
N

. (20)

Here N is the number of pixels on the image and f (i, j) is
the number of the pixel pair (i, j), where i denotes the current
pixel value and j is the mean value of the adjacent pixels of
the current pixel. The 2D image entropy is more robust than
the 1D image entropy and its feasibility for effect evaluation
will be illustrated in the following experiments.

IV. EVALUATION BASED ON PAPR
The signal-level evaluation based on RTFA has been imple-
mented in the section above, and now we put emphasis on the
system/application-level evaluation based on PAPR. As we
have argued in introduction, we aim to deal with two issues
in system-level evacuation, namely (a) various applications of
PD radar result in the lack of unified evaluation framework
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and the difficulty of transferring the evaluation from one
application to the others, and (b) the traditional methods
for system/application-level evaluation always depend on the
simulations and experiments and so fail to uncover the jam-
ming mechanism and to provide theoretical guarantee. To
address the issue (a), we view CFAR detection as the kernel
application for PD radar, since it is a type of common and
fundamental application that usually affects the subsequent
ones. In other words, if CFAR detection does not have good
performance, the subsequent applications also can not work
well. In the sequel, CFAR detection can provide a unified
evaluation standard for the system/application-level evalua-
tion.Whereas, if the detection probability for CFAR detection
is directly exploited as the evaluation index to solve issue (a),
issue (b) still remains. For this reason, we establish the quan-
titative relationship between SJR and detection probability by
the PAPR, thus giving theoretical guarantee of the PAPR for
system/application-level evaluation.

As a result, the first step towards realizing the idea above
is to analyze the statistics of blanket jamming in PD radar,
based onwhich the variation of SJR in processing chain of PD
radar can be measured quantitatively and then the evaluation
index RAPR is proposed. Also, the theoretical guarantee of
the PAPR is given for CFAR detection, suggesting that the
PAPR can tackle the issues (a) and (b) simultaneously.

A. APPROXIMATE STATISTICS OF BLANKET JAMMING
To tackle the issues above, the statistics of blanket jamming
are first analyzed for the evaluation index PARP in this sub-
section. Although the signal models of blanket jamming and
PD radar have been introduced in section 2, the statistics of
blanket jamming have not been explored enough, especially
when the jamming signals are processed in the processing
chain of PD radar. In practice, their statistics would be always
changed due to the band-limited property of PD radar, allow-
ing us to derive a unified approximate statistical distribution
for different blanket jamming types.

For conciseness, when the blanket jamming signals are
processed by IFDC step in PD radar, their models can be
directly expressed as

J̄RF(t) = U (t) exp(jφ)
J̄AM(t) = [U + U (t)] exp(jφ)
J̄FM(t) = U exp[j(2πK1

∫ t
0 u(s)ds+ φ)]

J̄PM(t) = U exp[j(K2u(t)+ φ)],

(21)

respectively, where the carrier frequency f0 has been can-
celled by IFDC. First of all, we take into account the RF
jamming. As we have argued, its amplitudeU (t) and phase φ
are independent random variables and satisfy Rayleigh dis-
tribution and uniform distribution, respectively, so it can be
decomposed into two orthogonal random variables. If it is
rewritten as J̄RF(t) = Ua(t)+ jUb(t), then we have{

Ua(t) = U (t) cos(φ)
Ub(t) = U (t) sin(φ),

(22)

where both of Ua(t) and Ub(t) satisfy Gaussian distribu-
tion, namely normal distribution. In this case, when the RF
jamming is processed by IFDC, we can conclude that it can
be modeled as the random variable satisfying the complex
Gaussian distribution.

After analyzing the RF jamming, we now focus on the AM
jamming, where we have the similar results. It is worth noting
that, when some conditions are satisfied, AM jamming can
degenerates to RF jamming. For instance, if its amplitude is
rewritten as

Ū (t) = U + U (t) =

√
π

2
· σ + U (t), (23)

where σ 2 is the variance of U (t), then it would appear that
Ū (t) approximately or exactly satisfies the Rayleigh distribu-
tion over [0,+∞), depending the choice of the generalized
stationary random process over [U ,+∞) for U (t). In other
words, AM jamming can be also statistically modeled by the
complex Gaussian distribution approximately.

With repeat to FM jamming and PM jamming, their mod-
ulation noise u(t) in (21) is usually assumed as Gaussian
random variable, and thus their power spectrum densities
also approximately satisfy the Gaussian distribution. More
importantly, notice that both of them have wide bandwidth,
within which their instant frequency varies continuously and
dramatically; while the receiver in PD radar has both of
relatively narrow system bandwidth and time-delaying slug-
gishness. For this reason, the jamming waveforms that come
into the receiver can be viewed as continuous random shock
composed of overlapping bell-like pulses instead of the sepa-
rate sharp ones. After IFDC step, the envelope and the phase
of FM jamming and PM jamming also approximately satisfy
Rayleigh distribution and uniform distribution, respectively,
providing the similar statistics to RF jamming.

In conclusion, the four types of blanket jamming can
approximately or exactly satisfy the complex Gaussian dis-
tribution, when they come into PD radar and are processed
by IFDC step. Their unified approximate statistical distri-
bution stems from both of their original statistics and the
bandwidth-limited property of PD radar and is also supported
by the central limit theorem in theory. The feasibility of
this approximation can be also illustrated in the following
experiments, by the similar effect curves of different types
of blanket jamming under the same simulated conditions.

B. EVALUATION INDEX: PAPR
Depending on the signal models in section 2 and the approx-
imate statistics of blanket jamming, the variation of SJR in
processing chain of PD radar is first derived explicitly and
then the index PAPR is proposed for system/application-level
evaluation. It is worth noting that SJR is an fundamental
but important conception that will be used frequently in the
following. Unless specifically declared, SJR corresponds to
the ratio of average power; however, it refers to that of instan-
taneous power when the SJR at some time or in some space
is used. If the power is uniformly distributed over the whole
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domain, i.e., the average power equals to the instantaneous
power, there is no difference between them; otherwise, it is
more likely that they are nonequivalent to each other.

Following the assumptions and denotations in section 2,
we assume that Nr and Na are the number of samples for
each LFM signal and that of echoes, respectively, which are
actually the sampling numbers on the dimensions of range
and azimuth, respectively. In particular, when the sampling
frequency and the pulse repetition frequency (PRF) are given,
they are determined by their corresponding durations directly.
Also, we denote by J0(t) and s0(t) the blanket jamming signal
and the true signal from a target after IFDC step, respectively,
and thus the signal for matched filtering can be given by

x0(tm, t̂) = s0(tm + t̂)+ J0(tm + t̂)

, s0(tm, t̂)+ J0(tm, t̂), (24)

where the slow time tm and the fast time t̂ satisfy t = tm + t̂ .
If the jamming signal and the true signal have the average
power PJ and Ps, respectively, the SJR of x0 can be measured
by

SJR0 = 10 log10(Ps/PJ ). (25)

According to matched filtering principle in (8), the signal
in (24) is filtered by h(·) and we have

x1(tm, r) = x0(tm, t̂)⊗ h(t̂)

= s0(tm, t̂)⊗ h(t̂)+ J0(tm, t̂)⊗ h(t̂)

, s1(tm, r)+ J1(tm, r), (26)

where r = ct̂/2. It is well-known that s1(tm, r) in (26) refers
to the desirable (ideal) result of matched filtering and has the
form

s1(tm, r) ≈ C1sinc[k1(r − r0)] exp(−j2π fd tm), (27)

where r0 is the target’s radial range and fd is the Doppler
frequency shift caused by the target’s radical velocity. For
conciseness, the high-order terms with respect to tm are
ignored and the constants in PD radar are combined into
the constant numbers C1 and k1. In this case, we have the
following lemma on the variation of SJR stemming from
matched filtering, namely,
Lemma 4: Assume that x1 in (26) is achieved by filtering

x0 in (24) via matched filtering. If J0 in (24) satisfies complex
Gaussian distribution, at r0 we have

SJR1 = SJR0 + 10 log10(krNr ),

where SJR0 and SJR1 are the SJR values of x0 and x1,
respectively, and kr is a radar system constant.
Now we briefly present the proof of the lemma above.

According to the definition of SJR, its value of x1 at r0 can
be computed by

SJR1 = 10 log10(P
1
s/P

1
J ),

where P1s and P1J are the power of the true signal and the
jamming signal at r0, respectively.Matched filtering principle

tells that P1s = Ps · krNr is actually the energy of the LFM
signal (in discrete version) with radar system constant kr and
that P1J = PJ holds for the jamming noise with complex
Gaussian distribution. In the sequel, by taking these equations
into SJR1, the result in Lemma 4 is achieved and the proof
is completed. What is more, we have to mention that the
constant kr actually depends on the PD radar itself, such as
system gain and loss. The significance of Lemma 4 lies in
the fact that it not only quantitatively describes the variation
of SJR arising from matched filtering, but also provides the
theoretical basis for analyzing the effect of MTD on SJR.

Next, we aim to analyze the variation of SJR arising from
MTD. Starting from the signal x1(tm, r) in (26), narrow-band
filter banks are usually used to filter the signals for detecting
the Doppler frequency shift caused by target’s radical veloc-
ity. For the sake of clarity, we directly exploit the Fourier
transform to implement the MTD, namely

x2(f , r) =
∫ Ta

0
x1(tm, r)e−j2π ftmdtm

=

∫ Ta

0
s1(tm, r)e−j2π ftmdtm

+

∫ Ta

0
J1(tm, r)e−j2π ftmdtm

, s2(f , r)+ J2(f , r), (28)

where Ta is the duration of echoes in azimuth dimension.
Similarly, the variation of SJR arising from MTD is shown
as follows:
Lemma 5: Assume that x2 in (28) is achieved by trans-

forming x1 in (26) via MTD. If J1 in (26) satisfies complex
Gaussian distribution, at (−fd , r0) we have

SJR2 = SJR1 + 10 log10(kaNa),

where SJR1 and SJR2 are the SJR values of x1 and x2,
respectively, and ka is a radar system constant.
The proof is shown inAppendices. Lemma 5 also tells that the
energy of x2(f , r) will be concentrated on (−fd , r0), which
are determined by the target’s radical velocity and range,
respectively. In this case, it is possible to detect the target
from the signal x2(f , r), and thus the PAPR for x2(f , r) can
be defined as

µ = 10 log10

(
Pt
P2J

)
, (29)

where Pt and P2J are the peak power of the target and the
average power of the jamming. At (−fd , r0), we have Pt =
P2s + P2J , where P

2
s and P

2
J are the powers of the true signal

and the jamming of x2(f , r), respectively. It is therefore easy
to conclude

µ = 10 log10

(
P2s
P2J
+ 1

)
= 10 log10

(
10

SJR2
10 + 1

)
. (30)

Although the PAPR µ is proposed for target detection,
it has close relation to SJR. In practice, by associating
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lemma 4, lemma 5 and equation (30) together, we have the
following theorem:
Theorem 2: For PD radar with LFM signal and blanket

jamming, assume that Nr and Na are its sampling numbers
on range and azimuth, respectively. If the SJR of x0 in (24) is
SJR0 and the PAPR of x2 in (28) is µ, we have

µ = 10 log10

(
k · 10

SJR0
10 + 1

)
,

where k = krNr · kaNa with radar system constants kr and
ka. In particular, if the jamming power is so small that k ·

10
SJR0
10 � 1, we have µ ≈ SJR0 + 10 log10 k; otherwise,

if k · 10
SJR0
10 � 1, µ ≈ 0.

For conciseness, the proof of the theorem above is omitted.
This theorem shows the quantitative relationship between the
PAPR and the SJR, where the SJR is also directly determined
by the blanket jamming as well as radar system; thus the
PAPR depends on the blanket jamming once the radar sys-
tem is given. Furthermore, the PAPR can also determine the
performance of CFAR detection, which will be discussed in
the following subsection. For this reason, the PAPR is used
as a system/application-level index to evaluate the effect of
blanket jamming on PD radar.

C. THEORETICAL GUARANTEE OF PAPR FOR CFAR
DETECTION
It is well-known that CFAR detection is a foundational
but important application for PD radar, which has remark-
able influence on the subsequent applications. Therefore,
the detection probability is usually used to assess the perfor-
mance of radar in jamming environment by experiments or
simulations. At this point, we aim to establish the quantitative
relationship between the PAPR and the detection probability
for CFAR detection to avoid the high computation cost and
to provide theoretical guarantee for system/application-level
evaluation.

In light of the approximate statistics of blanket jamming
and the linearity of the processing chain in PD radar, the jam-
ming J2(f , r) of x2(f , r) in (28) approximately satisfies the
complex Gaussian distribution. Thus, the signal y = |x2|2

obtained by the square-law detector satisfies the exponential
distribution [35], i.e.,

f (y; η) =
1
η
exp

(
−
y
η

)
, y ≥ 0, (31)

where η > 0 is the statistical parameter. When only the
jamming exists, we have η = P2J , where P

2
J is the power

of jamming in x2; otherwise, we have η = Pt = P2s + P2J ,
where Pt and P2s denote the peak power of x2 and the power
of the target (at (−fd , r0)) in x2, respectively. According to
CFAR detection, if the detection thresholding Td (> 0) is
given, the false alarm probability Pfa can be estimated by

Pfa =
∫
+∞

Td
f (y; η = P2J )dy = exp(−Td/P2J ), (32)

leading to Td = −P2J · lnPfa. Likewise, the detection proba-
bility Pr by CFAR detection can be written as

Pr =
∫
+∞

Td
f (y; η = P2s + P

2
J )dy = (Pfa)

(
P2s
P2J
+1
)−1
. (33)

Taking (30) and (32) into (33), we have the relationship
between the PAPR andCFARdetection, which is summarized
as follows.
Theorem 3: For PD radar and CFAR detection, the

PAPR µ determines the logarithmic linear relation between
detection probability Pr and false alarm probability Pfa, i.e.,

ln(Pr ) = 10−µ/10 · ln(Pfa),

where ln(·) is the natural logarithm operator.
Notice that Theorem 3 presents the quantitative relation-

ship between PAPR and CFAR detection and Theorem 2
reveals that between SJR and PAPR, so the PAPR has built the
bridge between the blanket jamming and the application of
PD radar, which not only partly uncovers the jamming mech-
anism of blanket jamming on PD radar, but also provides the
theoretical guarantee of PAPR for system/application-level
evaluation.

V. COMPOSITE EVALUATION
Although the signal-level index (i.e., the 2D image entropyH
based on RTFA ) and the system/application-level index
(i.e., the PAPR µ) have been constructed in section 3 and in
section 4, respectively, it is still difficult to make a final deci-
sion when they are not completely consistent to each other.
To solve this intractable issue, we composite them together
using normalization and weighted averaging. The composite
evaluation can combine their advantages and improve the
evaluation robustness as well as the conveniences in practical
applications.

The first step towards compositing the indices is normal-
ization as they have different dimensions, and then their
weighted average is computed. Therefore, the key point for
composite evaluation lies in the design of normalization fac-
tors and weighting coefficients. Inspired by data mining, they
can be estimated from the samples achieved under different
jamming conditions (e.g., types and parameters), exploring
the information hidden in samples sufficiently and improving
the robustness. Without loss of generality, for given radar
system, the samples are achieved with different jamming
types and different SJR values. Concretely speaking, we set
M different SJR values for each of the four blanket jam-
ming types (namely RF, AM, FM and PM), and so there
are 4M jamming property labels for samples. To enhance
the robustness, N samples are achieved for each jamming
property label, and thus we have 4MN samples in database,
i.e., J = {J kmn|m = 1, 2, · · · ,M; n = 1, 2, · · · ,N ; k =
1, 2, 3, 4.}. In fact, besides the property labels, there are also
the signals used to compute or estimate the indices H and µ
for each entry in J . For conciseness, we directly show the
corresponding index values H k

mn and µ
k
mn for J

k
mn ∈ J . Since
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the robustness of the indices can be enhanced by averaging
over N samples, we take a average of the index values for
each jamming property label, i.e.,

H k
m =

1
N

∑N

n=1
H k
mn

µkm =
1
N

∑N

n=1
µkmn,

(34)

where m = 1, 2, · · · ,M and k = 1, 2, 3, 4.
On normalization, we exploit the extreme values in
{H k

m|m = 1, 2, · · · ,M; k = 1, 2, 3, 4} , H and {µkm|m =
1, 2, · · · ,M; k = 1, 2, 3, 4} , Q to normalize the two
evaluation indices, respectively, canceling the difference of
dimensions. The normalization factors are therefore obtained
by {

Hmax = max H
Hmin = min H,

(35)

and {
µmax = max Q
µmin = min Q.

(36)

Thus the normalized indices for signal-level evaluation and
the system/application-level evaluation can be expressed,
respectively, by

Ĥ = g
(

H − Hmin

Hmax − Hmin

)
µ̂ = g

(
µmax − µ

µmax − µmin

) (37)

where g(·) is the truncation function defined as

g(t) =


0, t < 0
t, t ∈ [0, 1]
1, t > 1

(38)

The introduction of g(·) can normalize its input into [0, 1]
and help to deal with the issue that the index values of
testing signals are out of the range defined by the extreme
values. Besides, it is well-known that the normalization heav-
ily depends on the samples, because they actually determine
the extreme values. Although it is hard to include all of the
possible jamming property labels in the sample set J , this
set should be still expanded as large as possible. For instance,
some important cases of jamming property labels, e.g. the
jamming-free signals, are also necessary to be added to the
sample set in practice. It is also worth noting that the formulas
ofH andµ as the inputs of g(·) in (38) are inconsistent to each
other, which stems from the fact that the indicesH andµ have
different variation trends as SJR decreases or increases.

On weighted averaging, we also start from the index sets
H and Q of the sample set J . Taking into account the
difficulty of comparing the importance of H and µ in eval-
uation, we exploit the separability of H and Q to estimate
their weighting coefficients. It is well-known that the sepa-
rability of features plays a leading role in classification and
recognition, since high separability of features usually helps

to improve the efficiency of classification and recognition.
Similarly, the evaluation efficiency from H and µ also relies
on their separabilities, respectively. Therefore, the weighting
coefficients are estimated by{

wH = σH/H̄
wµ = σµ/µ̄,

(39)

where σH and H̄ are the standard deviation and mean of H,
respectively, and σµ and µ̄ are that of Q, respectively.
These definitions above not only describe the separability
sufficiently, but also avoid the hurdle from the dimension
difference.

Associating the normalization factors and the weighting
coefficients estimated from samples, the composite evalua-
tion index F can be achieved by weighted averaging, namely,

F =
wH

wH + wµ
Ĥ +

wµ
wH + wµ

µ̂, (40)

where Ĥ and µ̂ are defined in (37). Once the evaluation
indices H and µ are computed for the given jamming, targets
and PD radar, the composite evaluation index F can be esti-
mated by (40). The definition ofF also tells thatF = 0means
there is no jamming or the jamming is so slight that it can be
ignored; while F = 1 implies that the effect of the jamming
on radar is similar to that of the heaviest jamming in sample
set. Its feasibility and robustness in practical applications will
be illustrated in the following numerical experiments.

In the end, we aim to give some remarks. Notice the com-
posite evaluation depends on RTFA and PAPR, but in theory
it is difficult to determine which is more significant in explor-
ing the jamming mechanism. Since the RTFA-based evalua-
tion and the PAPR-based evaluation actually perform in the
viewpoints of signal and application, respectively, they can
make their own contributions to effect evaluation of blanket
jamming on radar. However, in application their performance
can be measured by the weighting coefficients for composite
evaluation, namely, the evaluation method (RTFA or PAPR)
with larger weighting coefficient is more significant than the
other one. In fact, in different cases of radar and jamming they
can have different performance in effect evaluation. That is
to say, in some cases the RTFA-based evaluation may have
larger weighting coefficient than the PAPR-based evaluation,
while in other cases the opposite result may be achieved. That
is why we make use of the composite evaluation to combine
the advantages of RTFA and PAPR, and thus the composite
evaluation can be robustly applied to more complex cases of
radar and jamming.

VI. NUMERICAL EXPERIMENTS
In this section, numerical experiments are performed to
illustrate the behavior of the signal-level index, the system/
application-level index, and their composite index for evalu-
ating the effect of blanket jamming on PD radar. The superior-
ity of the proposed RTFA is first validated by comparing with
different TF analysis methods on the accuracy, the resolution
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and the artifacts arising from crossing terms, after which
the signal-level evaluation index, namely 2D image entropy,
is computed for different TF spectrums of the same signal
to show the significance of the proposed method for evalu-
ation. And then, by presenting the visual effects of matched
filtering and MTD and computing the PAPR under different
jamming conditions, we aim to illustrate the main results
in Theorem 2 and to reveal the dominant role of PAPR in
exploring the jamming mechanism. In the end, the feasibility
and the robustness of composite evaluation is validated by
analyzing its variation trends under different jamming types
and parameters as well as by estimating the consistency in
term of the correlation coefficients between composite index
and detection probability of CFAR detection, which also
supports Theorem 3 indirectly.

Unless specified otherwise, we will have the following
setting for PD radar, target and jamming in numerical exper-
iments. Assume that the PD radar transmits the LFM sig-
nal and its carrier frequency, bandwidth, pulse duration and
PRF are set as 1GHz, 5MHz, 10µs and 10KHz, respec-
tively. Moreover, the sampling frequency and the SNR of
the receiver are set as 20MHz and 20dB, respectively. With
respect to the target, its radical range, radial velocity and RCS
are set as 10km, 100m/s and 1m2, respectively. Meanwhile,
we utilize the four types of blanket jamming with the signal
models shown in section 2 to simulate the jamming, where
K1 = 3 × 107 and K2 = π/2 are set for FM jamming in (3)
and PM jamming in (4), respectively. Also, we take a average
of experimental results over 100 Monte Carlo simulations,
improving the robustness of numerical experiments.

A. RTFA
In numerical experiments of TF analysis, we assume that four
targets with the same parameters to the aforementioned target
are located at 10km, 10.5km, 11km, and 12.3km, respectively,
and that the blanket jamming has the SJR of −15dB. For
the proposed RTFA, the model in (18), with length-63 sig-
nal patches and the parameter ε = 10−3, is numerically
solved by basis pursuit algorithm with stopping thresholding
10−6. As compared methods, smooth pseudo Wigner-Ville
(SPWV) distribution and STFT are exploited, where the
length-63 ‘Kaiser’ timewindow or/and the length-15 ‘Kaiser’
frequency window are used.

First of all, we show in Fig. 1 the echo of four targets in
jamming-free environment and its distributions achieved by
the aforementioned three methods. Clearly, four components
of LFM signals can be observed from the TF distributions due
to the jamming-free environment. Furthermore, despite the
higher TF resolution from SPWV, STFT has no artifacts aris-
ing from the crossing terms. Also, STFT has higher accuracy
than SPWV, as the bandwidth observed from Fig. 1c exactly
equals to the given bandwidth 5MHz while that from Fig. 1b
does not. In other words, the frequency in Fig. 1c varies
from −2.5MHz to 2.5MHz while that in Fig. 1b varies from
−4.5MHz to 4.5MHz, so the frequency bandwidth estimated
from Fig. 1c has higher accuracy than that from Fig. 1b.

FIGURE 1. Echo of four targets in jamming-free environment and its
TF distributions.

FIGURE 2. Echo of four targets in RF jamming environment and its
TF distributions.

The proposed RTFA not only has the same accuracy to STFT
and avoids the artifacts, but also achieves a higher TF res-
olution than SPWV, giving us an accurate estimation of TF
spectrum for computing the 2D image entropy.

Likewise, we also present the results in jamming environ-
ment in Fig. 2, where RF jamming is only considered for
conciseness. Because of strong RF jamming, the waveform
(in real part) in Fig. 2a remarkably differs from that in Fig. 1a,
but the superiority of the proposed RTFA is still retained.
The TF distributions in Fig. 2c and Fig. 2d also imply the
bandwidth-limited property of radar, i.e., the bandwidth of
signals in the processing chain of radar is always limited
within a finite range, despite the jamming with large band-
width. Moreover, in contrast of that in Fig. 1, the TF spectrum
of four targets in Fig. 2 disappears, the reason of which lies
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FIGURE 3. The H values for blanket jamming with the SJR of −15dB.

in the fact that the true signals are suppressed by the strong
jamming successfully.

To validate the superiority of the proposed RTFA for
signal-level evaluation, we also compare the robustness of the
2D image entropy to jamming types for the three TF analysis
methods. These jamming types include RF, AM, FM, and
PM, and the corresponding H values are shown in Fig. 3.
On the one hand, both of SPWV and STFT have larger H
values than the proposed RTFA, which stem from the artifacts
arising from the crossing terms of SPWV and the low TF
resolution of STFT, respectively. In other words, the draw-
backs of SPWV and STFT may add false TF components to
the TF spectrum, and thus the H value may become large,
suggesting the low accuracy of signal-level evaluation. On the
other hand, since we have argued that the four types of blan-
ket jamming have similar approximate statistics to complex
Gaussian noise, it is desirable to have similarH values, when
they have the same SJR. As shown in Fig. 3, the proposed
RTFA has the smallest variation of H , which is consistent to
the theoretical analysis. In the sequel, the proposed RTFA can
exactly and robustly provide TF spectrum for the subsequent
evaluation.

B. PAPR
On PAPR, we mainly consider its variation as SJR varies in
this subsection, and its relationship with CFAR detection will
be demonstrated in next subsection. For clarity, we assume
there is only one target and its radical range, radical velocity
and RCS are 10km, −200m/s and 1m2, respectively, where
the negativeness of velocity means the target is moving
towards the radar. Echoes of the target in jamming-free envi-
ronment and the results of matched filtering and MTD are
shown in Fig. 4, all of which are consistent to the theoretical
models. For example, the LFM signals are compressed at the
location of 10km (see Fig. 4b) by matched filtering and the
Doppler frequency estimated byMTD (shown in Fig. 4c) also
equals to that computed by fd = −2vf0/c = 4/3× 103Hz.
When we add the RF jamming with SJR of −20dB to the

echoes, the corresponding results are presented in Fig. 5. It
can be observed in Fig. 5a that the RF jamming is so strong
that the LFM waveform of the target has been suppressed
significantly. A faint range line, however, can be also checked

FIGURE 4. Echoes of the target in jamming-free environment and the
results of matched filtering and MTD.

FIGURE 5. Echoes of the target in RF jamming environment (SJR: −20dB)
and the results of matched filtering and MTD.

at the location of 10km in Fig. 5b, depending on the improve-
ment of SJR by matched filtering. In fact, the SJR can be
further improved by MTD as it is clear to see the target on
the range dimension of 10km and the frequency dimension
of 4/3 × 103Hz in Fig. 5c. Thus, the comparison between
Fig. 4 and Fig. 5 can visually validate the function of matched
filtering and MTD on SJR.

In order to quantitatively demonstrate the results in Theo-
rem 2, we present the PAPR curves with respect to SJR for
blanket jamming in Fig. 6, where the SJR is uniformly set
from −40dB to 30dB, with the gap of 5dB. Fig. 6 implies
two similarities and the first one is that the PAPR curves
for blanket jamming have high consistency to the theoretical
curve determined by Theorem 2. According to the theoretical
curve, when the SJR is less than some thresholding, all of
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FIGURE 6. PAPR curves for blanket jamming.

TABLE 2. Weighting coefficients and normalization factors for composite
evaluation.

the PAPR curves are nearly zero; otherwise, it is desirable
to approximately fit them by a linear function. However,
there exists an inflection point at the SJR of around 20dB,
which arises from the fact that the noise added to radar with
SNR of 20dB begins to limit the further increase of PAPR
when the SJR increases to around 20dB. Another similarity
refers to the consistency among the PAPR curves for the four
types of blanket jamming, not only indirectly validating the
approximate statistics of blanket jamming in PD radar, but
also providing the basis for the unified evaluation framework.

C. COMPOSITE EVALUATION
The numerical experiments in the two subsections above
have illustrated the superiorities of the proposed RTFA and
the accuracy of the Theorem 2 for PAPR, respectively, and
now we focus on the performance of composite evaluation,
which can also validate Theorem 3 for PAPR indirectly. In the
following, we first present the samples to estimate the nor-
malization factors and weighting coefficients for composite
evaluation, and then the evaluation results with respect to
different SJR values are listed to validate the feasibility of
composite evaluation.

For sample set {J kmn|m = 1, 2, · · · ,M; n =

1, 2, · · · ,N ; k = 1, 2, 3, 4.}, the SJR values are set uni-
formly from −30dB to 30dB, with the gap of 3dB, and so
M = 21 and there are 4M = 84 jamming property labels. For
robustness, we also set the number of samples asN = 100 for
each jamming property label, and thus there are 8400 samples
in total. From the sample set, the composition parameters are
estimated and shown in table 2, from which we can see that
the weighting coefficient for µ is bigger than that for H and
that the index µ of the sample set is also within a larger range
than the index H .

FIGURE 7. Composite evaluation index F and CFAR detection
probability Pr for different jamming types and different SJR values.

Following the related parameters above, we can calculate
the composite evaluation index F for four types of blanket
jamming under different SJR values and the results are shown
in Fig. 7. Meanwhile, CFAR detection is used to assess the
feasibility of composite evaluation, and thus we also plot the
corresponding detection probability Pr in Fig. 7. We have to
mention that the cell average approach [36] is used for CFAR
detection and the false alarm probability is set asPfa = 0.001.
Moreover, to measure the consistency between F and Pr ,
we introduce the correlation coefficient:

η =
cov(F,Pr )
σFσPr

(41)

where cov(F,Pr ) is the covariance between F and Pr and σ
is the standard deviation. From the definition above, we have
η ∈ [−1, 1]. When the jamming intensity increases, it is
expected that the composite index F also increases but the
detection probability decreases, implying that η approaches
to −1. In fact, we can observe these trends from the curves
in Fig. 7. Also, the correlation coefficients between F and Pr
in Fig. 8 tell that the composite evaluation has high consistent
to CFAR detection, since all of them approach to −1.
We have argued that the performance of composite evalua-

tion can validate the relationship between SJR and detection
probability, which can also support Theorem 3 indirectly.
As stated in Theorem 2, when the jamming power is small
enough, the SJRwill be significantly big and it approximately
holds that µ ≈ SJR+ C with constant C ; otherwise, µ ≈ 0.
In the former case, we can derive that Pr = (Pfa)10

−µ/10
≈ 1

as SJR increases; while, in the later case, we have Pr =
Pfa = 0.001 ≈ 0. This analysis is consistent to Fig. 7,
which validates the quantitative relationship between SJR and
detection probability as well as themain results in Theorem 3.

In the end, we aim to give some remarks on the numerical
experiments. First of all, the composite evaluation combines
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FIGURE 8. Correlation coefficients between F and Pr for blanket
jamming.

the signal-level evaluation and the system/application-level
evaluation together, so it is feasible and robust for evalu-
ating the effect of jamming on radar via associating their
advantages. Meanwhile, the composite evaluation provides a
unified evaluation framework for four types of blanket jam-
ming and PD radar with multiple tasks, since the approximate
statistics of blanket jamming is analyzed and the CFAR detec-
tion is viewed as one of the most foundational application
for PD radar. Finally, it is possible to further improve the
estimation accuracy of normalization factors and weighting
coefficients, when the sample set is enlarged.

VII. CONCLUSION
To tackle the restrictions from diverse jamming types and
radar’s applications, we put forward a unified framework for
evaluating the effect of blanket jamming on radar by combin-
ing RTFA and PAPR. On the one hand, the modified RTFA is
developed to improve the TF resolution and accuracy and to
avoid the artifacts for TF spectrum, allowing us to implement
an accurate signal-level evaluation via 2D image entropy.
On the other hand, the quantitative relationship between
the SJR of echoes and the detection probability of CFAR
detection is achieved by the PAPR, and thus the jamming
mechanism is uncovered partly and the system/application-
level evaluation also has the theoretical guarantee. To com-
posite the elevation indices above, we exploit normalization
and weighted averaging using composite parameters esti-
mated from the sample set, enhancing the robustness and the
data-driven property of composite evaluation. In numerical
experiments, the superiority of the proposed RTFA and the
main results for PRAR have been validated by comparing
with traditional TF analysis methods and by analyzing the
PAPR and detection probability under different SJR values,
respectively. More importantly, the feasibility of composite
evaluation, including the estimation of composite parameters
and the consistency to CFAR detection, is also illustrated by
four types of blanket jamming.

The future extension of this work can be summarized in
the following three aspects. In term of theory, the convolu-
tion framelets for RTFA can be further designed or trained
to improve its representation ability and the radar system

constants in Theorem 2 can be further determined to develop
a more accurate result. In the aspect of method, the composite
evaluation associates with the signal-level evaluation and the
system/application-level evaluation together, however, it is
also possible to combine more evaluations from the middle
processing steps besides that from both ends of head and
tail. Finally, the proposed evaluation method can be extended
and applied to other jamming cases, such as the deception
jamming (e.g. false targets and velocity deception) and radars
with other tasks (e.g. tracking, imaging and recognition).

APPENDIX
Proof of Lemma 2: Starting from the orthogonality of U
and V, we can conclude that {uivTj |i = 1, 2, · · ·N , j =
1, 2 · · · ,M} can be regarded as the orthogonal bases of
RN×M equipped with inner product < A,B >= Tr(ABT ),
whereA,B ∈ RN×M and Tr(·) is the trace of amatrix. In other
words, for X ∈ RN×M . it can be linearly represented by the
orthogonal bases, namely

X =
N∑
i=1

M∑
j=1

< X,uivTj > uivTj

,
N∑
i=1

M∑
j=1

0ijuivTj

= U0VT ,

where 0ij =< X,uivTj >= Tr(XvjuTi ) = uTi Xvj. Notice
lemma 1 tells that the Hankel matrix satisfies

uTi (Xvj) = uTi (x~ v−j ) = xT (ui ~ vj),

so we have 0ij = xT (ui ~ vj) and the first statement is
achieved.

It is also worth noting that the quantitative relationship
between x and X has been given by the first conclusion in
Lemma 1, and thus x has the linear representation of the form

x =
1
N

N∑
i=1

M∑
j=1

< x,ui ~ vj > ui ~ vj

=
1
N

N∑
i=1

M∑
j=1

0ijui ~ vj,

which means the second statement holds for x. Thus the proof
is completed. �
Proof of Theorem 1: In light of the complex formats of

x ∈ CM and its Hankel matrix X ∈ CN×M , they can be
decomposed into x = x1 + j0x2 and X = X1 + j0X2,
respectively, where x1, x2 ∈ RM , X1,X2 ∈ RN×M , and
j0 =
√
−1. With orthogonal matrices8 and E in Theorem 1,

Lemma 2 and Lemma 3 tell that the representation{
X1 = 8C1E
X2 = 8C2E
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and 
x1 =

1
N

∑N

i=1

M∑
j=1

(C1)ijφi ~ ej

x2 =
1
N

∑N

i=1

M∑
j=1

(C2)ijφi ~ ej

holds for the convolution framelets {φi ~ ej|i = 1, 2 · · · ,
N , j = 1, 2, · · · ,M} constructed from 8 and E. In this case,
x and X have the decomposition

x = x1 + j0x2

=
1
N

N∑
i=1

M∑
j=1

[(C1)ij + j0(C2)ij]φi ~ ej

,
1
N

N∑
i=1

M∑
j=1

Cijφi ~ ej

and

X = X1 + j0X2 = 8(C1 + j0C2)E = 8CE = 8C,

respectively.
If X = 8S, S = C also holds for the orthogonality of 8

and thus we have the linear representation

x =
1
N

N∑
i=1

M∑
j=1

Sijφi ~ ej , 6s,

where s the vectorization of S and 6 is the convolu-
tion framelets constructed from 8 and E. So the proof is
completed. �
Proof of Lemma 5: As we have argued in the proof of

Lemma 4, SJR1 = 10 log10(P
1
s/P

1
J ) holds at r0 for each echo,

where P1s is actually the energy of LFM signal. On the one
hand, s1(tm, r) in (27) at r = r0 can be rewritten as

s1(tm, r0) = C1 exp(−j2π fd tm) , s1(tm)

On the other hand, J1 satisfies complex Gaussian distribution,
so the average power P2J of J2 in (28) can be derived by

P2J = P1J ·
∫ Ta

0
| exp(−j2π ftm)|2dtm = P1J · Ta

As a result, the power ratio between the true signal and the
jamming after MTD, at r = r0, can be expressed as

P2s
P2J
=
|
∫ Ta
0 s1(tm) exp(−j2π ftm)dtm|2

P1J · Ta

Schwarz inequality tells that the power ratio above would
reach maximum, if s1(tm) = k exp(j2π ftm) (suggesting
f = −fd ) holds for constant k . Thus at (−fd , r0) we have

P2s
P2J
=

∫ Ta
0 |s1(tm)|

2dtm
P1J

Notice that the energy of s1(tm, r0) at r = r0 (i.e., s1(tm)) is
the power P1s , so the integration of s1(tm) can be computed by∫ Ta

0
|s1(tm)|2dtm = kaNa · P1s

where ka is a radar system constant. Therefore, the SJR value
of x2 at (−fd , r0) is

SJR2 = 10 log10

(
P2s
P2J

)
= 10 log10

(
kaNa · P1s

P1J

)
Thus we have SJR2 = SJR1 + 10 log10(kaNa) and the proof
is completed. �
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