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ABSTRACT Due to the high power consumption and hardware cost of radio frequency (RF) chains,
the conventional fully-digital beamforming will be impractical for large-scale antenna systems (LSAS).
To address this issue, hybrid beamforming has been proposed to reduce the number of RF chains. However,
the fully-connected structure assumed in most hybrid beamforming schemes is still cost-intensive. Recently,
the partially-connected structure employing notably fewer phase shifters has received considerable attention
in both academia and industry. But the design of partially-connected hybrid beamforming has not been fully
understood, especially in multi-user systems. In this article, we directly address the challenging non-convex
non-smooth partially-connected hybrid beamforming design problem with individual signal-to-interference-
plus-noise ratio (SINR) constraints and unit-modulus constraints in a multi-user massive multiple-input
multiple-output (MIMO) system. An iterative alternating algorithm based on a penalty method is proposed
to obtain a stationary point, which inevitably has relatively high computational complexity. Thus, two low-
complexity algorithms are then proposed by utilizing matrix approximation. Numerical results demonstrate
significant performance gains of the proposed algorithms over existing hybrid beamforming algorithms.
Moreover, the proposed low-complexity algorithms can achieve near-optimal performance with dramatically
reduced computational complexity.

INDEX TERMS Massive MIMO, hybrid beamforming, SINR constraints, penalty method, penalty dual
decomposition.

I. INTRODUCTION
Large-scale antenna systems (LSAS), also known as mas-
sive multiple-input multiple-output (MIMO), is considered
to be a key technology for 5G wireless communication [1].
The idea is to deploy an excessive number of antennas at
the base station (BS) and serve multiple users at the same
time and frequency band using multi-user precoding, also
known as beamforming techniques. Benefits of LSAS have
been widely studied to boost spectral and energy efficiencies,
reduce interference among users, simplify system design,
etc. Besides, LSAS can offer sufficient beamforming gain
to support millimeter-wave (mmWave) communications [2],
which is another key technology to address the challenge
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of future bandwidth shortage [3], [4]. However, due to the
unaffordable power consumption and hardware cost of RF
chains, the conventional fully-digital beamforming will be
impractical for LSAS [5]. One promising solution to address
these difficulties is hybrid (analog/digital) beamforming with
a reduced number of RF chains, which has recently received
considerable attention.

Hybrid beamforming schemes have been widely studied in
both single-user and multi-user massive MIMO systems. The
main differences in previous works are the designs of analog
beamformers subject to unit-modulus constraints imposed by
phase shifters. Specifically, to deal with such constraints,
the analog beamformers were designed based on orthog-
onal matching pursuit (OMP) [5]–[7], manifold optimiza-
tion (MO) [8], alternating direction of multipliers method
(ADMM) [9], and majorization-minimization (MM) [10] in
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single-user massive MIMO systems. Meanwhile, in multi-
user massive MIMO systems, the analog beamformers were
designed based on channel phase extraction [11], [12],
channel decomposition [13], by maximizing the equivalent
channel gain [14], [15], and by maximizing the analog beam-
forming gain [16], [17]. There were also some works dealing
with the unit-modulus constraints by doubling the number of
RF chains [18] or the number of phase shifters [19], yet may
be impractical in the large-scale array regime.

Note that the aforementioned hybrid beamforming
schemes are based on the fully-connected structure, in which
each RF chain is connected to all antenna elements. The
fully-connected structure is still cost-intensive in the large-
scale array regime. To further reduce the hardware cost and
implementation complexity, the partially-connected struc-
ture, in which the whole array is divided into sub-arrays with
each sub-array being connected to one of the RF chains, has
received considerable interest in both academia and indus-
try. For example, in single-user massive MIMO systems,
the works [8], [20], [21] exploited the partially-connected
structure and decomposed the optimization problem into a
series of subproblems. The authors of [9] used an ADMM
method in the design of analog beamformers. Furthermore,
thework [10] proposed an alternatingminimization algorithm
by using an MM-based analog beamformer and obtained
a stationary point of the considered problem. In multi-user
massive MIMO systems, the work [13] designed the analog
beamformers by element extraction of the analog beamformer
based on the fully-connected structure. Thework [16] decom-
posed the analog beamforming design problem into a series
of subproblems.

On the other hand, it is desirable to consider individual
signal-to-interference-plus-noise ratio (SINR) constraints in
multi-user systems to capture quality of service require-
ments for different users. However, there are fewer works
on the partially-connected hybrid beamforming design with
individual SINR constraints. The resulting problem is a
challenging non-convex optimization problem even without
the unit-modulus constraints. The work [22] simplified the
design of analog beamformers by removing the unit-modulus
constraints, which, however, is impractical in practical sys-
tems. Furthermore, the work [23] proposed a (floating-point)
genetic algorithm (GA) to directly handle the unit-modulus
constraints and obtain a feasible solution. But it is still a
heuristic algorithm and may not be applicable in the large-
scale array regime due to the high computational complexity.
To the best of our knowledge, the optimal partially-connected
hybrid beamforming design with individual SINR constraints
and unit-modulus constraints has not been fully understood.

In this article, we study partially-connected hybrid beam-
forming design to minimize the transmission power under
individual SINR constraints and unit-modulus constraints
in a multi-user massive MIMO system. The resulting non-
convex problem is extremely challenging due to not only
the coupling between the analog beamformer and the dig-
ital beamformer but also the unit-modulus constraints. The

proposed algorithm will directly solve this challenging prob-
lem (without any approximation). Our key contributions are
summarized below.

• We propose an iterative alternating algorithm based on
a penalty method to obtain a stationary point and show
that it is so far the most promising method in terms of
both transmission power and computational complexity.

• Based on matrix approximation, we then develop low-
complexity algorithms in two cases that can achieve
near-optimal performance with dramatically reduced
computational complexity.

• The proposed algorithms can be applied to the case
where the number of RF chains is smaller than the
number of users (which is equal to the number of total
data symbols), and hence are more general than some
existing solutions.

• This is the first work that directly solves the challeng-
ing non-convex non-smooth partially-connected hybrid
beamforming design problem in multi-user MIMO
systems.

Notations: This article uses lower case letters for scalars
and boldface lower (upper) case letters for vectors (matrices).
(x)m is the m-th element of x, (X)m,: is the m-th row of
X, and (X)m,n is the (m, n)-th element of X. (X)T , (X)H ,
(X)−1, and (X)† denote the transpose, Hermitian transpose,
inverse, andMoore-Penrose pseudoinverse ofX, respectively.
6 [x], |x|, x∗,<[x], and =[x] denote the phase, absolute value,
conjugate, real part, and imaginary part of x, respectively.
‖x‖2 is the Euclidean norm of x and ‖X‖F is the Frobe-
nius norm of X. λmax(X), rank(X), and Tr(X) denote the
largest eigenvalue, rank, and trace of X, respectively. diag(·)
and blkdiag(·) denote diagonal and block diagonal operators,
respectively. A complex Gaussian random variable x with
zero mean and variance σ 2 is denoted by x ∼ CN (0, σ 2).

II. SYSTEM MODEL
Consider a narrowband downlink unicast multi-user massive
MIMO system, which consists of one BS and K single-
antenna users. The BS is equipped with M (M > K )
antenna elements and N RF chains. Let K , {1, . . . ,K }
and N , {1, . . . ,N } denote the set of user indices and
the set of RF chain indices, respectively. Due to the unaf-
fordable power consumption and hardware cost, the con-
ventional fully-digital beamforming becomes impractical in
the large-scale array regime. Therefore, we consider hybrid
beamforming at the BS, which requires a reduced number of
RF chains (i.e., N < M ). Let W , [w1,w2, . . . ,wK ] ∈
CN×K and V ∈ CM×N denote the digital beamformer and
the analog beamformer, respectively, where wk ∈ CN×1

denotes the digital beamforming vector for user k . To fur-
ther reduce the implementation complexity and hardware
cost, we adopt the partially-connected structure as shown
in Fig. 1b, where each RF chain is connected to one dedicated
sub-array that consists of a set of antenna elements. Com-
pared with the fully-connected structure as shown in Fig. 1a,
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FIGURE 1. Comparison of two hybrid beamforming structures.

the partially-connected structure is more cost-effective as
it requires N times fewer phase shifters. The partially-
connected structure introducesN sub-arrays that are indepen-
dent of each other. Thus, the analog beamformer V has the
following structure:

V =


v1 0 · · · 0
0 v2 · · · 0

0 0
. . .

...

0 0 · · · vN

 , (1)

where vn ∈ CL×1 is the analog beamforming vector asso-
ciated with n-th sub-array and L(L = M/N ) is the number
of antenna elements constituting each sub-array. Let L ,
{1, . . . ,L} denote the set of antenna element indices in a
sub-array. The zero off-diagonal elements of V indicate that
each RF chain is only connected to its corresponding sub-
array. Note that all the nonzero elements of V are subject
to the unit-modulus constraints imposed by phase shifters,
i.e., |(vn)l | = 1, n ∈ N , l ∈ L.
In unicasting, the BS has an individual data symbol for

each user [24]. Thus, the number of total data symbols is
equal to the number of users. Let sk denote the data sym-
bol of user k and assume that sk ∼ CN (0, 1), k ∈ K
are independent of each other. We now illustrate the hybrid
beamforming process. 1) Through baseband digital signal
processing, each data symbol sk is first multiplied with its
corresponding digital beamforming vector wk and then all
the weighted digital data symbols are added together. 2) The
weighted digital signal

∑
k∈K wksk is converted to N analog

signals by RF chains and sent to each sub-array. 3) The
phase shifters are applied to implement analog beamforming
by adjusting each analog signal’s phase precisely. After the
hybrid beamforming process, we obtain the transmitted signal
at the BS denoted by

∑
k∈K Vwksk .

We consider a narrowband block fading channel model
and assume perfect channel state information at the BS.1 Let
G , [g1, g2, . . . , gK ]H ∈ CK×M denote the channel matrix
containing the channels of K users, where gHk is the channel
vector between the BS and user k . The received signal at user
k is given by

yk=gHk
∑
k∈K

Vwksk + nk=gHk Vwksk+
∑

j∈K,j6=k
gHk Vwjsj+nk , (2)

1It is worth mentioning that the conclusions on the proposed algorithms
hold for both correlated and uncorrelated channels.

where nk ∼ CN (0, σ 2
k ) denotes the additive Gaussian noise

at user k . The instantaneous SINR at user k is given by

SINRk =

∣∣gHk Vwk
∣∣2∑

j∈K,j6=k
∣∣gHk Vwj

∣∣2 + σ 2
k

. (3)

We require that SINRk is above a threshold ηk , which is the
prescribed minimum SINR requirement of user k , i.e.,

SINRk ≥ ηk . (4)

This can be viewed as the quality of service (QoS) constraint
for user k .

The goal in this article is to minimize the transmission
power under individual SINR constraints and unit-modulus
constraints, i.e., we aim to find the optimal analog beam-
former V and digital beamformerW by solving

POri : min
V,W

‖VW‖2F

s.t. SINRk ≥ ηk , k ∈ K, (5)

|(vn)l | = 1, n ∈ N , l ∈ L. (6)

Note that even if the unit-modulus constraints in (6) are
removed, the remaining hybrid beamforming design problem
is still non-convex and has shown to be NP-hard for a fixed
W [25]. Moreover, Problem POri is even more challeng-
ing due to the non-convex non-smooth element-wise unit-
modulus constraints in (6). Due to the zero off-diagonal
elements ofV as shown in (1), the coupling betweenV andW
for the partially-connected structure has changed compared
with the one for the fully-connected structure. Thus, most of
the previous works on optimal fully-connected beamforming
design, such as [19], cannot be extended to address Prob-
lemPOri. In [23], the authors proposedGA to obtain a feasible
point of Problem POri with high computational complexity.
In the following, we shall directly solve Problem POri and
seek low-complexity algorithms.

III. OPTIMAL HYBRID BEAMFORMING DESIGN
In this section, we consider the partially-connected hybrid
beamforming design to minimize the transmission power
under individual SINR constraints and unit-modulus con-
straints. We will develop an alternating algorithm based on a
penalty method to obtain a stationary point of Problem POri.

A. EQUIVALENT PROBLEM
First, the individual SINR constraints in (5) can be equiva-
lently transformed into [19]:∥∥∥∥[ (gHk VW)H

σk

]∥∥∥∥
2
≤

√
1+ηk
ηk

gHk Vwk , k ∈ K, (7)

with additional linear constraints:

<[gHk Vwk ] ≥ 0, =[gHk Vwk ] = 0, k ∈ K. (8)

This is because for any feasible point (V,W) of ProblemPOri,
gHk Vwk , k ∈ K can be restricted to the nonnegative real
domain by multiplying phase scalings ejφk , k ∈ K to their
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right, where φk = −6 [gHk Vwk ], k ∈ K. And it is evident
that the phase scalings ejφk , k ∈ K construct a new feasible
point, i.e.,

(
V,W·diag(ejφ1 , ejφ2 , . . . , ejφK )

)
, of ProblemPOri

without changing the feasibility and objective value. Thus,
we can rearrange the SINR constraints to obtain (7) and (8).

Then, by observing the structures ofV andW, we construct
U ∈ C(L+K )×N as

U ,


v1 v2 · · · vN

(w1)∗1 (w1)∗2 · · · (w1)∗N
(w2)∗1 (w2)∗2 · · · (w2)∗N
...

...
. . .

...

(wK )∗1 (wK )∗2 · · · (wK )∗N

 , [u1,u2, . . .uN ].

(9)

The entries ofV andW can be rewritten as vn = Sun, n ∈ N
and (wk )n = uHn eL+k , k ∈ K, n ∈ N , where S ,
[IL , 0L×K ] ∈ CL×(L+K ) and eL+k ∈ C(L+K )×1 is a vector
with the (L+k)-th element being 1 and the rest being 0. Thus,
we can rewrite Vwk as

Vwk =


(wk )1 · v1
(wk )2 · v2

...

(wk )N · vN

 =


Su1uH1 eL+k
Su2uH2 eL+k

...

SuNuHN eL+k

 = S̄8̄ēL+k ,

(10)

where S̄ , blkdiag(S,S, . . . ,S) ∈ CNL×N (L+K ), 8̄ ,
blkdiag(u1uH1 ,u2u

H
2 , . . . ,uNu

H
N ) ∈ CN (L+K )×N (L+K ), and

ēL+k , [eTL+k , e
T
L+k , . . . , e

T
L+k ]

T
∈ CN (L+K )×1. By intro-

ducing slack variablesXn = unuHn ∈ C(L+K )×(L+K ), n ∈ N ,
we have

Vwk = S̄X̄ēL+k , (11)

where X̄ , blkdiag(X1,X2, . . . ,XN ). Note that Xn can be
rewritten as Xn = unuHn if and only if Xn is a rank-one
positive semidefinite matrix, i.e.,

Xn � 0, n ∈ N . (12)

rank(Xn) = 1, n ∈ N . (13)

Thus, the objective function of Problem POri can be recast as

‖VW‖2F = ‖S̄X̄Ē‖
2
F , (14)

where Ē , [ēL+1, ēL+2, . . . , ēL+K ]. And (7) can be recast as∥∥∥∥[ (gHk S̄X̄Ē)
H

σk

]∥∥∥∥
2
≤

√
1+ηk
ηk

gHk S̄X̄ēL+k , k ∈ K, (15)

with additional linear constraints:

<[gHk S̄X̄ēL+k ] ≥ 0, =[gHk S̄X̄ēL+k ] = 0, k ∈ K. (16)

Thanks to the special properties of the rank-one posi-
tive semidefinite matrix, we can rewrite the unit-modulus
constraints in (6) in an equivalent form as shown in
Lemma 1.

Lemma 1: If Xn satisfies (12), (13), and

(Xn)l,l = 1, n ∈ N , l ∈ L, (17)

then it can be decomposed as Xn = unuHn , where un =
[vTn , (w1)∗n, (w2)∗n, . . . , (wK )∗n]

T and |(vn)l | = 1, l ∈ L.
Proof: It is clear that (12) and (13) define a rank-one

positive semidefinite matrix Xn, which can be decomposed
as Xn = unuHn . Besides, the l-th diagonal element of Xn
is |(un)l |2. Thus, (Xn)l,l = 1 means |(un)l |2 = 1. Since
|(un)l | ≥ 0, we have |(un)l | = 1, i.e., |(vn)l | = 1.

Thus, based on Lemma 1, we can directly handle the unit-
modulus constraints in (6).

Finally, we obtain the following equivalent formulation of
Problem POri:

PEq : min
{Xn}n∈N

‖S̄X̄Ē‖2F
s.t. (12), (13), (15), (16), (17).

Problem POri and Problem PEq are equivalent in the sense
that they share the same optimal value. Moreover, by follow-
ing [25, Proposition 3], it can be verified that if {Xn}n∈N
is a stationary point of Problem PEq, (V,W) is a station-
ary point of Problem POri. In the following, we focus on
solving Problem PEq instead of Problem POri. Note that
Problem PEq is convex except for the rank-one constraints
in (13), which are non-smooth and hard to tackle. Inspired
by [19], [26], we resort to a similar approach for efficiently
solving Problem PEq.

B. PENALTY METHOD
To address the challenge of the rank-one constraints in (13),
based on the non-smooth optimization approach in [26],
we rewrite Problem PEq in an equivalent form, which is
shown in Theorem 1 with a penalty weight µ.
Theorem 1: Problem PEq is equivalent to

PPen : min
{Xn}n∈N

‖S̄X̄Ē‖2F +
1
µ

∑
n∈N

(
Tr(Xn)− λmax(Xn)

)
s.t. (12), (15), (16), (17).

Moreover, there exists µ0 ∈ (0,+∞) such that whenever
µ < µ0,

∑
n∈N

(
Tr(Xn)− λmax(Xn)

)
= 0 and (V,W)

is a stationary point of Problem POri, where {Xn}n∈N is a
stationary point of Problem PPen.

Proof: The theorem can be proven by following [26,
Theorem 1]. We here omit the proof for brevity.

Theorem 1 shows that if the rank-one constraints are sat-
isfied, the penalty term does not contribute to the objective
function of Problem PPen. However, the objective function of
ProblemPPen is still non-smooth because λmax(·) is not differ-
entiable. In fact, Tr(Xn)− λmax(Xn) computes the sum of the
(L +K − 1) smallest eigenvalues of Xn. Thus, Problem PPen
can be recast as [27]

PAlt : min
{Xn}n∈N

min
{Pn}n∈N

‖S̄X̄Ē‖2F +
1
µ

∑
n∈N

Tr(PTnXn)

s.t. Pn ∈ 9L+K ,1, n ∈ N ,
(12), (15), (16), (17),
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where 9L+K ,1 , {P ∈ SL+K , 0 � P � I, Tr(P) =
L+K−1} denotes a convex hull of the rank-one projection
matrices. Problem PAlt involves two disjoint blocks of vari-
ables, i.e., {Xn}n∈N and {Pn}n∈N . By leveraging the two-
block GSmethod [28], we can solve ProblemPAlt through an
iterative alternating procedure, which leads to the following
two subproblems.

1) THE SUBPROBLEM w.r.t. {Xn}n∈N
For fixed {Pn}n∈N , the subproblem w.r.t. {Xn}n∈N is accord-
ingly given by

min
{Xn}n∈N

‖S̄X̄Ē‖2F +
1
µ

∑
n∈N

Tr(PTnXn)

s.t. (12), (15), (16), (17).

(18)

The subproblem in (18) is convex and can be efficiently
solved using standard interior-point toolboxes [29].

2) THE SUBPROBLEM w.r.t. {Pn}n∈N
{Pn}n∈N only appear in the second term of the objective func-
tion of Problem PAlt. Thus, the subproblem w.r.t. {Pn}n∈N is
accordingly given by

min
{Pn}n∈N

∑
n∈N

Tr(PTnXn)

s.t. Pn ∈ 9L+K ,1, n ∈ N .
(19)

The subproblem in (19) can be divided into N independent
problems, and each has a closed-form solution expressed as

P∗n = 1n1
H
n , (20)

where 1n ∈ C(L+K )×(L+K−1) is composed of the (L + K −
1) eigenvectors corresponding to the (L + K − 1) smallest
eigenvalues of Xn.
The details are summarized in Algorithm 1. Since the

objective value of Problem PAlt for a given µ is nonnegative
and is monotonically non-increasing with i, the iterative alter-
nating procedure (Step 3-Step 7 of Algorithm 1) converges
to a limit point. As the constraint sets of the subproblem
in (18) and the subproblem in (19) are disjoint, the iterative
alternating procedure is actually a 2Block GSmethod and the
obtained limit point is a stationary point of Problem PAlt [28,
Corollary 2].2 By the equivalence between Problem PAlt
and Problem PPen and by Theorem 1, we can conclude that
Algorithm 1 converges to a stationary point of Problem POri.

C. IMPLEMENT ISSUES
1) INITIALIZATION
Algorithm 1 involves an outer loop for finding a sufficiently
small µ and an inner loop for iterative alternating. Gen-
erally, the inner loop requires an initial feasible point as

2As shown in Step 8 of Algorithm 1, a sufficiently small µ (i.e., µ <

µ0) can be obtained from an outer loop by setting µ := cµ until∑
n∈N

(
Tr(Xn)− λmax(Xn)

)
= 0, where c ∈ (0, 1) is a weight control

parameter.

Algorithm 1 Optimal Hybrid Beamforming Design

Initialization: Choose proper µ and {P(0)
n }n∈N ;

1: while
∑

n∈N
(
Tr(Xn)− λmax(Xn)

)
> 0 do

2: i := 0
3: repeat
4: Given {P(i)

n }n∈N , update {X(i+1)
n }n∈N by solving the

subproblem in (18);
5: Given {X(i+1)

n }n∈N , update {P(i+1)
n }n∈N according

to (20);
6: i← i+ 1;
7: until convergence criterion is met;
8: µ := cµ;
9: end while
10: Construct V and W using {X(i)

n }n∈N .

initialization. Here, we provide an efficient method for find-
ing a good initial feasible point. First, we drop the rank-one
constraints in (13) to obtain a relaxed version of ProblemPEq,
i.e., a semidefinite relaxation (SDR) problem as follows.

min
{Xn}n∈N

‖S̄X̄Ē‖2F

s.t. (12), (15), (16), (17).
(21)

Consequently, the problem in (21) reduces into a convex
problem and can be solved using standard interior-point tool-
boxes [29]. Let {X∗n}n∈N denote the optimal solution of the
problem in (21). Then, a practical initial point {P(0)

n }n∈N can
be obtained by solving

{P(0)
n }n∈N = arg min

{Pn}n∈N

∑
n∈N

Tr(PTnX
∗
n)

s.t. Pn ∈ 9L+K ,1, n ∈ N ,

which has a closed-form solution as shown in (20).

2) COMPLEXITY
In each iteration of Algorithm 1, the subproblem in (19) is
solved by computing a closed-form solution, and the sub-
problem in (18) is solved using an interior-point method
that requires O

(√
N (L + K )

)
iterations with each iteration

requiring at most O
(
N 3(L + K )6 + KN (L + K )2

)
arith-

metic operations. With large system parameters (e.g., K , N ,
and L), the computational complexity of Algorithm 1 may
be relatively high. Nevertheless, it should be noted that the
computational complexity of Algorithm 1 is still much lower
than that of existing GA. Besides, Algorithm 1 can provide a
theoretically guaranteed solution for Problem POri. Numeri-
cal results also show remarkable performance improvement
over existing GA in terms of both computational complexity
and transmission power. Hence, Algorithm 1 can serve as a
reference providing benchmark performance.

IV. LOW-COMPLEXITY HYBRID BEAMFORMING DESIGN
Although Algorithm 1 can jointly optimize the analog beam-
former and the digital beamformer and provide a stationary
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point of the original problem, its computational complex-
ity may be relatively high. Thus, it is necessary to develop
algorithms with lower computational complexity and accept-
able performance loss. In this section, we will propose low-
complexity hybrid beamforming designs based on matrix
approximation. The corresponding matrix approximation
problem can be formulated as follows:3

PMAP : min
V,W

‖VW−WFD‖
2
F

s.t. (5), (6),

whereWFD ∈ CM×K is the optimal fully-digital beamformer
and can be obtained using an efficient method based on a
semi-closed form solution [25]. Note that the transmission
power achieved by hybrid beamforming is lower bounded by
the one achieved by the fully-digital beamforming. Hence,
we can obtain good performance if the hybrid beamformers
are carefully designed to be sufficiently close to the optimal
fully-digital beamformer.

However, dealing with the non-convex individual SINR
constraints in (5) will inevitably incur relatively high com-
putational complexity. To derive low-complexity solutions,
we approximate the individual SINR constraints based on a
ZF method [30]. Specifically, ZF processing is performed to
cancel inter-user interference, i.e., |gHk Vwj| = 0, for k 6= j.
Therefore, we can approximately solve Problem PMAP by
addressing the following problem.

PMAP-ZF : min
V,W
‖VW−WFD‖

2
F

s.t. GVW = 4,
(6),

(22)

where 4 , diag(
√
η1σ

2
1 ,

√
η2σ

2
2 , . . . ,

√
ηKσ

2
K ) ∈ CK×K

collects the prescribed SINR requirements of K users.
In the following, we focus on solving Problem PMAP-ZF,

which has a simpler form than Problem PMAP. According to
the concept of ZF processing, it requires a restriction on the
number of users, i.e., K ≤ N , to completely cancel inter-user
interference. Hence, in the case of K ≤ N , any (V,W) sat-
isfies the constraint in (22) also satisfies the individual SINR
constraints in (5). However, in the case of K > N , we cannot
cancel all the inter-user interference, i.e., the constraint in (22)
cannot be satisfied by any W. This motivates us to first
violate the constraint in (22) by performing some projection
and transform Problem PMAP-ZF into an analog beamformer
design problem. The digital beamformer is then designed to
directly satisfy the individual SINR constraints in (5). Thus,
we shall consider two cases, i.e., K ≤ N and K > N .

3Hybrid beamforming designs based on matrix approximation (without
the individual SINR constraints in (5)) have been widely investigated in
single-user massive MIMO systems [5], [6], [8], [10] and shown good
performance. In this article, the objection function ‖VW −WFD‖

2
F cannot

be driven to zero due to the special structure of V. A feasible solution
satisfying (5) cannot be obtained using existing methods and we impose (5)
in ProblemPMAP to sustain feasibility in the design of low-complexity algo-
rithms. Consequently, due to the non-convex individual SINR constraints
in (5), Problem PMAP is even more challenging and cannot be addressed
by existing methods.

A. CASE OF K ≤ N
The main obstacles in ProblemPMAP-ZF are still the coupling
between the matrix variables V and W, and the non-convex
non-smooth unit-modulus constraints in (6). To address these
issues and derive a low-complexity algorithm, we adopt a
penalty dual decomposition (PDD)methodwhich is a double-
loop general framework for solving non-convex non-smooth
optimization problems involving non-convex coupling con-
straints [31]. The main idea of the PDDmethod is to penalize
and dualize the coupling constraints into the objective func-
tion in the outer loop and use the block successive upper-
bound minimization (BSUM) method to iteratively solve the
resulting augmented Lagrangian problem in the inner loop.
Besides, due to the special structure of the analog beamformer
V, the unit-modulus constraints in (6) can be well exploited
by the BSUM method, which facilitates the design of low-
complexity algorithms.

Specifically, we first introduce an auxiliary variable Y
such that Y = VW and a corresponding dual variable Z.
With appropriate penalty, we have the following augmented
Lagrangian problem.

PAu : min
V,W,Y

‖VW−WFD‖
2
F +

1
2ρ
‖Y− VW+ ρZ‖2F

s.t. GY = 4,
(6),

(23)

where ρ is a penalty weight. In the outer loop, the dual
variable Z and the penalty weight ρ are updated according to
certain constraint violation condition, whichwill be described
later. Then, the inner loop is devoted to solving the non-
convex Problem PAu for fixed Z and ρ. As we have disjoint
constraints on three different blocks of variables (i.e., V, W,
and Y), it is desirable to adopt the BSUM method to solve
Problem PAu.
Note that the main difficulty of the PDD method lies in

the inner loop for efficiently solving augmented Lagrangian
problems. Therefore, our main efforts are on developing a
low-complexity algorithm based on BSUM/block coordinate
descent (BCD) for Problem PAu with unit-modulus con-
straints.4 The principle of BCD is to optimize the objective
function with respect to one block of variables while fixing
the other blocks in each iteration. This leads to the following
three subproblems.

1) THE SUBPROBLEM w.r.t. V
For fixed W and Y. The subproblem with respect to V is
accordingly given by

PV : min
V
‖VW−WFD‖

2
F +

1
2ρ
‖Y− VW+ ρZ‖2F

s.t. (6).

From the special structure of the analog beamformer V,
as shown in (1), we observe that the m-th (m = (n − 1)L +
l, n ∈ N , l ∈ L) row of VW is the product of (vn)l and

4In this article, the objective function itself is chosen as the upper bound of
the BSUMmethod. Thus, the BSUM reduces to the special case of BCD [32].
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the n-th row of W. Thus, Problem PV can be divided into M
independent subproblems. Specifically, the m-th subproblem
is given by

min
(vn)l
‖(vn)l(W)n,: − (WFD)m,:‖22

+
1
2ρ
‖(vn)l(W)n,: − (A)m,:‖22, s.t. |(vn)l | = 1,

where A , Y + ρZ. With some appropriate rearrange,
the above problem can be reformulated as

min
(vn)l

−2<
[(
(WFD)m,: +

1
2ρ

(A)m,:
)
(W)Hn,:(vn)

∗
l

]
s.t. |(vn)l | = 1.

Note that these M subproblems can be solved in parallel.
For the m-th subproblem, there exists a closed-form solution
expressed as

6 [(vn)l] = 6
[(
(WFD)m,: +

1
2ρ

(A)m,:
)
(W)Hn,:

]
. (24)

2) THE SUBPROBLEM w.r.t. W
The variable W only appears in the objective function of
Problem PAu. Thus, the subproblem with respect to W is
accordingly given by

PW : min
W
‖VW−WFD‖

2
F +

1
2ρ ‖Y− VW+ ρZ‖2F

It can be verified that Problem PW is an unconstrained con-
vex problem for fixed V and Y, which can be equivalently
reformulated as

min
W

α ·Tr(WHVHVW)−2<
[
Tr
(
WHVH(WFD +

1
2ρ

A)
)]

where α , (1+ 1
2ρ ). Since V

HV = L · I is positive definite,
we can express the optimalW as

W =
1
αL

VH (WFD +
1
2ρ

A). (25)

3) THE SUBPROBLEM w.r.t. Y
The auxiliary variable Y only appears in the second term of
the objective function of Problem PAu. Thus, for fixed V and
W, the subproblem with respect to Y is accordingly given by

PY : min
Y
‖Y− VW+ ρZ‖2F s.t. (23).

Since 4 is a diagonal matrix with full rank, the constraint
in (23) can be rewritten as G̃Y = I, where G̃ , 4−1G. This
constraint is related to the concept of the generalized inverse
in linear algebra. In fact, Y denotes the generalized inverse
of G̃. According to [30], the generalized inverse is not unique
and any generalized inverse can be expressed as

Y = G̃†
+ D⊥F, (26)

where D⊥ , I − G̃†G̃ is the orthogonal projection onto
the null space of G̃ and F is an arbitrary matrix. By substi-
tuting (26) into the objective function of Problem PY and

removing constant terms, Problem PY can be reformulated
as

min
F

Tr(FHDH
⊥
D⊥F)− 2<

[
Tr(FH (DH

⊥
B− DH

⊥
G̃†))

]
where B , (VW − ρZ). The above unconstrained problem
has a closed-form solution expressed as

F = (DH
⊥
D⊥)−1(DH

⊥
B− DH

⊥
G̃†). (27)

The details are summarized in Algorithm 2, which consists
of an inner loop and an outer loop. In the inner loop, we solve
Problem PAu based on BCD. For given ρ and Z, since the
objective value of Problem PAu is nonnegative and is mono-
tonically non-increasing with i, the BCD iteration converges
to a limit point. As the three constraints sets of Problem PV,
Problem PW, and Problem PY are disjoint, the limit point
obtained by the BCD iteration in the inner loop is a station-
ary point of Problem PAu [32]. In the outer loop, the dual
variable Z and the penalty weight ρ for the augmented
Lagrangian Problem PAu are updated according to the con-
straint violation condition related to τ (see Step 12-Step 16 of
Algorithm 2, where c ∈ (0, 1) is a weight control parameter).
For a sufficiently small ρ, the penalty term ‖Y−VW+ρZ‖2F
will be driven to zero, and it no longer contributes to the
objective function. The outer loop is terminated when the
penalized constraintY = VW is achieved [31] and a practical
choice of the termination condition is ‖Y − VW‖2F ≤ ε,
where ε is a predefined small constant, e.g., ε = 10−6.
Note that the inner loop and outer loop of Algorithm 2
set up a standard PDD framework [31]. Thus, we can con-
clude that Algorithm 2 converges to a stationary point of
Problem PMAP-ZF.

B. CASE OF K > N
In this case, due to the limited matrix dimension of the digital
beamformer W, the constraint in (22) cannot be satisfied by
anyW. Thus, the feasibility of the penalized constraints Y =
VW cannot be achieved by Algorithm 2. To derive a low-
complexity algorithm, we first transform Problem PMAP-ZF
into an analog beamformer design problem by performing
some projection. Specifically, we perform a projection onto
4 to obtainW, as5

W = (GV)†4. (28)

Substituting (28) into the objective function of Prob-
lem PMAP-ZF, we have the following analog beamformer
design problem.

min
V
‖V(GV)†4−WFD‖

2
F

s.t. (6).
(29)

Due to the unit-modulus constraints in (6), the problem in (29)
is still difficult to deal with. In the following, we develop an

5The projection in (28) leads to a temporary violation of the individual
SINR constraints in (5), which will be dealt with later in the design of the
digital beamformer.
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Algorithm 2 Low-Complexity Hybrid Beamforming Design
for the Case of K ≤ N
Initialization: Choose proper ρ, τ , c, Y, and Z;
1: Obtain WFD using the method in [25];
2: while ‖Y− VW‖2F ≤ ε do
3: Initialize proper W(0). Y(0)

= Y;
4: i := 0;
5: repeat
6: Given W(i), Y(i), ρ, and Z, update V(i+1) according

to (24);
7: Given V(i+1), Y(i), ρ, and Z, update W(i+1) accord-

ing to (25);
8: Given V(i+1), W(i+1), ρ, and Z, update Y(i+1)

according to (26) and (27);
9: i← i+ 1;
10: until convergence criterion is met;
11: Y = Y(i);
12: if ‖Y(i)

− V(i)W(i)
+ ρZ‖∞ ≤ τ then

13: Z = Z+ 1
ρ
(Y(i)
− V(i)W(i));

14: else
15: ρ := cρ;
16: end if
17: τ := 0.95‖Y(i)

− V(i)W(i)
‖∞;

18: end while

iterative procedure to address this problem. The main idea
is to successively solve a sequence of approximations of the
problem in (29). Specifically, the approximate problem at
iteration i is given by

V(i+1)
= argmin

V
‖V(GV(i))†4−WFD‖

2
F

s.t. (6).

Thanks to the special structure of the analog beamformer V
as described in Section IV-A1, this problem can be divided
into M independent subproblems, and the m-th (m = (n −
1)L + l, n ∈ N , l ∈ L) subproblem can be reformulated as

(v(i+1)n )l = argmin
(vn)l

−2<
[
(WFD)m,:(C(i))Hn,:(vn)

∗
l
]

s.t. |(vn)l | = 1,

where C(i) , (GV(i))†4. TheseM independent subproblems
can be solved in parallel and each has a closed-form solution
expressed as

6
[
(v(i+1)n )l

]
= 6

[
(WFD)m,:(C(i))Hn,:

]
. (30)

After finding an analog beamformer of the problem in (29),
the digital beamformer is designed to satisfy the individual
SINR constraints in (5). By treating the product of G and
the obtained V(i) as an equivalent channel, we obtain the
following digital beamformer design problem.

min
W
‖V(i)W‖2F

s.t.

∣∣gHk V(i)wk
∣∣2∑

j∈K,j 6=k
∣∣gHk V(i)wj

∣∣2 + σ 2
k

≥ ηk , k ∈ K.
(31)

Algorithm 3 Low-Complexity Hybrid Beamforming Design
for the Case of K > N
Initialization: Choose proper V(0);
1: Obtain WFD using the method in [25];
2: i := 0
3: repeat
4: Given V(i), update V(i+1) according to (30);
5: i← i+ 1;
6: until convergence criterion is met;
7: Given GV(i), obtain the optimal W of problem in (31)

using the method in [25].

The problem in (31) is essentially a low-dimensional fully-
digital beamforming design problem (with N RF chains).
Its optimal solution can be obtained using an efficient
method based on a semi-closed form solution [25]. Therefore,
we summarize our hybrid beamforming design for the case of
K > N as Algorithm 3.6

Finally, we remark on the computational complexity of
the proposed algorithms. Algorithm 2 and Algorithm 3 are
both iterative algorithms. The optimization problem in each
iteration can be solved by computing a closed-form solution.
Therefore, compared with Algorithm 1, the computational
complexity of Algorithm 2 and Algorithm 3 is significantly
reduced. This motivates us to generate multiple initial points
(i.e., initial Y and Z for Algorithm 2 and initial V(0) for
Algorithm 3) to run Algorithm 2 and Algorithm 3 multi-
ple times and choose the smallest transmission power for
improving performance. Meanwhile, as Algorithm 2 and
Algorithm 3 can update the hybrid beamformer efficiently,
the considered objective functions can serve as loss functions
in a Neural Network framework. This will offer valuable
insights for the implementation of hybrid beamforming based
on Neural Network.

V. NUMERICAL RESULTS
In this section, we present the numerical results of the pro-
posed algorithms in the multi-user MIMO systems. We con-
sider two baseline schemes, GA in [23] and the optimal
fully-digital beamformerWFD (optimal FD) in [25]. For GA,
the population size and the evolution generation are set to
100 and 20, respectively. In each generation, the thresholds
for arithmetic crossover and non-uniform mutation are set to
0.5 and 0.1, respectively. The maximum number of attempts
in the crossover is 5. For the optimal FD, the number of
RF chains N equals to M . In the simulations, we generate
i.i.d. Gaussian channels with zero mean and unit variance and
show the performance averaged over 50 channel realizations
for each scheme. We choose σ 2

k = 1 and ηk = η, k ∈
K. Based on [31], we choose a practical weight control
parameter by setting c = 0.9. For Algorithm 1, the initial

6It is worth noting that although the convergence issue remains open,
numerical results still show good convergence performance for Algorithm 3.
As its computational complexity is greatly reduced, Algorithm 3 can serve
as an excellent candidate for the implementation of hybrid beamforming.
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FIGURE 2. Ten examples of the convergence behavior of Algorithm 1
when N = 8, L = 6, K = 8, and η = 2 (dB).

FIGURE 3. Ten examples of the convergence behavior of Algorithm 2
when N = 8, L = 6, K = 8, and η = 2 (dB).

FIGURE 4. Ten examples of the convergence behavior of Algorithm 3
when N = 8, L = 6, K = 10, and η = 2 (dB).

parameterµ is set to 1. For Algorithm 2, the initial parameters
τ and ρ are set to 1000 and 1, respectively. In evaluating the
proposed algorithms, we use the same convergence criterion:
|ν(i) − ν(i−1)|/ν(i−1) ≤ 10−3 or the number of iterations
exceeds 50, where ν(i) is the objective value at iteration i.
Besides, we show the performance in terms of normalized
transmission power which is unit-less, while all the individual
SINR constraints in (5) are satisfied.

A. CONVERGENCE BEHAVIOR OF THE
PROPOSED ALGORITHMS
The convergence behavior of the proposed algorithms is
examined in Fig. 2, Fig. 3, and Fig. 4. In each figure, 10 exam-
ples of the convergence behavior of the corresponding algo-
rithm are presented. Each curve corresponds to an example
of a randomly generated multi-user channel realization. Note

that Algorithm 1 and Algorithm 2 both involve an outer loop
for finding a penalty weight or a dual variable and an inner
loop for iteratively solving a corresponding optimization
problem. Thus, we here focus on the convergence behavior
of the inner loop in the first outer loop iteration with initial
parameters. Fig. 2 shows that Algorithm 1 converges very fast
(within almost 3 iterations) with an initial µ. This demon-
strates the efficiency and practicability of the initialization
method as described in Section III-C1. Fig. 3 and Fig. 4
show that Algorithm 2 and Algorithm 3 typically converge
within 10 iterations for all observed channel realizations.
The curves in Fig. 3 converge to very close values, showing
that the convergent value of the inner loop of Algorithm 2
is not sensitive to random channel realizations. Moreover,
it is observed from Fig. 4 that even if there are small fluc-
tuations on some curves, these curves will always converge,
which again verifies the excellent convergence performance
of Algorithm 3.

B. PERFORMANCE EVALUATION
In this subsection, we show the performance evaluation of
the proposed algorithms and compare them with the existing
GA in [23] and the optimal FD in [25]. Note that Algo-
rithm 1 directly solves Problem POri under individual SINR
constraints and unit-modulus constraints, which will improve
the power consumption compared with existing methods.
Therefore, Algorithm 1 can serve as a benchmark of the
performance in terms of transmission power.

Fig. 5 illustrates the average transmission power for differ-
ent K when N = 8 and η = 2 (dB). We can observe that
when L = 6, Algorithm 1 outperforms the other algorithms
in both the case of K ≤ N and the case of K > N ,
indicating that Algorithm 1 can provide benchmark perfor-
mance. Furthermore, in the case of K ≤ N , Algorithm 2
can achieve transmission power that is sufficiently close to
that of Algorithm 1. In the case of K > N , there is a
small performance gap betweenAlgorithm 3 andAlgorithm 1
increasing with K . This is because in this case, the inter-
user interference cannot be completely canceled, and thus
the projection in (28) entails some non-negligible perfor-
mance loss. Nevertheless, the transmission power achieved
by Algorithm 3 is still much lower than the one achieved by
GA, and the performance gap between Algorithm 3 and GA
increases rapidly with K . When L = 16, Algorithm 2 (when
K ≤ N ) and Algorithm 3 (when K = 9) can achieve lower
transmission power than Algorithm 1.Meanwhile, the perfor-
mance gap between Algorithm 3 and Algorithm 1 is reduced,
especially when K is small. Thus, Fig. 5 demonstrates the
huge performance improvement of Algorithm 1 over GA and
shows the effectiveness of Algorithm 2 and Algorithm 3,
which have much lower computational complexity.

Fig. 6 shows the average simulation time (reflecting com-
putational complexity) of the proposed algorithms and GA
versus K . It is observed that compared with Algorithm 1
and GA, the computational complexity of Algorithm 2
and Algorithm 3 is dramatically reduced. Besides, the
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FIGURE 5. Average transmission power versus K when N = 8 and
η = 2 (dB).

FIGURE 6. Average simulation time versus K when N = 8 and η = 2 (dB).

computational complexity of Algorithm 2 and Algorithm 3
remains almost unchanged over the investigated range of K ,
while the computational complexity of Algorithm 1 and GA
increases nearly linearly with K . It is also found in Fig. 6
that although the computational complexity of Algorithm 1 is
relatively high and grows faster when L = 16 in the case of
K > N , it is still much lower than that of GA. Fig. 5 and Fig. 6
indicate that Algorithm 1 outperforms existing GA in terms
of both transmission power and computational complexity.
As Algorithm 2 and Algorithm 3 can achieve most of the
performance of Algorithm 1 with dramatically reduced com-
putational complexity, they can serve as excellent candidates
for the implementation of hybrid beamforming in practical
systems.

Next, we investigate the impact of the other system param-
eters (i.e., L and η) on the performance of the proposed
algorithms in both the case of K ≤ N and the case of
K > N . Fig. 7 compares the average transmission power
versus L. It is seen that while the performance gap between
GA and Algorithm 1 increases with L, the performance gap
between Algorithm 2 and Algorithm 1 and the performance
gap between Algorithm 3 and Algorithm 1 both decrease
with L. The performance gap between the proposed algo-
rithms and the optimal FD decreases with L, while the

FIGURE 7. Average transmission power versus L when η = 2 (dB).

FIGURE 8. Average simulation time versus L when η = 2 (dB).

performance gap between GA and the optimal FD increases
with L. Besides, in Fig. 7a, there is an intersection point
of the curves of Algorithm 1 and Algorithm 2, showing
that Algorithm 2 can provide better performance with lower
computational complexity when L is relatively large. This can
be explained by the fact that increasing the number of antenna
elements in each sub-array can provide higher channel gain
and thus improve the performance of ZF processing adopted
in deriving Algorithm 2 and Algorithm 3. Fig. 8 shows the
average simulation time versus L of the proposed algorithms,
GA, and the optimal FD. In both the case of K ≤ N and
the case of K > N , Algorithm 2 and Algorithm 3 have
much lower computational complexity than GA. Fig. 7 and
Fig. 8 again imply the excellent effectiveness of Algorithm 2
and Algorithm 3 while enjoying the benefit of much lower
computational complexity especially when the number of
antenna elements in each sub-array is comparable with the
number of RF chains.

Fig. 9 illustrates the average transmission power achieved
by the proposed algorithms and GA when different pre-
scribed SINR requirements are set. When L = 6, we can
observe that Algorithm 1 outperforms GA, and their per-
formance gap increases rapidly with η. Meanwhile, Fig. 9
indicates that increasing L will improve the performance of
the low-complexity Algorithm 2 and Algorithm 3. More-
over, in Fig. 9a, the curve of Algorithm 2 nearly coin-
cides with that of Algorithm 1, which indicates that in the
case of K ≤ N , increasing the SINR requirement η will
not incur more performance loss for Algorithm 2. When

215296 VOLUME 8, 2020



G. Zang et al.: Partially-Connected Hybrid Beamforming for Multi-User Massive MIMO Systems

FIGURE 9. Average transmission power versus η.

L = 16, Algorithm 2 outperforms Algorithm 1 and the
performance gap between Algorithm 3 and Algorithm 1 is
reduced. In Fig. 9b, Algorithm 3 achieves similar transmis-
sion power compared with Algorithm 1 when the prescribed
SINR requirements are relatively small.

As can be observed in Fig. 5, Fig. 7, and Fig. 9, when
L is relatively small, there is a tradeoff between trans-
mission power and computational complexity. Algorithm 1
achieves lower transmission power while Algorithm 2 and
Algorithm 3 achieve lower computational complexity. More-
over, by increasing L (at the sacrifice of more hardware
cost and implementation complexity), the performance loss
of Algorithm 2 and Algorithm 3 can be reduced and the
performance of Algorithm 2 and Algorithm 3 can even out-
performAlgorithm 1 with relatively large L. This can provide
guidance for implementing hybrid beamforming in practical
systems.

VI. CONCLUSION
In this article, we considered the partially-connected hybrid
beamforming design in a downlink unicast multi-user mas-
siveMIMO system tominimize the transmission power under
individual SINR constraints and unit-modulus constraints.
By applying the penalty method, we proposed an iterative
alternating algorithm to solve the challenging non-convex
problem. By utilizing matrix approximation, we also pro-
posed low-complexity algorithms in two cases depending on
the number of users and the number of RF chains. Numerical
results demonstrated significant performance gains of the
proposed algorithms over the existing GA. The computa-
tional complexity of the proposed low-complexity algorithms
is significantly reduced while incurring some almost neg-
ligible performance loss. In the future, we will extend the
proposed algorithms to MIMO-orthogonal frequency divi-
sion multiplexing (OFDM) systems, as well as to systems
with multiple-antenna users. Furthermore, it will be interest-
ing to combine the low-complexity algorithms with Neural
Network frameworks to develop more effective algorithms.
Specifically, low-complexity algorithms can be employed
to generate a large-scale training set. Also, the theoretical
convergence analysis of the low-complexity algorithm for the
casewhere the number of users is larger than that of RF chains
will need further investigation.
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