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ABSTRACT Electroencephalography (EEG) is immediate and sensitive to cortical impairment resulting
from ischemic stroke and is considered as the potential predictive tool of stroke onset, and post-stroke clinical
management. Brainwave monitoring outside the heavily equipped clinical environment demands a low-cost,
portable, and wearable EEG system. This study aims to assess the feasibility of using an ambulatory EEG
system to classify the stroke patient group with neurological changes due to ischemic stroke and the control
healthy adult group. HealthSOS, a real-time health monitoring system for stroke prognostics, is proposed
here, which consists of an eye-mask embedded portable EEG device, data analytics, and medical ontology
based health advisor service. This systemwas investigated with 37 stroke patients (mean age 71.6 years, 61%
male) admitted in the emergency unit of a hospital and 36 healthy elderly volunteers (mean age 76 years, 28%
male). EEGwas recorded in resting-state using the portable device with frontal cortical electrodes (Fp1, Fp2)
embedded in an eye-mask within 120 h after the onset of symptoms of ischemic stroke (confirmed clinically).
The EEG data acquisition of the left and right brain hemispheres was done for at least 15minutes in the awake
resting state while subjects laid down on the bed. The statistical result shows that the revised brain symmetry
index (rsBSI), the delta-alpha ratio, and the delta-theta ratio of the stroke group differ significantly from those
of the healthy control group. In the machine learning analysis, the support vector machine (SVM) model
shows the highest accuracy (Overall accuracy: 92%) and the highest Gini coefficient (95%) in classification
performance. This study will be useful for early stroke prognostics and the management of post-stroke
treatment.

INDEX TERMS Sensor systems and applications, brain–computer interfaces, neuroscience, biomedical
monitoring.

I. INTRODUCTION
Stroke is one of the leading neurological disorders in adult-
hood and it is the second leading cause of death and disability
in the world among the elderly population [1]. Early detection
of stroke onset is life-saving [2]. Stroke identification and
detection of stroke severity affect mortality rate, rehabilita-
tion, medical cost, and quality of post-stroke life. In many
cases, stroke symptoms are not visible at the early level of
ischemic events. So, the decision of referral to a clinical diag-
nostic center and detail neural and pathological assessment
may be delayed [3]. Late identification of ischemic stroke
may lead to cognitive impairment and the economic burden
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of stroke care with a mental impairment is three times greater
than those without cognitive damage [4].

Tracking the behavior of the neuro-electrical system is
key for prognostics of stroke. As ischemic events, such as
hemorrhage stroke onset happen due to rupture of blood cells,
hampers the supply of oxygen to the brain tissue of the lesion
area, which leads the brain cells to death. This damage to
brain tissue affects the electrical activity of the corresponding
local hemisphere and unstabilize the overall central nervous
system. Ischemic events weaken the neuro-electrical activi-
ties, eventually, suppresses high-frequency waves (gamma or
beta waves), and strengthen the low-frequency neural signal
bands (alpha, theta, delta wave). A high amplitude delta wave
(0.5-4 Hz) is typical in ischemic stroke [5]. Stroke also
affects the symmetricity of brain waves across the left and
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right cortex. Changes in symmetric behavior of the spec-
tral power of quantitative electroencephalography (EEG)
between the two cerebral hemispheres can be described
by the Revised Brain Symmetry Index (rsBSI) [6]. Studies
showed that rsBSI is an important marker early prediction of
stroke [3], [7].

For a detailed assessment of stroke, computed tomogra-
phy (CT) and magnetic resonance imaging (MRI) are used
to understand brain anatomy and to the diagnostic extent
of severity of stroke of both kinds (thrombosis or hemor-
rhage) [8]. CT and MRI are not practical for continuous
monitoring of a high-risk patient with a history of acute stroke
or transient ischemic attack (Mini stroke) [9]. For the prog-
nostics of stroke, changes in EEG can be useful in both daily
life and clinical setup [10]. The real-time tracking of neural
activity is the most practical way of predicting stroke onset.
Studies have shown that EEG pattern changes immediately
with the onset of an ischemic attack.

Numerous EEG studies have been reported where quan-
titative EEG measures were studied in clinical applications
to evaluate the association between the EEG and the neu-
rologic and functional outcome from ischemic stroke [7],
[9], [11]–[14]. In acute stroke patients, quantitative EEG
observations improve the prediction of functional outcomes
in the acute stage of cerebral ischemia [15]. Delta activity
and depression of alpha or beta activity are observed as a pre-
dictive marker of poor functional outcomes in the ischemic
hemisphere, whereas the absence of these phenomena is
observed as the case of good outcomes. In another study,
it was reported that global delta power often changed over
time, depending on the severity of the ischemic event [9].
In most of the earlier studies, EEG data acquisition is done
with a traditional standard 10-20 EEG system with multiple
electrodes. Highly trained medical staff and clinical setup
are also necessary for those EEG studies. Although tradi-
tional EEG offers a noise-free brain signal, long experimen-
tal preparation time also delays the prognostics of ischemic
stroke.

In summary, an ambulatory EEG system is necessary for
continuous EEG monitoring in daily life setup. EEG elec-
trodes were embedded in an eye-mask and a control module
alongside would be an effective technique for portable neural
activity tracking. As light affects the circadian rhythms and
an eye-mask maintains a balance of light and darkness by
obstructing lights, an eye-mask is generally used as a sleep
wearable device for resting and sleep quality improvement.
In a pilot study, Muse EEG wearables were used for the
identification of stroke [3]. The rsBSI was only investigated
as the marker of prognostics of stroke, other features were not
explored. Neural activity monitoring using a portable EEG
system was not extensively studied yet for prognostics of
stroke.

SOS is recognized as a distress signal that indicates a crisis
or the need for action. HealthSOS is proposed as a health
monitoring system, which tracks the physiological signal of
the user and provides the health status as feedback and an

alert to the emergency rescue services if stroke-predictive
physiological features exceed the threshold value. HealthSOS
consists of an eye-mask based ambulatory EEG, capable of
emergency alert as feedback if the stroke prediction occurs.

We hypothesized that changes in the electrical activity of
the central nervous systemwould be instantaneously detected
by the portable EEG device. The signal processing and the
mathematical analysis based feature extraction, the statisti-
cal analysis based feature selection, and the widely applied
machine learning techniques would be a reliable method for
the early prediction of stroke.

This study aims to develop the HealthSOS, an ambula-
tory EEG system for ischemic event prediction in daily life
setup. This system was developed based on wearable EEG
suitable for daily life setting, continuous data messaging to
an ActiveMQ cloud server, the time-domain, and frequency-
domain features extractor, Pearson correlation method for
feature selection, rule-based feature extender, support vector
machine (SVM) for the prediction of the stroke onset. The
EEG data acquisition of the left and right brain hemispheres
was done for at least 15 minutes in the awake resting state
while subjects laid down on the bed attaching EEG electrodes
embedded in an eye-mask on the frontal cortex. Our objec-
tive is to explore EEG indices, including rsBSI, the delta-
alpha ratio, the delta-theta ratio and to evaluate the predictive
features to differentiate the ischemic stroke group and the
healthy control group for prognostics of ischemic stroke.

The rest of this paper is structured into six sections.
Section II describes the proposed health monitoring system,
followed by the experimental protocol, and the methodology
used to validate the prognostic capabilities of the system.
Afterward, the results are presented in Section IV, followed
by the discussion. Finally, the conclusions are presented in
Section VI.

II. PROPOSED HEALTH MONITORING SYSTEM
HealthSOS, a novel health monitoring system consists of a
wearable EEG device, the application programming interface
(API), the networking module, the signal processing module,
the machine learning module, knowledgebase, the medical
ontology, and the recommendation system. Details about the
EEG data acquisition system, system architecture, and the
health advisor system are presented in the next subsections.

A. SENSOR AND HARDWARE DETAILS
An ambulatory EEG device, designed to acquire EEG data in
the resting state, consists of an eye-mask embedded electrode
system and an EEG control module. As shown in Figure 1,
an eye-mask has been designed with fabricated EEG and
EOG (electrooculogram) electrodes. In the eye-mask, two dry
gold-plated convex EEG electrodes are positioned in Frontal
Fp1, Fp2 points as per EEG 10-20 system. The frontal cortex
is the best-suited position for brainwave acquisition using
eye-mask. The traditional 10-20 EEG system is not practical
and convenient for real-time monitoring. The entire system is
very light in weight and portable.
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FIGURE 1. Overview of the HealthSOS system. EEG and EOG electrodes are embedded in an eye-mask. This amulatory system is developed to identify the
changes in brainwave features due to ischemic stroke or other illnesses and generate recommedations and messages to rescue the patients. Electrode
positions, channel descriptions and image of the newly developed portable data acquisition system are shown.

An eye-mask can be a good alternative for user-friendly
brainwave acquisition. Using an eye-mask is a comparatively
cheap technique with significant sleep improvements for
several critical patients [16]. Eye-mask cuts off blue light,
which hampers sleep. Additionally, Frontal EEG and two
EOG channels can be easily fabricated in an eye-mask. The
dry electrode also has limited sleep intervention compared
with the wet gold-cap electrode.

B. SIGNAL ACQUISITION MODULE
Anewly developed portable EEGdevice uses the open-source
OpenBCI Cyton Board to acquire EEG signals. Cyton board
consists of 8-channels bio-signal acquisition, a MicroSD
slot for data storage, a Lipo battery connector, and wireless
communication to a mini-computer via an RFduino radio-
based USB dongle. A 3D printed enclosure was made for
ease of handling of the EEG data acquisition module. EEG
signals are sampled at 250 Hz sampling rate through the
Cyton module. The ground was chosen on Fpz location as
per 10-20 system and reference was placed a position close to
the right ear. The acquisition module possesses a 3.7V battery
and a DC charging module.

C. SYSTEM ARCHITECTURE AND DATAFLOW
HealthSOS, the proposed health monitoring system consists
of the body-area wearable physiological sensors, the feature
extraction package, feature extension package, the machine
learning (ML) model, the knowledge base, the medical ontol-
ogy, and the health advisor framework during sleeping and
resting state. The data acquisition module sends data to the
nearest mini computer (miniPC) through the Bluetooth low
energy (BLE) network. A java based API was developed
to read and sent EEG in JSON (JavaScript Object Nota-
tion) format. Details Specification of system architecture
and dataflow for automated stroke prediction system using

HealthSOS has been shown in Figure 2. All data is sampled
and sent at a sampling rate of 250 Hz. The Apache ActiveMQ
protocol is used for the messaging of JSON data. The raw-
data API sent brainwaves of the right and left hemisphere
to web server Elasticsearch NoSQL DB through the Wi-
Fi network. The context predictor predicts the user’s state
of activity (Resting, Sleep, Active), event information, and
so on. Then, the feature extraction package is employed to
extract important features, which are correlatedwith ischemic
events, such as, Stroke. The neuro-electrical asymmetry of
two hemispheres is an important predictive marker of a brain
hemorrhage. The rule-based feature extender package cate-
gorizes brainwave features according to the ischemic stroke
predictive features, such as the symmetry of the left and right
cortexes, the ratios of spectral power. The selected brain-
wave features are feed to the machine learning model for
training and testing of the ML model respectively. The past
health records, the emergency contact information, personal
details, the insurance records can be included in the profile
of subscribers of the health monitoring service. The disease
ontology and health advisor can recommend possible health
advice to assist the patients. In the case of ischemic events
such as stroke, a recommendation will be generated to attend
the patient to the emergency department of the hospital for
further testing, like, CT, MFI, and so on. Messages will be
sent to the emergency rescue department, relatives of the
patient to assist the patient to move to the nearest healthcare
center.

D. FEATURE EXTRACTION AND FEATURE SELECTION
The feature extractor package comprises important neuro
features both in the time domain and frequency domain.
All feature extraction algorithms are implemented in java.
Fast Fourier Transforms (FFT) is performed on artifact-free
EEG signal with 10% hamming and extracted absolute power
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FIGURE 2. System architecture and dataflow of the HealthSOS system. Data acquisition device sends the raw data to nearby MiniPC application through
Bluetooth communication. The API send EEG, EOG data in JSON format to web DB using ActiveMQ protocol. The feature extraction package is employed
to extract physiological features sensitive to illnesses (both acute and chronic) and rule-based feature extender find out possible health or neural
abnormality using feature thresholds and level the data with health status. Machine learning model learns and predicts the health status. Medical
Knowledgebase and ontology finds out possible reason of illness, generate health advice and recommendations. Recommendations are forwarded to
user, subscribed healthcare centers and the emergency departments to take necessary action. Healthcare centers and subscriber can visualize the signals
and recommendations through their dedicated dashboards.

in the following frequency bands: delta (δ) band is speci-
fied ranging 0.5–4.0 Hz, theta (θ) band exists in a range
of 4.0–8.0 Hz, alpha (α) wave runs on 8.0–13.0 Hz, and beta
(β) band maintained in 13.0–30 Hz, Gamma (γ ) band exists
in a range of 30.0–44 Hz. As there are plenty of features of
EEG in time-domain and frequency-domain, it is necessary
to screen and reduce features, which fit the model best.
Feature selection minimizes computational time and memory
requirements so that more focus can be done on only the
necessary predictors. Three steps are involved here; screen-
ing, ranking, and selection. Feature variables with missing
values and constant values are screened out in the initial step.
In the second step, the importance of the predictor has been
calculated based on how well each variable alone predicts the
target variable. The importance value of the feature variables
is calculated as (1-p), where p is the p-value of a Pearson’s
chi-square test of association between the predictor and the
target variable.

E. CLASSIFICATION
Several machine-learning algorithms are employed to clas-
sify the resting neural features of the patients of ischemic
stroke and the control group. Discriminant analysis, Support
vector machine (SVM), Neural network, QUEST, and C&R
tree algorithms have been used to classify brainwave features
of stroke patients and normal persons. 80% of processed
feature data has been utilized for training purposes, 20%

data for testing of classification models. QUEST (Quick,
Unbiased, Efficient) is a binary Statistical tree-growing algo-
rithm [17]. Support Vector Machines (SVM) maps data to
a high-dimensional feature space so that features can be
categorized by generating the marginal line. Neural networks
predict a target based on finding unknown and possibly com-
plex patterns of predictors. The multilayer perceptron (MLP)
neural network model is a feed-forward, supervised learning
network [18]. Classification and Regression Trees (C&RT)
partitions the data more homogeneously than the previous
subset.

F. MEDICAL ONTOLOGY AND HEALTH ADVISOR
An ontology is a data model that represents a set of con-
cepts within a domain and the relationships among those
concepts [19]. A medical ontology framework is devel-
oped to describe a health monitoring network including per-
sonal information, wearable sensors, health records, hospital
resources, disease ontology, and processes, which serve as a
knowledge base for our entire health monitoring system. The
disease ontology provides a clear definition for each disease
and the relation of the diseases with physiological parame-
ters. The integration of real-time physiological analysis and
medical ontology can lead to automate the health advisor
framework. The health advisor consists of a recommendation
system based on disease prediction and disease ontology.
The Health advisor also includes messaging the acute patient

VOLUME 8, 2020 213577



I. Hussain, S. J. Park: HealthSOS: Real-Time Health Monitoring System for Stroke Prognostics

FIGURE 3. Description of device electrodes layout used in experiment (a) positions of EEG electrodes along with reference and ground electrodes in
frontal cortex, (b) EEG electrodes (Fp1, Fp2) according to the standard EEG 10-20 system, (c) sample scenario of the experiment.

condition to the emergency control room or relatives to rescue
and assist the patient to move to the hospital for diagnostics
and treatment.

III. EXPERIMENTAL PROTOCOL
A. PARTICIPANTS OF THE EXPERIMENT
The investigation group (Stroke Patients) included 37 patients
(mean age 71.6 years, 61% male) who were diagnosed
with ischemic stroke. The control group included 36 healthy
elderly volunteers (mean age 76 years, 28% male). Both
target and control group is selected within a similar age
range to reduce age-related neural activity variation. The
study population consists of patients referred to Chungnam
National University Hospital Rehabilitation Center, Daejeon,
South Korea. Patients’ ischemic stroke events were verified
clinically using MRI scans or CT. The control group is com-
posed of healthy elderly volunteers with no previous record
of ischemic events or underlying known neurologic diseases.
The study was approved by the institutional Ethics Commit-
tee of Korea Research Institute of Standards and Science,
Daejeon, South Korea.

B. EEG DATA ACQUISITION
In this study, the EEG was acquired using the eye-mask
system. Two Channels EEG were acquired. In this study,
we only focus on EEG data taken on the frontal cortex.
EEG electrode layout is shown in Figure 3(a). Frontal Fp1,
Fp2 were chosen for brainwave acquisition as per EEG
10-20 system (Figure 3(b)). Fp1 is a representative electrode
of the left hemisphere and Fp2 is a representative electrode
of the right hemisphere. In the case of the stroke popula-
tion, EEG data acquisition was done no later than 120 hours
after admission to the emergency unit of the hospital. For
this study, participants are advised not to take any drink
like, Coffee or alcohol before the experiment. During EEG
data acquisition, the patients were instructed to be awake,
eye-closed, and in a resting (lay-down in bed) position.

Only EEG data is considered in this study and EOG data
was not used in this study. Room temperature was main-
tained at 24◦ and relative humidity 40%. Participants are
suggested to moisturize the forehead skin to reduce the
impedance of dry electrodes. After wearing the eye-mask,
data recording was delayed for five minutes to settle down
participants’ mental condition to resting state, and then EEG
data was recorded for at least 15 minutes in the awake resting
state. An example of the experimental scenario is presented
in Figure 3(c).

C. PRE-PROCESSING
At first, the EEG signal is filtered out of 60 Hz AC noise
(Local 60 Hz power grid). The built-in notch filter cut-off the
60 Hz noise in the OpenBCI Cyton. EOG artifacts are filtered
from the EEG signal.

D. FEATURE EXTRACTION
EEG delta (δ) wave, theta (θ ) wave, alpha (α) wave, and beta
(β) wave, Gamma (γ ) wave are extracted from the artifact-
free EEG signal. Various EEG features are measured over
an epoch length of 10 seconds to understand the power in
the EEG bands. Signal transformations, such as Lyapunov
exponent, central moment, time-delayed mutual information,
skewness, spectral slope, capacity dimension and correla-
tion dimension, correlation coefficient, and so on; have been
applied to evaluate the unique EEG features.

1) REVISED BRAIN SYMMETRY INDEX
The Revised Brain Symmetry Index is an efficient marker for
continuous EEGmonitoring for hemispheric stroke and com-
puted according to the methods suggested by Van putten [6].
As hemispheric stroke causes a lack of neuro-electrical bal-
ance between the right and left hemispheres, rsBSI may allow
early prediction of stroke [3], [7]. The rsBSI is a numerical
value ranging between zero (absolute symmetry) and one
(complete asymmetry).

213578 VOLUME 8, 2020



I. Hussain, S. J. Park: HealthSOS: Real-Time Health Monitoring System for Stroke Prognostics

2) THE RATIO OF DELTA-ALPHA AND DELTA-THETA POWER
The ratio of delta power and alpha band power was com-
puted to measure the DAR (delta-alpha ratio). The ratio of
delta power and theta band power was defined as the delta-
theta ratio (DTR). EEG spectral band power ratios (DAR
and DTR) are important markers of cognitive change due to
stroke [11].

3) BAND POWER ASYMMETRY INDEX
Spectral Band power asymmetry Index is the relative differ-
ence of each band power between two brain hemispheres,
such as frontal alpha asymmetry, frontal beta asymmetry, and
so on. EEG spectral band asymmetries are found to be related
to depression, epilepsy, apnea, and so on [20], [21].

4) LYAPUNOV EXPONENT
Lyapunov exponent gives a measure of the chaotic nature,
the divergence or convergence of EEG signal. It is also used
to estimate the production of entropy in the EEG waveform.
Analysis of the Lyapunov exponent of EEG was studied to
classify the Schizophrenia, neurological disorder patients,
and the control population [22].

5) KURTOSIS
Kurtosis gives information on whether EEG data is light-
tailed or heavy-tailed compared with a normal distribution,
also the size of the ‘‘tails’’.

6) CENTRAL MOMENT
Central Moment computes deviations from the mean instead
of from zero within the selected EEG signal. The central
moment feature of EEG frequency bands can be implemented
to detect epileptic seizures [23].

7) TIME-DELAYED MUTUAL INFORMATION
Mutual Information determines the relevance and redun-
dancy of the neuro-electric signal given a time delay. Study
shows that time-delayed mutual information of EEG and
EMG (Electromyography) of active movement is signifi-
cantly different from passive movement [24].

8) SKEWNESS AND PEAK-PEAK
Skew is a measure of the degree of asymmetry in an epoch
of an EEG waveform [25]. Peak-Peak (P-P) measures the
distance between the maximum and minimum peak value in
an epoch.

9) SPECTRAL SLOPE
The spectral slope or gradient measures the non-standard
regression coefficient and gives information about the direc-
tion and steepness of the waveform. The spectral slope of
EEG gives a reliable estimate of neurological disorders, such
as neonatal seizures [26].

10) CAPACITY DIMENSION & CORRELATION DIMENSION
Capacity Dimension and Correlation Dimension are the frac-
tal dimensions that indicate the extent of changes in the detail
of a waveform with the change in scale. Fractal dimension
is found effective to detect the EEG changes in an epilep-
tic seizure, a bipolar disorder, behavioral micro-sleep, and
so on.

11) CORRELATION COEFFICIENT
Correlate provides the linear correlation between the two
variables and has a value ranging from 1 to -1. EEG linear
correlation-coefficient is considered as an effective measure
of the activity of the neural network of the cortical region [27].

E. DATA ANALYSIS
EEG frequency bands (alpha, beta, theta, delta, gamma)
are extracted using fast Fourier transforms. Several fre-
quency bands’ features, such as relative power, mean power,
mean frequency, median frequency, peak frequency, spectral
edge, and so on, are calculated. Descriptive statistics and
independent-samples t-test are carried out. Statistical analy-
ses were performed using SPSS 24 software (IBM, Armonk,
New York). Feature selection is executed to rank EEG fea-
tures based on the measurement levels of the target. Pearson’s
chi-square test computed the feature importance calculated
as (1-p), where p is the p-value of the statistical test of
association between the feature and the target group (stroke
group or control group). Then selected best feature sets from
the training dataset is feed to the supervised machine learning
models to obtain the classification models, which are later
used for testing the datasets. Machine learning analyses were
performed using IBM SPSS Modeler 18 software (IBM,
Armonk, New York).

IV. RESULTS
A. STATISTICAL ANALYSIS
Independent-samples t-test was performed to compare the
means of EEG features for two groups, which provides Lev-
ene’s test for equality of variances along with both equal-
and unequal-variance t values for the difference in means.
A p-value of less than 0.05 was considered statistically signif-
icant. In the following subsections, the results of significantly
important features will be explored only.

1) RESULTS OF THE REVISED BRAIN SYMMETRY INDEX
The Revised Brain Symmetry Index of the stroke and healthy
control groups was evaluated based on EEG in the brain
frontal lobe at Fp1, Fp2 positions. Figure 4(a) shows the sta-
tistical distribution of rsBSI of the stroke and control group.
Themean and standard deviation of rsBSI for the stroke group
0.263 and 0.088 respectively. On the other hand, themean and
standard deviation of rsBSI for the control group 0.143, and
0.053 respectively. In Levene’s statistical test of the equality
of variances between the two groups, the significance value
is p < 0.0001, which implies that the two groups don’t

VOLUME 8, 2020 213579



I. Hussain, S. J. Park: HealthSOS: Real-Time Health Monitoring System for Stroke Prognostics

FIGURE 4. Median and interquartile range of rsBSI computed in the frontal scalp among (a) the stroke patient population and the control population,
and (b) the male group and female group of the stroke patient population and the control population. ∗p < 0.0001. ∗(p < 0.0001) indicates significant
difference.

FIGURE 5. Mean and error bar of (a) DAR, ∗p < 0.0001 in Fp1,∗ p < 0.0005 in Fp2 (b) DTR, ∗p < 0.005 computed in the frontal electrodes Fp1, Fp2 among
the stroke patient population and the control population. Error bar shows 95% confidence interval. ∗ indicates significant difference.

have equal variances. In the t-test for equality of means, the
t-statistic is 17.656 with 446 degrees of freedom. The corre-
sponding two-tailed p-value is p < 0.0001. As a result, it can
be concluded that the difference of means of rsBSI between
the stroke group and the control group is different between
each other. A higher revised brain symmetry index indi-
cates the neural impairment in one-side of the hemisphere.
A similar finding is observed in other EEG electrode posi-
tions of the stroke population using a short EEG recording
[3], [28]. Van putten used prolonged 12-24 hours EEG mon-
itoring of the stroke patients to understand the correlation
between rsBSI and the stroke events [7], [12]. Blood flow to

brain tissue is hampered due to ischemic hemorrhage. Brain
cell damage impairs the electrical activity of the correspond-
ing brain hemisphere. Eventually, a stroke onset alters the
normal symmetric characteristic of left and right hemispheric
EEG. As Fp1 and Fp2 are the representative positions of the
left and right hemispheres respectively, larger rsBSI variation
between Fp1 and Fp2 can be used as an effective indicator
of detection of ischemic events, such as stroke. Figure 4(b)
shows the rsBSI score of the stroke and control group for
the male and female populations. rsBSI of the male stroke
group has a wider interquartile range compared with that of
the female stroke group. On the other hand, the median rsBSI
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(0.23) of the male stroke population is slightly lower than that
(0.24) of the female stroke population.

2) RESULTS OF DELTA-ALPHA AND DELTA-THETA RATIO
Figures 5(a) and 5(b) show the statistical means of frontal
EEG DAR and DTR for the stroke and control group.
The mean of DAR and DTR for stroke group 5.556 and
4.250 respectively in Fp1 and 7.043 and 4.856 respectively
in Fp2. On the other hand, the mean of DAR and DTR for
the control group 3.634 and 3.040 respectively in Fp1 and
4.10 and 3.273 respectively in Fp2. The independent group
t-test is performed to compare the means and variances of
DAR and DTR between the two groups. In Levene’s statis-
tical test of the equality of variances of DAR between the
two groups, the significance value is p < 0.0001 in Fp1,
p < 0.0005 in Fp2 which implies that the two groups don’t
have equal variances of DAR. In Levene’s statistical test of
the equality of variances of DTR between the two groups,
the significance value is p< 0.005 in Fp1, Fp2 which implies
that the two groups don’t have equal variances of DTR. In the
t-test for equality of means of DAR, the t-statistic is 3.59 with
446 degrees of freedom in Fp1 and 3.39 with 446 degrees of
freedom in Fp2. Besides, in the t-test for equality of means
of DTR, the t-statistic is 3.52 with 446 degrees of freedom
in Fp1 and 3.65 with 446 degrees of freedom in Fp2. The
corresponding two-tailed p-value is p < 0.0005 for DAR in
Fp1 and Fp2 respectively, 0.0005 for DTR in both Fp1 and
Fp2. As a result, it can be concluded that the difference of
means and variances of DAR, DTR of the stroke group and
the control group are different from each other.

3) RESULTS OF THE CORRELATION COEFFICIENT,
KURTOSIS, SKEWNESS, SPECTRAL SLOPE
Figure 6(a) shows the statistical means of the correlation
coefficient of EEG frequency bands (alpha, beta, theta, delta,
gamma) for the stroke and control groups. In the results of
the correlation coefficient, a significant difference (p< 0.05)
was observed in the means of correlation coefficients of all
bands in Fp1, but no significant difference was observed in
the variances of correlation coefficients.

Figure 6(b) shows the statistical means of the kurtosis
of EEG frequency bands for the stroke and control groups.
In the results of the kurtosis analysis, a significant difference
(p< 0.05) was observed in the variances of kurtosis of alpha,
beta, and gamma bands in Fp2, but no significant difference
was observed in the means of kurtosis.

Figure 6(c) shows the statistical means of the spectral
slope of EEG frequency bands for the stroke and control
groups. In the results of the slope, a significant difference
(p < 0.05) was observed in the means of the slope of alpha,
beta, and gamma bands in Fp1, but no significant difference
was observed in the variances of the slope.

Figure 6(d) shows the statistical means of the skewness of
EEG frequency bands for the stroke and control group. In the
results of the skewness, a significant difference (p < 0.05)
was observed in the means of skewness of theta and gamma

bands in Fp1, but no significant difference was observed in
the variances of skewness.

B. MACHINE LEARNING ANALYSIS
All EEG features with feature importance of a p-value greater
than 0.95 have been chosen for the classification analysis. A
total of 48 features are selected out of 274 initial extracted
brainwave features based on feature importance (p > 0.95).
To evaluate classification accuracy, ROC (Receiver operating
characteristic) curve is the most effective tool. AUC (Area
under the curve) is a classification performance predictor and
defined as the area under the ROC curve. The nearer the AUC
is to 1.0, the better the performance of the model. Besides,
the Gini coefficient is an alternative measure to the AUC
and is defined as the Gini Coefficient, which is two times
(AUC-1), ranging between 0 and 1. The confusion matrix
or error matrix provides a clear picture of classification
performance. From the confusion matrix, several other per-
formance parameters, such as accuracy (ACC), sensitivity
(true positive rate), specificity (true negative rate), precision
(positive predictive rate), negative predictive value, AUC, and
Gini coefficient are calculated. The accuracy was calculated
as the ratio of correct prediction to the total observations
and considered as the most intuitive performance measure to
identify the best model. Precision is the ratio of correct pos-
itive prediction to the total predicted positive observations.
Sensitivity is the ratio of correct positive prediction to all the
actual observations. Specificity is the ratio of correct negative
prediction to all the actual observations. The performance
evaluation parameters are computed using the following stan-
dard formulas:

Sensitivity =
TP

TP+ FN

Specificity =
TN

TN + FP

Precision =
TP

TP+ FP

Negative predictive value (NPV) =
TN

TN + FN

Accuracy(ACC) =
TN + TP

TN + TP+ FN + FP

where TP stands for the true positive, TN means the true
negative, FP stands for the false positive, and FN means the
false negative. All the performance measures for the training
datasets and the testing datasets are listed in Table 1 and
Table 2 respectively.

As listed in Table 1, SVM classified the training
dataset with the highest AUC (98%), highest accuracy
(ACC: 93%). The sensitivity, specificity, precision, negative
predictive value, AUC, Gini coefficient of SVM are 98%,
88%, 89%, 98%, 98%, and 95%, respectively. Discrimi-
nant analysis classified the training dataset with the low-
est accuracy (ACC: 88%). The sensitivity, specificity, pre-
cision, negative predictive value, AUC, Gini coefficient of
Discriminant analysis are 91%, 86%, 86%, 90%, 96%, and
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FIGURE 6. Mean and error bar of (a) the correlation coefficient in Fp1, ∗p < 0.05 (b) kurtosis analysis in Fp2, ∗p < 0.05, (c) spectral slope in Fp1, (d)
skewness in Fp1 computed among the stroke patient population and the control population. Error bar shows 95% confidence interval. ∗(p < 0.05)
indicates significant difference.

TABLE 1. Results of the classification performance of different models using the training dataset.

92%, accordingly. QUEST classified the training dataset
with moderate accuracy (ACC: 93%). The sensitivity,

specificity, precision, negative predictive value, AUC, Gini
coefficient of QUEST are 94%, 93%, 93%, 94%, 95%,
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TABLE 2. Results of the classification performance of different models using the testing dataset.

FIGURE 7. Receiver Operating Characteristic (ROC) curves for five different machine-learning models (Discriminant analysis, Support Vector
Machine, Neural Network, QUEST, C&R Tree). Area under ROC curve (AUC) is an indicator of prediction accuracy. (a) ROC curve of the training dataset.
SVM classified the training dataset with the highest AUC (98%) and highest accuracy (ACC: 93%); (b) ROC curve of the testing dataset. SVM classified
the testing dataset with the highest AUC (97%) and moderate accuracy (ACC: 89%). Diagonal black line is the reference line.

and 91%, sequentially. C&R Tree classified the training
dataset with moderate accuracy (ACC: 92%). The sensitivity,
specificity, precision, negative predictive value, AUC, Gini
coefficient of C&R Tree are 98%, 86%, 87%, 98%, 92%,
and 84%, successively. The neural network classified the
training dataset with moderate accuracy (ACC: 90%). The
sensitivity, specificity, precision, negative predictive value,
AUC, Gini coefficient are 86%, 94%, 94%, 87%, 96%, and
93%, consecutively. ROC (Receiver operating characteristic)
curves of the MLmodels using the training dataset are shown
in Figure 7(a).

According to Table 2, SVM classified the testing dataset
with the highest AUC (97%) and moderate accuracy (ACC:
89%). The sensitivity, specificity, precision, negative predic-
tive value, AUC, Gini coefficient of SVM are 94%, 84%,
84%, 94%, 97%, and 95%, respectively. Discriminant anal-
ysis classified the testing dataset with the lowest accuracy
(ACC: 87%). The sensitivity, specificity, precision, nega-
tive predictive value, AUC, Gini coefficient of Discriminant

analysis are 87%, 86%, 85%, 88%, 94%, and 88%, consecu-
tively. QUEST classified the testing dataset with the highest
accuracy (ACC: 91%). The sensitivity, specificity, precision,
negative predictive value, AUC, Gini coefficient of QUEST
are 90%, 93%, 92%, 91%, 94%, and 88%, sequentially. C&R
Tree classified the testing dataset with moderate accuracy
(ACC: 89%). The sensitivity, specificity, precision, negative
predictive value, AUC, Gini coefficient of C&R Tree are
94%, 84%, 84%, 94%, 89%, and 78%, accordingly. The
neural network classified the testing dataset with moder-
ate accuracy (ACC: 88%). The sensitivity, specificity, pre-
cision, negative predictive value, AUC, Gini coefficient are
88%, 88%, 87%, 89%, 92%, and 84%, in succession. ROC
(Receiver operating characteristic) curves of the ML models
using the testing dataset are shown in Figure 7(b). Overall,
SVM shows the highest accuracy (ACC: 92%), the highest
AUC (98%), and the highest Gini coefficient (95%). Statis-
tical agreement between stroke predictions by the above five
models is 84%.
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V. DISCUSSION
In our study, we aimed to characterize the electrical activity
of the frontal lobes through ambulatory EEG data acquisition
of newly diagnosed stroke patients and healthy adults to find
out the features showing the effective indication of the brain
injury due to stroke events. The frontal lobes are critical for
cognitive processes and are easily accessed by the wearable
EEG device. Specific EEG band power is associated with the
specific functional outcome of the brain and in the case of
ischemic stroke, is linked to the degree of neural damage in
the lesion area of the brain. The outcome of this study also
adds to our understanding of abnormal hemispheric asym-
metry in homologous channel pairs (Fp1 and Fp2), which
represent the most prominent marker of the human awake
resting-state EEG in the stroke impaired brain.

The result of rsBSI showed a statistically significant dif-
ference between the stroke patient group and the control
group. Our findings match with previous studies revealing
that the stroke patients group possesses a higher rsBSI value
compared with the healthy control group [6], [7], [12], [29].
Stroke hampers the blood flow to brain tissue, which leads
to damage to brain cells and creates a lesion. A higher rsBSI
value indicates the lack of interhemispheric neuro-electrical
balance due to the presence of the lesion caused by the
ischemic stroke. Lower rsBSI correlates with a healthy brain
for the absence of lesions [3].

According to this study, resting DAR and DTR, resulting
from the relative-band power of the delta, theta, and alpha, are
significantly important markers to classify the stroke group
and the healthy control group. Higher delta power is observed
in the electrodes of the pre-frontal positions after stroke
[11], [30]. The alpha activity is significantly lower in the
stroke population than in the healthy adult population. Rela-
tive alpha power is a less informative predictor for the moni-
toring and assessment of the ischemic stroke [11], [13]. Some
studies from combined EEG, MFI, CT observations suggest
that alpha attenuation and slowing reflect brain injury while
delta activity rise is indicative of sub-cortical injury [5]. Beta
activity is observed to be similar in the stroke group and the
control group. Relative Beta power is considered as a less
effective predictor and no reported statistically significant
difference is found between the beta activity of the stroke
patients and the healthy adults [5], [13]. Theta activity was
also observed to have the potential to discriminant between
the stroke population and the healthy control population [31].
DAR is considered themost reliable EEG feature for the prog-
nostics of the ischemic stroke [11], [12], [14]. The DTABR,
defined as the ratio of the sum of delta and theta to the
sum of alpha and beta, similar to DAR is another informa-
tive predictor of Ischemic stroke. In the current study, DAR
is calculated individually in two frontal electrodes. In both
electrodes, DAR showed a significant difference between the
stroke group and the healthy control group. Besides, as most
of the stroke patients have left-side lesions, delta activity
is lower on the lesion side and higher on the healthy side
of the brain. So, DAR is higher in the Fp1 electrode than

the Fp2 electrode. Few studies identified DTR as a poten-
tial marker of cognitive outcome after stroke [11]. Higher
resting theta activity is associated with the healthy cognitive
performance [32]. Lower resting theta power or higher DTR
is a predictor indicator of impaired post-stroke cognitive
outcome. A similar trend is observed in the DTR of the frontal
electrodes in this study. DTR showed a significant difference
between the stroke population and the healthy adult popu-
lation. A rise in delta power, DAR, DTR is associated with
the impaired neural functional outcome resulting from stroke.
Resting DAR and DTR were also shown to correlate with
cognitive outcome following stroke [11], [33].

EEG correlation-coefficient is an informative indicator
of interhemispheric connectivity patterns. Ischemic stroke
patients’ clinical outcome is associated with the change
of delta power [33]. In our study, a significant correlation
is observed between stroke patients and all EEG bands’
power. The kurtosis and spectral slope of alpha, beta, and
gamma were observed as a statistically significant indicator
of ischemic stroke. Other parameters did not show significant
important differences.

In this study, Discriminant analysis, SVM,Neural network,
QUEST, and C&R tree have been used to classify stroke
patients and healthy control subjects. Good statistical agree-
ment (84%) is observed between stroke predictions by the
above fivemodels. Overall, SVM shows the highest accuracy,
the highest AUC, and the highest Gini coefficient. SVM is
a benchmark machine learning technique as well as proven
to show good results in multi-class classification to discrim-
inate stroke patients and healthy control subjects using EEG
signal [34], [35]. Though the computational period of the
SVM model is longer, the SVM model seems to be the most
accurate model to predict stroke prognostics.

To the best of our knowledge, our developed HealthSOS is
the first to utilize wearable EEG fabricated on an eye-mask
for stroke prognostics purposes. Past several studies used a
standard 10-20 EEG system with around 16-32 channels.
For real-time health monitoring in daily life activities, such
as, resting, sleeping, EEG along with multiple wires and
conductive gel can’t be a practical solution. So, our portable
can be a good alternative for traditional EEG.HealthSOSmay
be used as an alternative to the traditional sleep study. It is
worth noting that our system can also be used as ameasure for
the prediction of wake-up stroke in an overnight sleep setup.
Another potential application of the proposed portable system
is the sleep monitoring system.

In this study, we focused on only the frontal lobe for
understanding changes of EEG for neural impairment due to
the ischemic stroke, not the entire cortex. Although the frontal
lobe has a high resemblance to other lobes, there still exist
specific cognitive and functional outcomes on each cortical
lobe. For this reason, the model developed here generalizes to
only the frontal lobe with current parameterization. Although
EEG and EOG data can be acquired using the HealthSOS
device, we only considered EEG for analysis for the study
of the stroke population. Eye movement is significantly
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important for sleep quality and REM (Rapid Eye movement)
sleep. In the future, EEG and EOG both can be utilized
in an automated sleep performance and stroke prognostics
study.

VI. CONCLUSION
HealthSOS, a portable low-cost eye-mask based EEG system
was developed here, which could be used for prognostics of
ischemic stroke and change of functional outcome due to
stroke. Details of the hardware, API dataflow, description of
the extracted features, the stroke prediction based on machine
learning are presented. Our system has been successfully
validated with 37 stroke patients and 36 healthy volunteers.
rsBSI, the delta-alpha ratio, the delta-theta ratio were found as
statistically significant markers for the prediction of ischemic
stroke. HealthSOS system is expected to be a potential health-
care assistance system for prognostics of ischemic stroke
outside the clinical environment.
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