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ABSTRACT Attempt to diagnose Alzheimer’s disease (AD) using imaging modalities is one of the scopes
of deep learning. While considering the theoretical background from past studies, we are trying to identify
convolutional neural network (CNN) behaviors moving from 2D to 3D architecture. This study aims to
explore the output from a variety of CNN models implemented in the MRI or/and PET classification tasks
for AD prediction while trying to summarize its characteristics with a variety of parameters that are tuned and
changed. There are many architectures available; however, we are testing a basic architecture with a change
in the reception area based on the convolutional layer’s kernel size and its strides. The architecture has been
categorized as converging, diverging, or equivalent if the filter kernel size is unchanged. This investigation
studies a simple encoder based CNN with a sequential flow of features from low-level to high-level feature
extraction. The idea is to present a diverging reception area by increasing the filter size and stride from a lower
to a higher level. As a result, the feature redundancy is reduced and the trivial features keep on diminishing.
The proposed architecture is referred to as ‘divNet’, and several experiments were performed to determine
how effective the architecture is in terms of the consumed memory, the number of parameters, running time,
classification error, and the generalization error. This study surveys several related experiments by changing
the hyper-parameters setting, the architecture selection based on the depth and area of the reception feature,
and the data size.

INDEX TERMS 3D CNN, CNN architecture, Alzheimer’s disease, reception area, feature redundancy, data
size, MRI classification.

I. INTRODUCTION
In reference to the Alzheimer’s Association Report (AAR)
[1], the molecular and neurological causes for Alzheimer’s
disease (AD) takes place in the neurons, i.e. the brain nerve
cell connection area also called the synapsis; this is where
the neurotransmitters are released. The synapsis helps with
the information flow caused by tiny bursts of chemicals that
are released by one neuron and are detected by a receiving
neuron. During AD, there is an accumulation of ß-amyloid
proteins and tau proteins, also known as tau tangles that
are around the synaptic region. This ß-amyloid is suspected
to cause neuron death by interfering with neuron-to-neuron
communication at the synapsis. In addition, the tau tangles
block the supply of nutrients and other essential molecules
inside the neurons. Brains with advanced AD have a dramatic
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shrinkage due to cell loss, inflammation, and widespread
debris from dead and dying neurons. This causes memory
loss problems (e.g. dementia) with the inclination of age.
This is the molecular and physiological level analysis for
AD. However, there is a corporal change in the common
AD-related variation of anatomical brain structures such as
the enlargement of ventricles, shrinkage of the hippocampus
shape, change in the cortical thickness, and other cerebral
areas containing white matter and gray matter brain tissue
as well as cerebrospinal fluid. These changes and atrophies
are rationally visualized through the brain imaging by the
clinician while using a variety of medical imaging modalities
like magnetic resonance imaging (MRI), positron emission
tomography (PET), and computed tomography (CT) scan-
ning. Here comes the true usage of image processing and
machine learning. Image processing improves the quality
of the image for better visualization of the brain whereas
machine learning assists clinicians to perform other logical
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operations like segmentation, classification, and quantifica-
tion, which can be time-consuming and sometimes baffling.
The logical operation once modeled with proper supervision
can later follow the designed algorithm to reach a predic-
tion, the more the prediction is true, the better the model
is, and the higher will be the chance of reliability. Mild
cognitive impairment (MCI) is a transitional stage between
normal aging and the preclinical phase of dementia. MCI is
considered to be a possible early stage of AD, and it can
either progress into AD (pMCI) or remain in the same stage
throughout life, which is called stable MCI (sMCI). Here,
we are combining both types in a single MCI group to ease
the classification process. A healthy MRI is called normal
aging/cognitively normal (CN). Since AD contains a genome
that affects the disease, no known stimulant causing it is
identified. However, the influencing factors for AD include
genetics, low education or professional involvement, lack of-
mental exercise, family chronicles, and external or internal
brain injuries [2].

Image processing aims to find a discriminative pattern of
image features by collecting the same groups of the MRI
into one. It means that the pattern that we eventually dis-
cover for AD patients will behave the same for other AD
patients’ recognition but are differentiated with the CN and
MCI effected MRI. Once the MRI is translated into an image
from themagnetic resonance frequency, it represents the pixel
value for each structure and these pixels will be assigned to
a class. Ultimately, AD classification will be based on the
features that are extracted from these brain image pixels. The
main features required to accurately capture the major AD-
related variations of the anatomical brain structure includes
the size of the ventricles, hippocampus shape, cortical thick-
ness, and brain volume [3]. Although such alterations may
resemble other brain-related diseases like Parkinson’s disease
(PD) and encephalitis [4]. In that case, more clinical and
physiological tests should be performed on a genetic level.
Consequently, the idea of identifying pathogenic scans from a
healthy one seems easier than identifying a particular disease
from a pool of pathogenic scans. Thus imaging technique
alone may not be the only valid proof to diagnose a person
with AD. However, based on the brain phenotype reflected
in the imaging, the discriminative features from the trained
network can help identify AD prone images.

This study presents results that answer a few questions
related to the use of deep learning for medical imaging.
It starts with the background story of CNN and recent litera-
ture reviews of its implication inmedical image classification.
Then the related inquisition of the CNN role for its archi-
tecture, hyper-parameters, depth, and data-size is discussed
in section II. The mathematical orientation and used pseudo-
codes are discussed in section III. In the succeeding sections,
we have discussed the performance of different architectures,
the role of the hyper-parameters, the selection of data, and the
effect of dataset size for the design of the optimal network
so it can be implemented practically. Subsequently, we have
surveyed with shallow to deep layers using different feature

sampling region and finally came up with a diverging archi-
tecture being supportive in the case of bothMRI and PET. The
proposed architecture, which is referred to as ‘divNet’, and
its sibling architectures have been thoroughly investigated
and the results are presented in sections VII and VIII. All
the results of these experiments are meticulously presented,
discussed, and analyzed here. So, we are stating it as a survey-
based research paper.

II. THE BACKGROUND STORY
A. 3D CNN
Inspired by the neural network architecture of themammalian
cerebrum, an artificial neural network (ANN) tries to mimic
the information flow and the decision-making pattern of
the brain. As demonstrated by Hubel and Wiesel [5], they
recorded the activity of a single brain cell in cats. It was stated
that some cortical cells respond to contours of a specific
orientation. Aside, patterns of light stimuli are most effective
in influencing units at one level and they may no longer be
the most effective for the next. Although millions of neurons
and synapses receive the stimuli, only certain neurons are
trained to respond to those specific features or aspects of
an image [5]. Similar to the brain when we receive any
stimuli, the neuron spike is generated for only a specific area,
ANN will only have a few activated nodes for each shape,
which may be a horizontal, vertical, or diagonal line. The
node activated for each line is different and unique. This
means that the node activated for a horizontal line in one
image is activated for the horizontal line in another image
and so on; this is the basic principle of an ANN. The layer-
wise connection between the nodes may indicate the heavy
connection between the neurons.

CNN is similar to ANN, except it has convolutional fil-
ter elements (weights) unlike single-node multiplication in
ANN. Besides, CNN has extra feature investigators in the
form of pooling and activation functions. Thanks to the newly
developing algorithms that train the CNNs more effectively,
which has ultimately surpassed human-level accuracy for
natural image classification [6], [7]. With a wide variety of
CNN based topology, the prominent ones include residual
(Resnet50, ResNet101 [20]), recurrent (RCNN [24]), incep-
tion (GoogLeNet [21]), encoder-decoder (U-net [38]), and so
on. One can notice that the common element in all of the
topologies is the encoder unit i.e. convolution-normalization-
activation-pooling, which acts as the fundamental unit for
feature generation. Therefore, we are building blocks of a
combination of these encoding layers.

The existing ideas in the 3D CNN are mainly ‘the best
patch’ or ‘multiple patches trained for the CNN ensemble’
based architectures [8]. In ‘the best patch’ approach, a single
region of the brain is selected based on the recommended
region of interest (ROI) or it is manually assisted from the
anatomic region of atrophy, like the hippocampus and amyg-
dala whereas in ‘multiple patches trained for the CNN ensem-
ble’ multiple CNNs frommultiple ROIs are trained separately
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for each region, later performing feature concatenation at the
last fully connected layer (FCL) before classification. One
of the reasons behind using only limited/selected/informative
pixels to feed in 3D CNN may be due to GPU memory
constraints and also to increase the information with quality.
Non-discriminative parts although play a role in feature con-
struction at a low level may not necessarily support the cohort
classification, hence information becomes redundant using a
whole-brain model. Also, selecting an ROI patch, or simply
the best region makes the system semi-automatic; hence,
the truest sense of automatic feature extraction is not applied
in these cases. This research aims to make the classification
simpler and candid rather than a multifaceted process. That’s
why we want to build an automatic and discriminative CNN
that can work for MRI, PET, and any other ‘pixelary ‘(pixel-
based) object/entity irrespective of its input size.

Huang et al. [3] works were mainly focused on the hip-
pocampi region; they proposed multimodal 3D CNN that
uses hippocampi region ROI from MRI and hippocampi
and/or cortices ROI from PET, without segmentation as a
prerequisite task. They separately trained the CNN referenced
with VGG architecture, for MRI and PET modalities based
ROI and later concatenated from final FCL before final clas-
sification. In other similar attempt done for multimodality
based 3D CNN, Liu et al. [9] also proposed a simpler CNN
model like Yechon et al. but instead of concatenating the
final FCL, the concatenation was done in the convolution
layer, from each CNN ( trained using PET and MRI patch)
for sequential convolution until flattening features at FCL.
They experimented with T1-MRI and FDG-PET based cas-
caded CNN, which utilizes a 3D CNN to extract features,
and adopted another 2D CNN to combine multi-modality
features for task-specific classification. In 2016, Asl et al.
[14] proposed a deeply supervised and adaptable 3D CNN
(DSA-3D-CNN), trained on structural MRI (sMRI) images,
which gives the prediction for the AD vs. MCI vs. CN task.
Similarly, Payan and Montana [34] also used sparse auto-
encoder (SAE) patch-based 3D CNN to classify MRI scans
using dataset partitioning unlike Oh et al. [35], where they
performed 5 fold cross-validations (CV) using convolutional
auto-encoder (CAE) based volumetric or 3D CNN for AD
vs. NC and supervised transfer learning for sMCI vs. pMCI
classification.

B. WHY MOVE FROM 2D TO 3D?
This study aims to explore one more dimension for CNN i.e.
the depth. And the key question that needs to explore is: can
we only depend on the 2D CNN results?

As mentioned, the 2D CNN can easily be misled [37] in
the sense that a target domain trained CNN can only give
a probability score for each trained class. Besides, a few
pixel changes can make the prediction a disaster [37]. Some
researchers have suggested possible improvement in perfor-
mance over 2D images if 3D whole-brain structure is used
to train CNN [10], due to its deeper architecture. But deeper
architecture means more parameters (weights in layers) to

train, and at the same time requires bigger and better training
material. CNN either 2D or 3D follows a generic feature
extraction pattern [11], [12], here generic features might sug-
gest CNN features, also called ‘off the shelf CNN features’
[13] which is basically the image features extracted from the
multiple convolutional layers as the weights (as a decimal
number) of the trained network, applying various activation
functions. Typically, the final feature weights from the FCL
are graphed out to decide the performance of CNN. This
means a well-separated class-based segmented graph gener-
ally depicts a well-trained classifier [14].

The problems with 2D CNN are to select appropriate
slice or slices and its orientation as training inputs. A number
of the literature suggests the ‘best scan’ [15], [16] or ‘best
multiple slices’ [14], [17] for efficient performance, which
rather mystifies the slice selection process. This is prob-
lematic and quite impracticable every time. Some important
informationmight bemissed if we focus only on limited scans
or orientation. So the best and safest way to ensure is to
use whole brain volume, which comes in a three-dimensional
pixel value meaning, pixel value for x, y, and z dimension in
planar geometry. In our previous work [18] we demonstrated
that 2D CNN when trained from fewer MRI images results
in poor classification performance, moreover the selection of
slice or slices is still ambiguous. Furthermore, the dimension
constraints of 2D-CNN need to make the architecture deeper
and bulkier to accommodate thousands of images per class.
Hence to make the MRI classification universal and less
tedious, 3D MRI fits readily into 3D CNN. Besides, the
transfer learning idea seems an inappropriate choice as the
popularly available models like AlexNet [19], ResNet [20],
GoogLeNet [21], ZNet [22] are all 2D based architecture.
The use of 3D input requires fewer pre-processing steps like
slice-correction, slice-selection, and slice-extraction. As a
result, the manual processing step is reduced and makes
the system more robust and automatic which is the goal
of this study. Regarding image preprocessing we have only
performed image resize and normalization before being fed
into the CNN because we want to make the system less
customized and work indifference to the imaging protocols
and scanners, selections to be discussed in section VII B.
Aside, mature preprocessing steps require more effort and
operation time, keeping in mind that it is already processed
from Alzheimer’s disease Neuroimaging Initiative (ADNI),
(we are not provided with the raw image from scanner, but a
semi-corrected processedMRI). This can eventually be useful
for the generalization of the trained model.

C. FINDING THE CORRECT ARCHITECTURE AND
HYPER-PARAMETERS
Although CNN can be easily misled, CNN is quite smart.
Irrespective of the depth (deep or shallow layer), the training
material (good or bad), or the training size (small or big),
CNN finally learns something when it is trained. This ‘some-
thing’ may not typically relate to the human interpretable
logical features (say like the number of legs in a dog in
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comparison to a human) however they will categorically learn
some details so it can be classified. Most of the time this
involves basic shapes, edges, corners, and patterns on the
objects. So, we don’t need to worry about selecting archi-
tecture every time, nevertheless when it comes to finding
the best architecture, with ease of training, and good per-
formance. The trio gives an ultimate contest to any deep
learning researchers. Performance results, training time, val-
idation period, the confidence of prediction, generalizability,
and other factors are the key to determine the state-of-the-
art winner. The results of our experiment are highlighted
in Tables 1, 2, and 3.

D. HOW DEEP SHOULD WE GO?
Recent studies have suggested that a CNN can extract conve-
nient features directly from a raw image, unlike a manually
supervised learning algorithm and it has a strong capability
to locate key points and features in object detection tasks for
natural images [23], [24]. This property of the CNN has been
explored in a region-based convolutional neural network (R-
CNN) for region-based detection in 2D images. Other work in
segmentation using a CNN suggests that segmentation results
itself do not contain information needed for the classification,
hence not being a pre-requisite for the classification task sub-
sequently the CNN can learn useful features without labeling
the voxels itself [3]. These entire experiments advocate sup-
porting the generic feature extraction property of CNN. But
how deep should we go is the question. Our obvious choice
of going deeper is to extract more meaningful features to
perform a relevant operation of classification or segmentation
from the trainee dataset. In general, we will have more feature
vectors with more layers, and subsequently a large pool of
features to extract from. This will help in terms of ‘judging’
the best out of the good features. Nevertheless ‘we should go
deeper’ [25] doesn’t necessarily mean for the deep learning
model and not every time. Besides, the result is not that
supportive. The work of He et al. [20] in ResNet shows that
a deeper network with 1,202 layers in comparison to 50, 101,
and 152 convolutional layers has no significant improvement
with an aggressive depth. With the additional cost of extra
training, more depth for a network may make it more prone to
overfitting by learning ‘‘toowell’’ and this may not generalize
themodel at the cost of running expensiveGPUswhichmakes
it more challenging to build models, being able to understand
all details [26].

E. DATA AS FUEL FOR CNN, BUT HOW LARGE SHOULD
OUR DATA BE?
The breakthrough of the ImageNet dataset with its implemen-
tation in Alexnet suggests that the better the data, the better
would be the result. To support this theory artificial dataset
are also created with different augmentation techniques. And
well, the result seems to be supported by the use of extensive
synthetic MRI for improved performance in segmentation
and classification tasks [27], [28]. The case with ImageNet
is the classification of 1000 classes with around 8000 images

FIGURE 1. MRI and PET scans of: (a) AD prone MRI; (b) Healthy MRI; (c)
MCI affected MRI; (d) AD prone PET; (e) Healthy PET; (f) MCI affected PET.

in each class, whichmeansmore classes withmore distinctive
images, similar is the case with other datasets like CIFAR101,
Caltech, etc. where data acts like oil to AI [29]. Having
said that, what may be the case with the medical image?
Considering labels as the most precious assets for the data
scientist, how voluminous should the training materials be?
In the case of medical images, the task is more challenging,
with an image-based feature; we can rarely detect the atrophy
pattern. Particularly if we look at AD vs. MCI or MCI vs.
NC MRI or PET [FIGURE 1]. Hence to solve this we are
experimenting with various sizes of the datasets, one big and
the other small for MRI and PET tests. The results are high-
lighted in Table 4. Detailed demographics for each dataset
type tabulated in the Appendix.

F. VISUALIZING FEATURES: WHAT HAS THE CNN
EXTRACTED AND LEARNED?
A generalized CNN follows the reduction of features from
the input to the final classification layer. The same is in this
case, the input for the CNN is a 3D MR image obtained
in NIfTI (Neuroimaging Informatics Technology Initiative)
format with .nii extension. Once input is read using niftiread
function inbuilt in MATLAB, it can be resized from its orig-
inal size 256× 256×256 or 256× 256×170 to 64× 64×64.
After multiple down-sampling using the max-pool operation
for each convolutional layer, it is reduced to 1,728 for the first
FCL. To reduce overfitting, we have used the dropout and the
other conceding FCL to make the final output 100 features
per class, which is the input for the softmax layer. This
idea of using multiple FCLs to map the target domain is
often called target domain fine-tuning, which is the basis
for transfer learning while using pre-trained networks. The
activated features in the initial convolutional layer can detect
pixel changes based on attributes like line, edge, and color
[30] in a small window filter. These edge-based features
pass through the intermediate layers of the CNN, and they
are combined in a large number of filters, whose weights
(initially kept at random weights or initialized using Xavier,
He, Gaussian) is updated using backpropagation training fol-
lowing a specific optimization path like stochastic gradient
descent (SDG) or Adam. These intermediate layers detect the
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FIGURE 2. (a) Work flow of the experiment (b) Pictorial representation of
proposed 3D CNN architecture for the MRI/PET classification on the basis
of the diverging area of the reception, which is referred to as ‘divNet’. The
original Visio image for better visual attached in Appendix.

activated parts of the image whereas the final layer learns
discriminative features in the shape and pattern amongst the
target domains. Once training reaches convergence, which
means no more weight changes occur and the training accu-
racy reaches its maximum, the training stops. The network is
now trained and it’s a generic feature extractor, which is like
a traditional algorithm that generates features. The generated
features are the discriminative features that are used to distin-
guish the classes. This study uses multiple 3D filters that give
4D output in each layer i.e. one 3D feature map per filter, see
[FIGURE 2]. Convolving the image with these filters produce
a feature map that detects the presence of those features in
the image. This nature of a CNN is the essence of its auto
feature extraction and it helps in the automatic computer-
aided design (CAD) system.

It is difficult to predict the features that a CNN can learn
without training it; thus, making it a tedious task to analyze
the features. Since a single network may contain millions of
parameters and we cannot mathematically predict the final
converged value in each filter without training them. Hence,
every time we train the CNN, the learned features need to be
investigated. Once trained, the CNN is loaded with the filter
weights, which are used to make the predictions with the test
images. It is convolved in each layer to obtain different results
for the different MRIs. The trained network is used to obtain
the features as described in Pseudo-code 1, 2, and 3.

III. PARAMETER INITIALIZATION
Let’s assume that the MRI/PET has a 64 × 64×64 matrix
represented by I (i.e. I =

[
Ixiyizi

]
i=1 to 64). In total, this will

result in 262,144 gray-scale values, which is the numerical
representation for the 3D image. Since we are working in 3D,
we will call each of these values a voxel, not a pixel. Each
voxel has a 3D value with x, y, and z coordinates. Here, we are
simply representing the MRI as a cube.

Hence, each voxel value mathematically assigns three
coordinates, but for easy representation, wewill use the single
vector notation vwhere, v =

[
Ixiyizi

]
to make the computation

simple. Let us consider the first convolution in the first layer
as in Equation (1). Here, b11 and w

1
N ,1 represent the initial bias

and the weight of the first convolution kernel in the N th filter,
which uses an initialization algorithm. Note ⊗ represents
element-wise multiplication.

[x11 , x
1
2 , x

1
3 , .., x

1
64] = [b11, b

1
2, b

1
3, .., b

1
64]+ [v1, v2, v3, .., v9]

⊗ [(w1
1,1,w

1
1,2,w

1
1,3.....w

1
1,9)] (1)

The window of the convolution operation then keeps on mov-
ing according to the stride size. To reduce this mathematical
expression, this can be rewritten with shorter terms. For each
node of the 3D convolution filter:

x lk = blk +
Nl−1∑
i=1

conv.3
(
wl−1ik , sl−1i

)
(2)

where conv.3 is a regular 3-D convolution without zero
paddings on the boundaries. Following Equation (2), x lk is the
input, blk is the bias of the k th neuron at layer l, and sl−1i is
the output of the ith neuron at layer l–1. wl−1ik is the kernel
(weight) from the ith neuron at layer l–1 to the k th neuron
at layer l. conv.3 represents an element-wise multiplication
of the [3× 3×3] kernel size. For the very first convolutional
layer, the input sl−1i is the 3× 3×3 matrix of the image pixel
value (maybe normalized) that is scanned by a window of the
same size.

When represented in a matrix or a discrete form, the N-
dimensional convolution for the discrete, N-dimensional vari-
ables A and B can be defined with (3):

C (j1, j2, . . . ..jN )

=

∑
k1

. . . .
∑
kN

A (k1, k2, . . . ., kN )B(j1 − k1, j2 − k2,

. . . .., jN − kN )

= conv.N (A,B) (3)

Each ki runs over all of the values that can lead to legal sub-
scripts for A and B. Thus, the 3D convolution runs as follows.
The layer convolves the input by moving the filters along the
input vertically and horizontally. Afterward, it computes the
dot product of the weights and the input, and then it adds a
bias term. As the filter moves along the input, it uses the same
set of weights and the same bias for the convolution; thus,
forming a feature map.
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In the SGD algorithm, the filter weights during the opti-
mization are iteratively updated as shown in Equation (4)

and Equation (5), where W t
l denotes the weights in the l th

convolutional layer for the t th iteration and E denotes the cost
function (updated using backpropagation for minimizing the
cost function) over a mini-batch of size N.

W (t+1)
l = W t

l + V
(t+1)
l (4)

where V (t+1)
l is calculated as

V (t+1)
l = m.V t

l − γ
t .αl

dE
dWl

(5)

Here, αl in Equation (5), is the learning rate for the l th layer,
m is the momentum due to the previous weight update in the
current iteration, and γ is the scheduling rate that decreases
the learning rate for the completion of each epoch. If αl = 0
then this depends on the value of l. All of the layers from 1:
l are not updated in terms of their weight; hence, the weights
are transferred in the final version of the trained model.

A. PARAMETER TRAINING

Total_error(E) = E(yL1 , ...y
L
N ) =

NL∑
i=1

(
yLi − ti

)2
(6)

This error in Equation (6) is a mean squared error, which is
obtained by adding the MSE value of the deviation from each
of the samples (i.e. training data (ti) from the predicted value
(yLi )). Here, the upper subscript L denotes the output for the
final layer. Based on the obtained error (E), backpropagation
(BP) is performed to update the weights for each parameter
as in Equation (7) [31]:

∂E

∂wlik
=

∂E

∂x l+1k

∂x l+1k

∂wlik
=

∂E

∂x l+1k

yli (7)

Here, the output of the x l+1k filter ‘k’ is the number of filters
in the l th layer, and the weights of the previous layer ‘l + 1’
give the output yli of the l

th layer during the BP. Similarly, the
bias is also updated as Equation (8):

∂E

∂blk
=
∂E

∂x lk

∂x lk
∂blk
=
∂E

∂x lk
(8)

As a result, it is written for the whole length of 1 to l + 1
layers; hence, it can be summed up as follow for N number
of filters in the l + 1 layer to obtain y in the l th layer as in
Equation (9):

∂E

∂ylk
=

Nl+1∑
i=1

∂E

∂x l+1i

∂x l+1i

∂ylk
(9)

During training, we need to backpropagate the gradient of
the error ∂E through this transformation, and to compute
the gradients with respect to the parameters as the batch
normalization (BN) transforms.

All experiments were conducted using MATLAB R2019a
academic software onWindows 10OS. Networkmodels were
trained on NVIDIA GeForce RTX 2070 GPU with 24 GB
of memory and tested in Intel R©CoreTMi5-9600K CPU @
3.70 GHz with 32 GB of memory. The trained mat file will
be provided to researchers upon request to the authors.
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IV. TEST ON DIFFERENT CNNs
In order to define an optimal number of layers for our
input of 64×64 × 64.3D scan, we tested from an initial
layer of single encoder i.e. Convolution-Batch normalization-
ReLU-max-pooling, and stated it as an L1 layer. Similarly,
the encoder blocks were further implemented on the L2, L3,
L4, L5, and L6 layer consecutively. In L6, the final feature
size from the sixth convolution was [2 2 2] for each of the
64 filters. This means that the filter kernels have only two
pixels in length for each filter; hence, expanding this to the
L7 layer would be an inoperable idea and will ultimately
reduce the features. Hence, we didn’t use seven convolutions
based architecture. Table 1 shows the result of classification
on these layer-wise CNN, whereas Table 2 presents the result
of classification using four different architectures based on
the reception area i.e. window size of the convolution kernel.
Similarly, the training and validation graph was also studied
to observe, how the architectures affect the training and also
help to better understand the convergence process of each
CNN, Figure 3. Correspondingly, to understand the extracted
features, from each convolution layer, a singleMRI from each
target domain was passed and the feature was observed as
in Figure 4. On minute observation we could find the differ-
ence in the lines, edges, intensities, and other patterns based
on the class domain. Moreover, FCL layers were visualized
using t-SNE projection as in Figure 5 for each architecture,
so we could support our finding. Here, the features were
visualized for the whole test set, so this will help us to judge
which architecture has segregated the feature in a better way.
Finally, the results from different hyper-parameter settings
and datasets are tabulated in Table 3 and Table 4 respectively.

V. WHY DIVERGING ARCHITECTURE?
The filter size determines the scanning window during the
convolution and the size of this window can be analogized as
the reception area. We have increased our filter size by two
strides in each consecutive layer so that the feature extracted
will be sequentially extracted at a low level, an intermediate
level, and a high level with a higher area of reception for
the successive layers. The low-level features are extracted
from the 3 × 3×3 filter window and it is max-pooled by
the 2 × 2×2 windows with a stride of one from the first
convolution layer (i.e. conv_1 to max-1) [FIGURE 2 (b)].
We call this a diverging network in the sense that the size
of the filter kernel keeps on increasing with an increase in the
step size or the stride; however, the number of filters in each
layer is same (i.e. 64) to maintain the channel size for the
input of 64× 64×64. Beginning from the first convolutional
layer, with filter size 3× 3×3; hence, a minute detail can be
easily captured. Once the layer deepens, we can accumulate
the features by increasing the window size for each layer.
Consequently, the max-pool stride is also increased to reduce
the redundancy in the feature. Conversely, the area of the
reception keeps on decreasing with an initial filter size of
9×9×9 in the converging network, whereas in the equivalent
architecture, a uniform kernel size of 3×3×3 is used in each

convolutional layer. All of the details in the architecture and
the results of the experiment after training and testing are
highlighted in Table 2, which includes the parameters in the
second column.

VI. PET OR MRI OR BOTH?
To find the effect of the size of the training material,
we trained the L4 diverging network with a variety of datasets
and the results are shown in Table 4. The used MR images
and PET images were all obtained from patients of ADNI
BL visits obtained under the ADNI 1 project [41]. We used
3D scans of T1 weighted structural MR images of whole-
brain; normalized, and processed using ADNI pipeline also
few scaled (listed in Appendix), whereas PET scans were
also obtained from ADNI BL; processed for smoothing, co-
registration, and few standardized (listed in Appendix). Our
experiment showed that MRI is a better imaging modality
than PET for 3D CNN classification. When the network is
trained with the smallest dataset includingMRI1 (see Table 4,
5th column for the type), the network gets under-fitted; hence,
the testing accuracy was low at 74.5%, which is slightly lower
than the validation accuracy. However, the training achieved
convergence as the accuracy reaches 100%. The same net-
work when trained with the BASELINE_MRI data (type
MRI2, see Table 4) under the same environment achieved
the highest testing accuracy of 94.5%. The reason behind
the increased accuracy may be due to the higher scans per
patient ratio (SPR), which decreases the variability for each
scan and loses its generality in the network. The PET scan
performed the worst in the L4 divNet with increased training
time. The BASELINE_PET_SMALL dataset, PET1, has a
testing accuracy of only 66.34%, whereas the bulkiest PET
dataset (i.e. BASELINE_PET_ALL, PET2) testing accuracy
reached only 50.21%, along with difficulties in achieving
convergence with 100 epochs and GPU training time almost
three times of PET1 though it is ten times bigger in size than
PET1. Finally, the MRI2+PET1 datasets were merged and
trained in a single network however, it could only reach a 90%
training accuracy after convergence and reached the testing
accuracy of up to 82%. As a result, it seems like MRI is a
better choice for CNN, and PET only has a complementary
role for theADprediction. It is worthmentioning that the PET
image is visually not so discriminative by the target class in
comparison to the MRI image (see FIGURE 1), which may
have resulted in the MRI’s better performance.

VII. EXPERIMENTAL RESULT
We present all of the results of our experiments in the tables
and figures below.

A. TEST ON DIFFERENT LAYERED CNN
Table 1 highlights the results from the diverging architecture-
based configuration with the use of different layers, starting
with two convolution encoding layers to six. The parame-
ter column details the filter size, number of filters, max-
pool filter size, stride, and FCL input and output number as
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FIGURE 3. (a). The training and validation loss (Y-axis) graph showed under each iteration (X-axis) of 100 epochs for the L1 convolution
as presented in Table 1. Remarks: The VL is much less than TL, which indicates a possible overfitting case. (b). The training and validation
loss (Y-axis) graph showed under each iteration (X-axis) of 100 epochs for the L2 convolution as presented in Table 1. Remarks: The VL is
less than TL, which indicates a possible overfitting case. (c). The training and validation loss (Y-axis) graph showed under each iteration
(X-axis) of 100 epochs for the L3 convolution as presented in Table 1. Remarks: The VL is higher than TL, which indicates a possible
under- fitting case. (d). The training and validation loss (Y-axis) graph showed under each iteration (X-axis) of 100 epochs for the L4
convolution as presented in Table 1. Remarks: The VL is slightly higher than TL, which indicates a possible optimal case. (e). The training
and validation loss (Y-axis) graph showed under each iteration (X-axis) of 100 epochs for the L5 convolution as presented in Table 1.
Remarks: The VL is much higher than TL, which indicates a possible under-fitting case. (f). The training and validation loss graph (Y-axis)
showed under each iteration (X-axis) of 100 epochs for the L6 convolution as presented in Table 1. Remarks: The VL and TL both have
higher values, which indicate a possible under-fitting case.

indexed in each row. Training accuracy reached almost 100%
for each configuration, whereas the validation and testing
accuracy start dropping after the L4 layer. This could be the

optimal case as plotted in training and validation loss against
the epoch numbers as shown in Figure 3(a) to 3(f), with the
remarks for overfitting or under-fitting cases.
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TABLE 1. Training and Testing Results for the Diverging Architectures with Changing Number of Layers as Specified in the Parameters Column. Here, C
[W∗W∗W N, S] Represents a Convolutional Layer with N Filters Sized W Each Dimension, Moving by Stride S and N Biases. TC [W∗W∗W N, S] Represents a
Transposed Convolutional Layer with N Number of Filter Sized W Each Dimension, Moving By Stride S and N Biases. BN [N] Represents the Batch
Normalization with an Offset of N And N Scale Values as Learnable Parameters. R Represents the ReLU Activation. M[W∗W∗W S] Represents the Max
Pooling with W Kernels with A Stride S, FC[O∗I] Represents the Fully Connected Layer with Input I and the Output O. CT, D, S, and C Represent the
Concatenation, Dropout, Softmax, and the Classification Layer, Respectively. The Training Pattern Is Shown In Fig 3.

B. TEST ON DIFFERENT ARCHITECTURES
As discussed in section IV, the results using different archi-
tectures based on the reception area of convolving filter size
i.e. the results from 4 architectures viz; diverging, equivalent,
converging, and U-net are presented as in Table 2. The param-
eter column is indexed as same as in Table 1.

C. TEST FOR DIFFERENT HYPER-PARAMETER SETTINGS
As discussed in section II C, hyper-parameters play an impor-
tant role to reach an optimal case for the best performance of
the network so we experimented with several activation func-
tions, initialization techniques, and optimization algorithms
to find the best case as shown in Table 3.

D. FIGURE FOR EACH ARCHITECTURE’S CONVOLUTIONAL
TRANSFORMATION
Convolutional transformation is visualized using Pseudo-
code 1; here we present Figure 4 for each class domain anal-

ysis, visualized using a single patient MRI scan. The number
of features keeps on reducing from the former convolutional
layer to the latter one. The result from the L4 diverging archi-
tecture network is presented in slice-view, scaled to 64 × 64
for better visualization.

E. TEST ON DIFFERENT DATASETS
Although the network is finalized, still the dataset size should
be determined as it can heavily impact the network perfor-
mance. So, we were interested to see how the number of
training material affects the testing accuracy and hence we
performed experiments for the different datasets as shown
in Table 4. Demographic details and file type are listed in the
Appendix.

F. FIGURES FOR EACH ARCHITECTURE’S FCL T-SNE
TRANSFORMATION
FC layers weights are visualized using T-SNE transformation
as stated in Pseudo-code 2, the result of experiments from
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TABLE 2. Test results using various types of architectures. The parameters are indexed as in Table 1.

each architecture type is shown in Figure 5, where we have
presented the class-wise representation of figures for the last
three FCL used.

VIII. 3D CNN STATE OF THE ART COMPARISON
Hosseini et al. [14] used a deeply supervised adaptable 3D
CNN (DSA-3D-CNN) based on the autoencoder network
for AD classification that demonstrates feature maps for the

various layers. The reported accuracy is 97.06% for the binary
classification of the AD/NC using only the MRI dataset. The
reported accuracy is from a 10-fold CV, which means that
only one MRI in a batch of ten is used in testing, whereas the
other nine are used for training and validation. Hence, only
10% of the total image (i.e. 21 subjects) is used for testing
[36]. Besides, each image participates in training and testing;
thus, the idea of an untouched test set seems to be avoided
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FIGURE 4. Convolution layer visualization of maximally activated feature using single MRI scan, original size resized to [64 64 64], using
pseudocode 1, employed network is L4 diverging. Each convolution layer for a typical MRI of AD, CN and MCI category.

TABLE 3. Classification performance results for the BASELINE_MRI data; under a different hyper parameter setting that is investigated in the L4 diverging
architecture as listed in table 6.
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TABLE 4. Results of the classification for the different dataset sizes using L4 diverging. This was tested on a variety of dataset sizes in MRI and/or PET
imaging that ranges from small to large size datasets. The MRI1, MRI2 and PET1, PET2 type are detailed in the appendix.

during cross-fold validation. Oh et al. [35] also performed
5-fold CV with a moderately sized dataset with an accuracy
of around 84.5%. Goceri [32] and Gupta et al. [33] reported
accuracies of 98.06% and 94.74% respectively, where they
used data splitting and tested them in 20% and 10% of the
dataset respectively. Although the accuracy is higher, the SPR
ratio is still high, which may cause a generalization error.
Payan and Montana [34] had an optimal performance for
larger data size, with an accuracy of around 89.47% for
three classes of AD/MCI and HC. However, here the testing
ratio is only 10%, which may suggest the case of possible
overfitting. They have trained 3D CNN using 5×5×5 patch-
based so not a whole MRI itself. Conversely, we tested using
the whole MRI and PETs in different data sizes, splitting the
data in 5:2:3 ratios for training, validation, and testing. Hence,
the 30% untouched data when tested can give us a reliable
result.

In Table 5, the term SPR is introduced, which indicates
the use of multiple scans from a single patient, but not nec-
essarily at the same time. As a result, multiple MRIs and
PETs were acquired from a single patient for SPR greater
than ‘1’; however, the image acquisition and preprocessing
steps were different for each of the scans. A lower SPR value
can bring variability in the dataset; therefore, the value of ‘1’
indicates a single scan from a patient. This may eventually
bring generality in the trained model; however, this can result
in a low performance due to the constraint of the limited
training material as in our case with the MRI scans, where
the accuracy dropped to 74.55%ϕ from our best outcome of
94.5% (see Table 5)ξ . Later to check with the PET, we first

trained it with a smaller database with scans from each unique
patient (i.e. SPR=1); however, the results were poor. It was
then tested with a larger PET database and a higher SPR. This
also resulted in a low performanceζ that led us to conclude
that PET is not a good choice for image-based 3D-CNN
classification. On further tests with PET+MRI as presented
in the last row of table 5, we found a moderate result that is
merely due to higher true positives from the MRI scans than
from the PET. Thorough experiments were performed with a
different number of subjects to find the effect of data-size in
both MRIs and PETs; hence we did not use the same number
of patients.

A. PERFORMANCE ANALYSIS AND DISCUSSION
To study the proposed model performances listed in Table 5,
we visualized the convolutional layer as well as the FCL with
the help of Pseudo-code 1, 2, and 3. The convolution results
have been discussed earlier; here we will discuss the FCL
output. FIGURE 6 depicts the distribution of the features
for the test image set, which consists of 296 scans that are
separated layer-wise during classification from the first con-
volution to the last FCL. The classification performance of
the converging and diverging architecture is the best out of the
four selected architectures (Table 2). Even so on the basis of
FCL patient-level visualization, as demonstrated in Figure 6,
we see that the features for each class start to separate well
in the diverging architecture than the converging one. From
the first FCL FC1 to the third FCL FC3, the data visualization
using t-SNE shows a better separation in the second case (i.e.
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FIGURE 5. FCL feature visualization using t-SNE 2D feature projection for the different architectures during testing. The colored dots represent single MRI
scan features from the test set in the first three FCL, namely FC1, FC2, and FC3. The feature starts to show a class-domain property from an FCL, and it is
visualized by the start of the formation of the same colored cluster. Based on the visual inspection, we determined that the diverging architecture-based
features are better clustered and separated than the others, Fig 5(d)-(f). Meanwhile, there is poor separation in the case of the U-net-based architecture
as shown in Fig 5(j)-(l). Here, the training environment and the training material used for training were all the same; the generated models are detailed
in Table 2. The X-axis and Y-axis represent the values of the 1st dimension and 2nd dimension obtained from t-SNE 2D projection respectively.

diverging, see FIGURE 6). Similarly, based on the final FCL
graph plotted as separate color curves for each cohort domain
against the real weights of the final 100 parameters from
the trained network without any projection (see FIGURE 8),

shows a better demarcation between each colored graph than
the 512 parameters from the U-net architecture. Afterward,
we moved back to the training curve of these three networks
(see FIGURE 7) to finalize the best performance. It was
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FIGURE 6. Feature visualization using t-SNE 2D projection for the L4 divNet for 296 test images from the BASELINE_MRI data.
Each colored dot represents the feature of a single MRI of the indexed class. This starts from the 1st convolution to the 4th

convolution (i.e. from Fig (a) to Fig (d)). The features from similar groups start to segregate, and it can be distinctly visualized
from the 1st FCL (i.e. FC1, Fig (e)). It continues until the last FCL (i.e. FC4), where only a few colored dots are found in the wrong
cluster (Fig (h) near the green CN group and a few in the blue MCI group). This overlapped region may be due to the possible
false positives or false negative predictions that are subjected to errors in the test set prediction. The X-axis and Y-axis
represent the values of the 1st dimension and 2nd dimension obtained from the t-SNE 2D projection respectively.

observed that the validation loss is significantly higher than
the training loss in the converging and equivalent architecture.
This indicates that the network can still be optimized, which
was achieved with a diverging architecture and proper hyper-
parameter selection.

Regarding the hyper-parameter selection, it is important to
maintain proper and timely training and good performance of
the trained model. Concerning our experiment, the L4 diverg-
ing architecture was the best among the selected architecture
as specified in Tables 2 and 3, whereas important hyper-
parameters like the initialization, activation, and optimization
algorithms were selected using Table 3.

B. GENERALIZATION AND OVERFITTING PROBLEM
If we look at the recent architectures [14], [32]–[34] and the
performance results, we find that the reported precision and
accuracy rate are very high, more than 90%. In MR-guided

image acquisition, various technical specifications like acqui-
sition instrument, spatial positioning, contrast intensity, plane
orientation, registration template, correction method, and a
wrapping protocol can bring variability in the MRI of the
suspected class [40]. Hence, a neural network trained on
one ‘variety’ of an MRI, may find it ambiguous to detect
an MRI of the same target class, if this is acquired dif-
ferently, this causes a generalization error in the network.
The generalization error is one of the leading challenges
in medical imaging diagnosis. In this case, we have tested
our network/model with other data from the ADNI, which
we denoted as MRI_adapted. This is because it was partly
adapted from [39] which differs in participants under the
ADNI project. The MRI_adapted dataset was used only for
testing of the generalization, which consists of 135 AD, 162
CN, and 134 MCI 3D scans; the testing results are presented
in FIGURE 9. The other way to scrutinize could be with
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FIGURE 7. Training graph plotted against the training loss and validation loss in the Y-axis and the corresponding iteration number in the X-axis.
By having more iteration numbers, the longer the epochs are. The training plot of the converging architecture has a validation loss that is much
higher than the training loss. This may cause a poor performance, which is similar in the case with an equivalent architecture. However,
the validation loss is quite reduced in the diverging architecture; thus, making it the optimal choice. Here, the training material and the training
environment are identical in all three cases.

FIGURE 8. Final FCL weights values plotted in Y-axis directly for three target domains separately for each tested architecture
using Pseudocode 3. X-axis extends from 0-100 for first 3 graphs whereas it extends from 0-512 in fig (d). The first three graphs
have 100 parameters before producing the final three outputs for the softmax classifier whereas U-net has 512 parameters.

the visualization of the features. By extracting the better
features, CNN will learn better. Similarly, overfitting is a
contemporary part that comes with the generalization error.
A non-generalized model learns ‘too well’ so that it only
memorizes the training pattern that causes overfitting. Once
we solve the overfitting problem, generality is also achieved.

IX. CONCLUSION
CNN like ANN, itself is a semi-supervised learning algorithm
that doesn’t require prior heavy feature engineering, and
its self-auto generic feature extraction property is already
discussed in section II. Few researchers have been suc-

cessful to develop optimization algorithm as [32], however,
the most important contribution is the design of the better
architectural unit itself [33]–[35], whether simple or complex,
the result should be satisfactory and properly analyzed, which
we think we have done to some extent. Besides, the pre-
vailing techniques are mainly 2D image-based methodology,
so the 3D architecture based concept is itself an initiative
approach. This concluding section summarizes the key points
that may be helpful for other researchers working with med-
ical imaging in the same field with 3D CNN.
• The deep learning process heavily depends on the choice

of training materials. Closely related images (training) can
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TABLE 5. Comparison with other algorithms with 3D CNN based
architecture.

enhance the training performance; however, it can simultane-
ously ‘spoil’ the model due to overfitting. ‘Good data’ rather
than ‘big data’ is required to generate a good network.

FIGURE 9. The generality test with an entirely different dataset that was
not involved in training and was acquired from another ADNI project [39].

• Although our trained CNN is not deep enough to pro-
totype a human brain structure, unlike reconstruction and
segmentation models, it is however good enough to classify
the MRIs, based on the segregated features learned in the
convolutional layers, which is the actual aim of our study.
• MRI can be a better choice than PET for image-based

CNN models. This may be due to its diverse pixel value of
the MRI.
• Selection of hyper-parameters like initial-learn rate,

learn-rate drop factor, the activation function and the ini-
tialization algorithm can affect the training process, but it
has little effect on its performance once the convergence is
achieved.
• The architecture and depth affect the performance of

the model thus, it is very important to have a generalized
cum optimized model. In regards to the selection of features,
we are convinced that the diverging window or reception area
in each layer will be more beneficial than the contemporarily
used converging or equivalent reception area.
• ‘Overfitting’ and ‘generalization’ problems are the

biggest challenges for deep learning models.
• Since we have proposed an optimized DL based CNN for

classification of AD, MCI, and NC using MRI/PET, it will
assist the medical clinicians as an initial rapid test to identify
the patient’s condition using brain image scans only. Besides,
MCI being an early stage of dementia means MCI identifica-
tion will also help in the early prognosis of AD.

Based on our findings we hope this can be helpful in many
ways to researchers working in the same field of MRI/PET
classification. Our study here is limited in the ADNI dataset,
and may not act as universal CAD for AD detection yet
more avenues are to be explored. The constantly developing
deep learning methods can prove to make this process more
optimal, robust, rapid, and automatic, with a minimum level
of human supervision.

APPENDIX
Appendix 1 with a list of files for MRI and PET types
in Table 1 along with demographic details in Table 2. Also,
a high-quality visio image for FIGURE 2 is presented.
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