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ABSTRACT In the field of computer vision, super-resolution reconstruction techniques based on deep
learning have undergone considerable advancement; however, certain limitations remain, such as insufficient
feature extraction and blurred image generation. To address these problems, we propose an image super-
resolution reconstruction model based on a generative adversarial network. First, we employ a dual network
structure in the generator network to solve the problem of insufficient feature extraction. The dual network
structure is divided into an upsample subnetwork and a refinement subnetwork, which upsample and opti-
mize a low-resolution image, respectively. In a scene with large upscaling factors, this structure can reduce
the negative effect of noise and enhance the utilization of high-frequency details, thereby generating high-
quality reconstruction results. Second, to generate sharper super-resolution images, we use the perceptual
loss, which exhibits a fast convergence and excellent visual effect, to guide the generator network training.
We apply the ResNeXt-50-32×4d network, which has few parameters and a large depth, to calculate the loss
to obtain a reconstructed super-resolution image that is highly realistic. Finally, we introduce theWasserstein
distance into the discriminator network to enhance the discrimination ability and stability of the model.
Specifically, this distance is employed to eliminate the activation function in the last layer of the network
and avoid the use of the logarithm in calculating the loss function. Extensive experiments on the DIV2K,
Set5, Set14, and BSD100 datasets demonstrate the effectiveness of the proposed model.

INDEX TERMS Deep learning, dual network structure, generative adversarial network, perceptual loss,
super-resolution.

I. INTRODUCTION
With the development of information technology and
progress in the digital age, the amount of all types of infor-
mation is rapidly increasing. As the main carrier of informa-
tion dissemination, images are widely used in various fields.
However, due to the limitations of hardware and cost, directly
obtaining high-resolution (HR) images is highly challeng-
ing, and low-resolution (LR) images are inadequate in the
context of specific scenes. Therefore, increasing the image
resolution and enhancing the image quality have emerged
as critical problems in recent years, having notable research
significance and application value.

In the field of image processing, image super-resolution
(SR) reconstruction is a fundamental and critical issue, as a
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key step in many image related applications, including object
tracking [1], object detection [2], semantic segmentation [3],
image annotation [4], image inpainting [5], and image clas-
sification [6]. In these applications, a higher resolution of the
image corresponds to more satisfactory results.

In general, image super-resolution reconstruction algo-
rithms can be divided into interpolation based, reconstruction
based and learning based SR reconstruction. Among these
algorithms, the interpolation based image SR reconstruction
algorithm involves a simple calculation and it easy to under-
stand; however, the reconstructed image is usually blurry and
involves missing details (especially high-frequency details)
and ringing effects. The reconstruction based image SR
reconstruction algorithm considers the degradation of the
image and combines the prior knowledge to achieve sat-
isfactory results. However, under high upscaling factors or
when the number of input images is small, the reconstructed

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 215133

https://orcid.org/0000-0001-6782-5777
https://orcid.org/0000-0002-4681-4005
https://orcid.org/0000-0002-6334-413X
https://orcid.org/0000-0001-6662-2564
https://orcid.org/0000-0001-7623-5816
https://orcid.org/0000-0003-3861-8503


Y. Wu et al.: Image Super-Resolution Reconstruction Based on a GAN

image quality is low, and the image is excessively smooth.
The learning based image SR reconstruction algorithm fully
considers the mapping relationship among images, solves the
problems of missing details and blurring of the reconstructed
image to a large extent, and achieves enhanced results.

In recent years, image SR reconstruction based on deep
learning [7] has achieved remarkable results; nevertheless,
certain challenges remain. In particular, the LR image is
inherently blurry and damaged, and the image lacks sufficient
information regarding the details, which hinder the network
learning process. Second, the model feature extraction is
insufficient, and most of the spatial information is lost, owing
to which, the feature map is excessively rough to suitably
describe the image; thus, the generated image is blurry.

To solve the above mentioned problems, we propose a uni-
fied end to end convolutional neural network model based on
a generative adversarial network (GAN) to enhance the image
SR reconstruction process. We divide the network structure
into generator and discriminator networks. In the generator
network, a dual network structure is implemented, composed
of an upsample subnetwork and a refinement subnetwork.
The upsampling subnetwork is used to sample the input image
to a finer scale to enable the network to extract more detailed
information, reduce distortion and enhance the image quality.
The refinement subnetwork is used to recover certain missing
details and spatial information in the upsampled image to
enhance the learning ability of the network and generate clear
SR images. In the discriminator network, the Wasserstein
distance in the WGAN is incorporated [8], the sigmoid acti-
vation function in the last layer of the network is eliminated,
and the loss function does not consider the logarithm value,
to optimize the network and discriminating ability of the
network.

The remaining paper is organized as follows. Section II
provides certain background knowledge by describing the
related works. Section III describes the proposed image
super-resolution reconstruction model and the design of the
dual network structure and loss function. Section IV presents
the comparison and analysis of the experimental results.
Finally, section V describes the concluding remarks and
scope for future work.

II. RELATED WORK
A. IMAGE SUPER-RESOLUTION RECONSTRUCTION
Image SR reconstruction refers to the process of recovering
the corresponding HR image from a given LR image by using
relevant knowledge in the fields of digital image processing
and computer vision, by employing specific algorithms and
processing techniques [9].

The amount of information contained in an image depends
primarily on the image resolution. A higher image resolution
corresponds to a clearer edge of the object in the image, and
thus, a larger amount of detailed information contained in the
image. According to the considered number of LR images,
image SR algorithms can be divided into two categories:

single image (SISR) and multiple image (MISR). The SISR
algorithm reconstructs the corresponding HR image from a
given LR image. The MISR algorithm reconstructs the HR
image based on a series of LR images, through a specific
technique. The LR image is obtained by degrading the HR
image. During the image degradation, the high-frequency
information of theHR images is often lost.Moreover, because
an HR image corresponds to countless LR images, the image
SR problem is a typical ill posed problem.

B. TRADITIONAL METHOD
Based on different classification criteria, the image SR recon-
struction technology can be divided into different categories.
In terms of the number of input LR images, the technique
can be divided into SISR and MISR (video) reconstruc-
tion. In terms of the transform space, the technique can be
divided into frequency and spatial domain SR reconstruction.
In terms of the reconstruction algorithms, the technique can
be divided into interpolation, reconstruction and learning
based SR reconstruction.

The interpolation based image SR reconstruction algo-
rithm regards each image as a point on the image plane.
Thus, the SR image is estimated by fitting the unknown
pixel information on the plane with the known pixel infor-
mation, usually using a predefined transformation function or
interpolation kernel. The common interpolation based image
SR reconstruction algorithms can be categorized as nearest
neighbor interpolation [10], bilinear interpolation [11] or
bicubic interpolation [12].

The reconstruction based image SR reconstruction algo-
rithm first considers the degradation model of the image.
Specifically, the LR image is assumed to be obtained after
the HR image has undergone the appropriate motion transfor-
mation, blur and noise related processes. Therefore, the algo-
rithm builds a model for the image degradation process and
inversely solves the corresponding HR image based on the
input LR image [13]. The common reconstruction based
image SR reconstruction algorithms include the iterative back
projection (IBP) [14], projections onto convex sets (POCS)
[15], and maximum a posterior (MAP) techniques.

The learning based image SR reconstruction algorithm
uses a considerable amount of training data to learn the
correspondence between the LR andHR images and performs
the prediction based on the learned mapping relationship to
realize the image SR reconstruction. The common learning
based image SR reconstruction algorithms include manifold
learning, sparse coding and deep learning methods.

C. DEEP LEARNING METHOD
Owing to the promising potential of deep learning in the
field of image processing, image SR algorithms based on
deep learning have been widely applied. In 2014, Dong
et al. [16] proposed a CNN based image SR reconstruction
algorithm, namely, the super-resolution convolutional neural
network (SRCNN) technique. Subsequently, Dong et al. [17]
improved the SRCNN model and proposed the FSRCNN
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model to have a higher image reconstruction rate. Inspired
by the VGG [18] and ResNet [19] models, in 2016, Kim
et al. [20] proposed a very deep image super-resolution
(VDSR) model based on the VGG network, which out-
performed the SRCNN on the SISR. Subsequently, Kim
et al. [21] proposed an RCNN based image SR recon-
struction algorithm, deeply-recursive convolutional network
(DRCN), which outperformed the VDSR. In 2017, Tai et al.
[22] proposed the deep recursive residual network (DRRN)
model to improve the image SR effect. Moreover, in 2017,
Lai et al. [23] proposed the Laplacian super-resolution
network (LapSRN) model with a multicascade structure,
which could gradually enlarge the LR image to obtain the
required HR image. In 2017, Lim et al. [24] proposed the
enhanced deep residual network (EDSR) model to remove
the redundant modules of SRResNet [26], thereby expand-
ing the model and enhancing the quality of the generated
image.

D. GENERATIVE ADVERSARIAL NETWORK (GAN)
In 2014, Goodfellow et al. [25] first proposed the genera-
tive adversarial network (GAN), which marked a significant
advancement in unsupervised learning. The GAN is trained
to generate model G through an adversarial process. The
generator network G and discriminator network D are trained
simultaneously. The two networks compete with each other
and undergo alternate optimization during the training pro-
cess. The generator G trains the input data to generate the
corresponding samples to deceive discriminator D, and the
discriminator D undergoes continuous training to distinguish
between the ground truth and fake data generated by the
generator. The objective function of the original GAN can be
defined as in equation (1):

min
G

max
D

V (D,G) = Ex∼pdata(x)
[
logD (x)

]
+ Ez∼pz(z)

[
log (1− D (G (z)))

]
(1)

Here, x represents the ground truth sample, and z represents
the random noise variable. G and D are trained to mini-
mize and maximize the probability of the objective function,
respectively.

Inspired by the GAN, Ledig et al. [26] proposed a GAN
based image SR algorithm, SRGAN, in 2017. The method
incorporated the GANmodel and perceptual loss [27], owing
to which, the reconstructed SR image exhibited an excellent
visual effect and was more realistic.

III. METHOD
This section describes the overall design of the model. First,
we introduce the design of the generator and discriminator
networks and present the corresponding network structure
and architecture diagrams. Subsequently, we describe the
design of the various model components and loss function.
Finally, we present the overall objective function of the
model.

A. NETWORK STRUCTURE
In this work, we divide the network structure into a gen-
erator network and discriminator network. In the generator
network, a dual network structure is implemented to solve
problems such as insufficient feature extraction and the gen-
eration of blurry images. The generator network consists of
an upsample subnetwork and refinement subnetwork, which
are used jointly to solve the problems of SR and optimization,
to ensure that the network can extract a larger amount of
image feature information. Moreover, the perceptual loss is
used to ensure that the network can recover more detailed
information, enhance the learning ability of the network,
and generate clear SR images. In the discriminator network,
the Wasserstein distance is incorporated in the WGAN to
optimize the network to enhance the discrimination ability of
the network and model stability.

1) GENERATOR NETWORK
The generator network has a dual network structure, includ-
ing an upsample subnetwork and refinement subnetwork. The
overall network corresponds to a deep CNN architecture. The
dual network structure is employed because the LR images
often lose a large amount of high-frequency details during
the upsampling process, and thus, a refinement subnetwork is
introduced as an additional component. We input the upsam-
pling results of the LR image to the refinement subnetwork
and fully extract the features of the image to recover the lost
high-frequency details. The generator network architecture is
presented in Table 1.

a: UPSAMPLING SUBNETWORK
We input the LR image into the upsample subnetwork
and perform convolution operations on the image. Specifi-
cally, using the concept of the residual network, we design
8 residual blocks (res_blocks×8) to increase the depth of
the network and enhance the model performance to ensure
that the network can upsample the image to a finer scale,
thereby obtaining more detailed information. During the
image upsampling process, the network performs the process-
ing in two sequentially convolutional layers (i.e., the convo-
lutional and deconvolution layers) [28]. Each deconvolution
layer is composed of the learned kernels, which upsample the
LR image by 2 times and finally output the×4 SR image. The
structure of the upsampling subnetwork is illustrated in Fig. 1.

b: REFINEMENT SUBNETWORK
As shown in Fig. 2, to reconstruct SR images with a higher
quality, we design a refinement subnetwork that can fully
extract the features of the image and recover the lost high-
frequency detail information. The input of the refinement
subnetwork is the output of the upsampling subnetwork.
In this network, we add the components of the residual block
(res_blocks×16) to ensure that the network can recover more
detailed information and the spatial information lost in the
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TABLE 1. Architecture of the generator network.

FIGURE 1. Structure of the upsampling subnetwork. ‘Input’, ‘Conv’, res_blocks×8’, ‘Deconv’, and ‘Output’ represent the LR image, convolutional layer,
8 residual blocks, deconvolution layer, and output of the upsampling subnetwork, respectively.

FIGURE 2. Structure of the refinement subnetwork. ‘Input’, ‘Conv’,
‘res_blocks×16’, and ‘Output’ represent the output result of the
upsampling subnetwork, convolutional layer, 16 residual blocks, and
reconstructed SR image, respectively.

upsampling operation. In this manner, the learning ability of
the network is enhanced, and a clear SR image is generated.

In the generator network, data preprocessing is performed
on all the input images, and the images are normalized to
[−1, 1]. To prevent the problem of the vanishing gradient in
the network, we apply the LeakyReLU activation function
after each convolutional layer, except for the last layer of
the refinement subnetwork, to ensure that the neurons with
negative outputs are not lost. In the last layer of the refine-
ment subnetwork, the Tanh activation function is applied.
Moreover, because the input and output data distributions

FIGURE 3. Structure of the discriminator network. ‘Input’, ‘Conv’, ‘Linear’,
and ‘Output’ represents the reconstructed SR image, convolutional layer,
fully connected layer, and probability that the reconstructed SR image is
the real HR image, respectively.

of the image SR reconstruction are nearly identical and not
independently distributed, batch normalization (BN) [29] is
not applied in the entire network structure.

2) DISCRIMINATOR NETWORK
The discriminator network adopts the deep CNN architecture.
The network structure is shown in Fig. 3, and the architecture
is described in Table 2.
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TABLE 2. Architecture of the discriminator network.

As shown in Fig. 3, to avoid excessive downsampling of
the image, which may lead to a loss of the high-frequency
information of the image, we adopt a relatively simple design
for the discriminator network convolution structure and do
not incorporate the pooling operations and BN. Although
the GAN can generate clearer and more realistic samples
than those generated by other models, it exhibits limitations
such as unstable training and the occurrence of the vanish-
ing gradient and mode collapse. To address these problems,
we introduce the Wasserstein distance in the WGAN into the
discriminator network such that the last layer of the network
does not use any activation function, to enhance the discrimi-
nation ability of the network and model stability. In addition,
the input of the discriminator network is an SR image, and
the image is trained by the network to return the probability
of the image being a real image.

B. LOSS FUNCTION
In the designed GAN, we adopt the pixelwise loss and per-
ceptual loss in the generator network to jointly optimize the
network and introduce theWasserstein loss in the discrimina-
tor network to optimize the network. Therefore, the generator
network can generate a high-quality SR image, and the dis-
criminator network can distinguish the true sample from the
false sample more accurately.

1) PIXELWISE LOSS
In the generator network, the input of the network is an LR
image rather than random noise. To ensure that the output of
the generator network fits the distribution of the ground truth,
the pixelwise loss is used to detect the deviation between the
predicted value and ground truth of the model. The calcula-
tion is performed using equation (2):

LossMSE =
1
N

N∑
i=1

(
‖ G1

(
ILRi
)
− IHRi ‖

2

+‖ G2

(
G1

(
ILRi
))
− IHRi ‖

2
)

(2)

Here, LossMSE represents the mean square error loss func-
tion; ILR and IHR represent the pixel value of the input LR
image and HR image, respectively; G1 and G2 represent the
upsample and refinement subnetworks, respectively.

2) PERCEPTUAL LOSS
The pixelwise loss operation may result in the loss of the
high-frequency information in the image, resulting in insuf-
ficient image details and unclear outlines. To address these
problems, we design and add the perceptual loss function
to the generator network to guide the network training in
combination with the pixelwise loss. In this work, we use
a convolutional neural network to extract the features of the
output image and ground truth and calculate the sum of the
Euclidean distance point by point on the feature map of the
output image and ground truth. The perceptual loss function
can be expressed as in equation (3):

Lossp =
1
N

N∑
i=1

(
ϕ
(
G2

(
G1

(
ILRi
)))
− ϕ

(
IHRi

))2
(3)

Here, Lossp represents the perceptual loss function, and
ϕ represents the neural network. We input the output of
the refinement subnetwork and real HR image to ϕ, extract
the respective image features and calculate the sum of the
Euclidean distances. Therefore, the network can obtain more
high-frequency information during the training process and
guide the generator network to generate clearer SR images.
To calculate the perceptual loss, as the neural network of ϕ,
we choose the ResNeXt-50-32 × 4d network, which is pre-
trained on ImageNet. Compared with VGG19, this network
involves fewer network parameters and a smaller amount of
calculation, exhibits a larger depth, and achieves a higher
accuracy.

In summary, the loss of the generator network consists of
two parts, that is, the pixelwise and perceptual losses. The
generator network loss function LossG can be defined as in
equation (4):

LossG = LossMSE + Lossp (4)

3) DISCRIMINATOR LOSS
The GAN involves problems such as difficult convergence
and easy collapse of the model. Consequently, we introduce
the Wasserstein distance in the WGAN [8], in which the loss
function does not consider the logarithm. Finally, we design
the corresponding loss function according to the network
structure. The discriminator loss function is as shown in
equation (5):

LossD =
1
N

N∑
i=1

[
D
(
G2

(
G1

(
ILRi
)))
− D

(
IHRi

)]
(5)

Here, LossD represents the discriminator loss function, and
D represents the discriminator network. We input the output
of the generator network and real HR image to the network,
calculate the distance related difference between the inputs,
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and adopt the average value to find the minimum cost of the
generated sample and real sample.

C. OBJECTIVE FUNCTION
According to the designed loss functions, we modify equa-
tion (1) to obtain the final objective function of the GAN,
as shown in equation (6):

min
G

max
D

V (D,G) =
1
N

N∑
i=1

[
‖ G1

(
ILRi
)
− IHRi ‖

2

+ ‖ G2

(
G1

(
ILRi
))
− IHRi ‖

2

+

(
ϕ
(
G2

(
G1

(
ILRi
)))
− ϕ

(
IHRi

))2
+

[
D
(
G2

(
G1

(
ILRi
)))
− D

(
IHRi

)]]
(6)

IV. EXPERIMENTS
A. DATASETS
We perform experiments on four widely used benchmark
datasets, DIV2K, Set5, Set14 and BSD100 (the test set of
BSD300). TheDIV2K dataset consists of 800 training images
and 100 validation images; the BSD100 dataset consists
of 100 images; and the Set5 and Set14 datasets consist of 5
and 14 images, respectively.

In this work, to avoid the overfitting of the model, the train-
ing data are preprocessed to increase the diversity of the
data and enhance the overall generalization ability of the
model. The data preprocessing involves the following data
augmentation methods that are implemented randomly: ran-
dom scaling, random rotation, and random flip.

B. TRAINING DETAILS AND PARAMETERS
The training and verification of the experiment are based on
the Kaggle platform. The GPU model is NVIDIA TESLA
P100, thememory is 16GB, and the programming framework
is PyTorch, based on Python.

The model is trained from scratch, and the iteration ratio
of the discriminator D to generator G is 5:1. During training,
we set α = 0.2 for the activation function, LeakyReLU [28],
with the batch_size = 8. In the generator network, we use
the Adam optimizer with the momentum terms β1 = 0.5
and β2 = 0.9, and set the initial learning rate as 3e-4. In
the discriminator network, we use the RMSprop optimization
method and set the initial learning rate as 5e-5.

In the generator network, the weights in each layer are
initialized using a zero mean Gaussian distribution with a
standard deviation of 0.02, and the biases are initialized as
0. In the discriminator network, the weights in the fully
connected layers are initialized using a zero mean Gaussian
distribution with a standard deviation of 0.1, and the biases
are initialized as 0.

To train the generator and discriminator networks, we pre-
process the training image. First, we crop the HR image to
the corresponding size. Second, we use the bicubic method

with a factor of 4 to downsample the HR image to generate
the corresponding LR image. Finally, we normalize the image
data to [−1, 1].

C. EVALUATION INDEX
In this work, we calculate the peak signal to noise ratio
(PSNR) [30] and structural similarity (SSIM) [31] of the
reconstructed image as the evaluation indexes.

The PSNR is an engineering term for the ratio between the
maximum possible power of a signal and the power of the
corrupting noise that affects the fidelity of the signal repre-
sentation. This term is used to measure the pixel difference
between the processed image and corresponding image and
is the most widely used image quality evaluation index in
the field of SR. The PSNR considers the MSE of the two
images to calculate the similarity, and its unit is decibel (dB).
A higher PSNR corresponds to a smaller distortion of the SR
image and a more desirable effect. The PSNR and MSE can
be defined as in equations (7) and (8), respectively:

PSNR = 10 log10

(
(2n − 1)2

MSE

)
(7)

MSE =
1

H ×W

H∑
i=1

W∑
j=1

[X (i, j)− Y (i, j)]2 (8)

Here, n is the number of bits of the image pixel; H and
W are the height and width of the image, respectively; i and j
represent the position of the pixel;X and Y denote the original
HR image and reconstructed SR image, respectively, and have
equal sizes.

The SSIM is used to measure the similarity among image
structures. The SSIM index defines the structural information
considering that the image composition is independent of the
brightness and contrast, thereby reflecting the properties of
the object structure in the scene, and it models the distor-
tion as a combination of three different factors: brightness,
contrast, and structure. Moreover, the mean and standard
deviation are considered as an estimate of the brightness and
contrast, respectively, and the covariance is considered as a
measure of the structural similarity. The index is usually used
to evaluate the quality of image denoising results. The range
of the evaluation value is [0, 1]. A value closer to 1 indicates
that the structures of two images are more similar. The SSIM
is defined as in formula (9):

SSIM (x, y) =

(
2µxµy + C1

) (
2σxy + C2

)(
µ2
x + µ

2
y + C1

) (
σ 2
x + σ

2
y + C2

) (9)

Here, x and y denote the original HR image and the recon-
structed SR image respectively; µx and µy are the average
values of x and y, respectively, expressed as the estimated
value of brightness; σx and σy are the standard deviations of
x and y, respectively; σxy is the covariance of x and y; C1 and
C2 are constants, used to ensure the stability of the SSIM.
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Algorithm 1 Proposed Image Super-Resolution Reconstruction Algorithm

D. DETAILS OF THE PROPOSED ALGORITHM

Input: LR image (the shape is [n, c, h, w], where n is the batch size, c is the number of channels, and h and w are the height
and width of the feature map, respectively), HR image.
Output: SR image.
Initialization:Generator networkG, discriminator networkD, ResNeXt-50-32×4d network ϕ. ILR and IHR represent the pixel
value of the input LR image and HR image, respectively. The discriminator involves k iterations (5, in this work).
For number of training epochs do

For k iterations do
Step 1: Input ILR, train the upsample subnetwork, and obtain the output G1(ILR).
Step 2: Input G1(ILR), train the refinement subnetwork, and obtain the output G2(G1(ILR)).
Step 3: Input G2(G1(ILR)) and IHR, train D, and obtain the output D(G2(G1(ILR))) and D(IHR).
Step 4: Calculate the LossD according to equation (5).
Step 5: Update the weights of D.

end for
Step 6: Input G2(G1(ILR)) and IHR, call ϕ, and obtain the output ϕ(G2(G1(ILR))) and ϕ(IHR).
Step 7: Calculate LossMSE according to equation (2).
Step 8: Calculate Lossp according to equation (3).
Step 9: Calculate LossG according to equation (4).
Step 10: Update weights of G (i.e., the upsample and refinement subnetworks).

end for

E. RESULTS AND ANALYSIS
During training, we first crop the DIV2K dataset to a fixed
size through random cropping and perform the correspond-
ing data preprocessing as the HR real result. Subsequently,
we downsample the image (downsample factor of 4) into the
corresponding LR image through the bicubicmethod. Finally,
we input the LR image into GAN to start training. The model
generates the corresponding SR image, and we compare the
SR image with the HR image.

During testing, we use three datasets: Set5, Set14, and
BSD100. We input the three datasets to the trained model, in
turn, to generate the corresponding SR image and calculate
the average PSNR and SSIM values of the obtained images.
We compare the experimental results with those of other
classical SR models.
Ablation Study (Dual Network Structure): In this work,

we employed a dual network structure to jointly solve the
problems of super-resolution and optimization. To demon-
strate the effectiveness of the dual network structure, exper-
iments were conducted using the structure. In the ablation
study, we conducted experiments to examine the effect of
removing the refinement subnetwork. As shown in Table 3,
when the refinement subnetwork was removed, the over-
all performance of the proposed model degraded. Accord-
ing to the experimental results, on the Set5, Set14 and
BSD100 datasets, the average PSNR index of the dual net-
work structure is larger than that of the model without the
refinement subnetwork by 0.79, 0.78, and 0.25 dB, respec-
tively, and the average SSIM index is larger by 0.0081,
0.0068, and 0.0013, respectively. In this manner, the ablation
study demonstrates the effectiveness of the dual network
structure and indicates that the added refinement subnetwork

TABLE 3. Ablation study (dual network structure).

can enhance the model performance and optimize the quality
of the generated image.

Table 4 presents the comparison of the average PSNR and
SSIM values of different SR reconstruction algorithms, and
the boldfaced data corresponds to the optimal result. The
proposed model achieves the optimal experimental results
when the image magnification is 4. As shown in Table 4,
on the Set5, Set14 and BSD100 datasets, the PSNR value of
the proposed model is higher than that of the bicubic method
by 3.15, 2.36, and 1.53 dB, respectively, SRCNN model by
1.09, 0.86, and 0.59 dB, respectively, and LapSRN model
by 0.03, 0.17, and 0.17 dB, respectively. The correspond-
ing SSIM value is higher than that of the bicubic method
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TABLE 4. Results of SSIM and PSNR (Unit: dB) (×4).

FIGURE 4. Comparison of the magnified reconstruction results of
different SR methods: Super-resolution results of ‘ppt3’ (Set14) and
‘baboon’ (Set14) with a scale factor of ×4. Top: The texts obtained using
the proposed method are sharp; the character edges corresponding to the
other methods are blurry. Bottom: The proposed method recovers sharp
results, while the other models yield blurry results.

by 0.0761, 0.07, and 0.0795, respectively, SRCNN model
by 0.0237, 0.0214, and 0.0369, respectively, and LapSRN
model by 0.0015, 0.0007, and 0.019, respectively. Moreover,
the PSNR and SSIM values for the proposed model are more
suitable than those of the other models. The results show that
the proposed dual network structure can extract more image
features than other models, and the perceptual loss function

FIGURE 5. Comparison of the PSNR (dB) values. The abscissa and
ordinate indicate the different SR models and PSNR evaluation results for
the different models, respectively.

FIGURE 6. Comparison of the SSIM values. The abscissa and ordinate
indicate the different SR models and SSIM evaluation results for the
different models, respectively.

promotes the network to recover the detailed information,
thereby generating clear HR images.
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FIGURE 7. Partial super-resolution reconstruction results of the Set5 and Set14 datasets. From left to right, the images correspond to those
obtained using the bicubic model, SRCNN model, and proposed model, and the original HR image. The proposed method yields sharp results with
higher quality and richer texture details, while the images obtained using the other models are blurry.
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As shown in Fig. 4, different SRmethods are used to recon-
struct part of the images in the Set14 dataset. We perform
the same operation on the image reconstructed by different
SR methods; specifically, we crop the same area from the
reconstructed image and enlarge the cropped part for compar-
ison. As shown in Fig. 4, the SR image reconstructed by the
bicubic method is extremely blurry after being enlarged, with
critical image distortion, and a large amount of the detailed
information is missing. The SR image reconstructed using
the SRCNN method is better than that of the bicubic method,
although several shortcomings remain. In comparison, the SR
image reconstructed by the proposed model is the most sim-
ilar to the original HR image. The image is relatively clear
and has excellent visual effects; moreover, the reconstruc-
tion results demonstrate more realistic texture details. These
aspects demonstrate the feasibility of the proposed model.

Both the proposed model and SRGAN model use a gen-
erative adversarial network structure. However, in contrast
to the SRGAN, the proposed model does not employ batch
normalization [32]. In particular, when BN is implemented
deep in the network and trained under the GAN framework,
the image may produce artifacts, thereby limiting the gen-
eralization ability of the model. Removing the BN can not
only improve the generalization ability of the model but also
alleviate the computational complexity and memory usage.
In addition, the proposedmodel uses theWasserstein distance
in theWGAN to optimize the objective function. In particular,
the last layer of the discriminator network does not use any
activation function, and the loss function does not consider
the logarithm. As shown in Table 4, the average PSNR and
SSIM values of the proposed model are higher than those of
the SRGAN model by 2.17, 2.34, and 2.33 dB and 0.0393,
0.033, and 0.0782, respectively. These values demonstrate
the effectiveness of the implementation of the Wasserstein
distance, which can effectively improve the discrimination
ability of the network, enhance the stability of the model, and
help generate high-quality images.

Figs. 5 and 6 show the comparison of the average PSNR
and SSIM values of different models on the Set5, Set14, and
BSD100 datasets. As shown in Figs. 5 and 6, the proposed
model outperforms the other models in terms of the PSNR
and SSIM values, along with the experimental results. These
findings demonstrate the effectiveness of the proposedmodel.

Fig. 7 shows the SR reconstruction results of certain
images in the Set5 and Set14 datasets. From left to right,
the images correspond to those obtained using the bicubic
model, SRCNNmodel, and proposed model, and the original
HR image. As shown in Figs. 4 and 7, in both the cases
of comparing the reconstructed image directly or cropping
a part of the area for partial enlargement and comparison,
the reconstructed image of the proposed model is clearer
than that obtained using the other methods. Moreover, the
reconstructed image based on the bicubic method is blurry
both globally and locally, considerable noise is present in
the image, and the distortion is critical. The SRCNN method
yields a reconstructed image with a higher quality. The global

image is clearer, although the image is slightly blurry and
excessively smooth compared to the original image. More-
over, the image appears blurry after partial enlargement and
lacks the high-frequency detail information. Compared with
the images reconstructed using the bicubic and SRCNN
methods, the image reconstructed using the proposed model
exhibits a higher quality, richer texture details, better color
matching with the original image, and better visual effects.
These findings demonstrate the effectiveness of the proposed
model, which can recover more high-frequency details and
generate clear SR images.

V. CONCLUSION
In this paper, to address the problems of insufficient feature
extraction and blurred generated images of SR reconstruc-
tion, we propose an image SR reconstruction model based on
the GAN. In the generator network, a dual network structure
is adopted to solves the problems of simultaneous super-
resolution and optimization, thereby enabling the network
to fully extract the image features and recover more miss-
ing details, enhance the learning ability of the network, and
optimize the quality of the generated image. The design of
the perceptual loss guides the network to generate the SR
image with more detailed information and clear outlines.
In the discriminator network, we use theWasserstein distance
to optimize the network, thereby enhancing the stability and
discrimination ability of the network.

The results of extensive experiments conducted on the
DIV2K, Set5, Set14, and BSD100 datasets demonstrate that
when the reconstructed image has large upscaling factors
(4×), the proposed model can recover more high-frequency
details of the image, thereby making the reconstructed image
clearer and more realistic. Moreover, the proposed model
outperforms other state of the art methods in terms of the
PSNR and SSIM. Overall, the experimental results indicate
that the proposed approach is accurate and effective.

Currently, our model is only applicable to the SISR prob-
lem. In future work, we aim to extend the model to the MISR
problem to ensure that the model can achieve excellent results
in multi-image and video reconstruction as well. In addition,
semantic segmentation technology based on deep learning
has been fully developed. In future research, the semantic seg-
mentation technology can be combined with the image super-
resolution reconstruction technology to further enhance the
model performance.
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