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ABSTRACT In semiconductor manufacturing, maintaining a high yield and ensuring accurate yield
prediction are considerably important for improving productivity, customer satisfaction, and enhancing
profitability. Despite its importance and merits, achieving wafer yield prediction with high quality and
accuracy is challenging. In this paper, we propose a method for wafer edge yield prediction using a combined
long short-term memory (LSTM) and feed-forward neural network (FFNN) model. Unlike previous research,
we focus on the edge yield because of the higher yield loss at the wafer edge. The combined LSTM-FFNN
model uses a dataset divided into two types according to data characteristics. Time-series data are used
in the case of LSTM, and non-time-series data are fed into the FFNN. When preparing the time-series
data, comprising data related to the equipment and chambers, data of different chambers do not overlap,
thereby rendering them as independent entities. The proposed model outperforms other models in terms of
all evaluation metrics. The coefficient of determination of the proposed combined LSTM-FFNN model is
34.14%, which is almost 13% higher than that of the other compared models on average.

INDEX TERMS Feed-forward neural networks, long short-term memory, semiconductor manufacturing,

wafer yield prediction.

I. INTRODUCTION

In recent years, as advanced technologies such as
smartphones, deep learning, the Internet of Things, and
artificial intelligence have emerged, the demand for semicon-
ductors has increased exponentially. Meanwhile, semicon-
ductor manufacturing, which involves several process steps,
is becoming increasingly complex and difficult to manage.
The semiconductor manufacturing process involves monitor-
ing numerous parameters from the early stages of production
up to the packaging of an end product [1]. Metrology, the most
important parameter among these, is the key to achiev-
ing high product quality in semiconductor manufacturing.
In general, metrology is measured physically using a helium
ion microscope or scanning electron microscope (SEM)
[2], [3]. Each wafer is measured after each process; thus,
the quality of each wafer can be estimated. However, this is
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impractical because every measuring process added between
each pair of contiguous processes can significantly increase
the total time of production [4]. Combined focused ion beam
and SEM could be a possibility for on-line metrology [5].
Therefore, virtual metrology, one of many fabrication
parameters, has been developed to augment physical metrol-
ogy. Recently, virtual metrology has been employed for
obtaining additional information from the analysis of
scrapped wafers or electrical test values. Virtual metrology,
which significantly enhances fabrication productivity and
quality assurance [6], is a parameter that correlates various
sensors on the process equipment with metrology. Because
valuable data can be obtained without wafers having to pro-
ceed through metrology steps, it is possible to reduce the
cost of metrology tools and the overall process time [7].
Despite the advantages of virtual metrology, checking wafer
quality should not be solely dependent on it because of the
need for consistency, which necessitates periodic updates.
Both metrology and virtual metrology entail time-series data.
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Certain machine parts that constitute the process equipment
are worn away gradually through repetitive processes, and
these machine parts and materials such as photoresist, etching
gas, and other chemicals should be periodically replaced
to maintain high quality. Engineers monitor the fabrication
parameters in real time for each equipment chamber inde-
pendently. To achieve the target value, Run-to-Run (R2R) [8]
control is employed, and engineers refer to previous param-
eter values and intentionally tune process settings, such as
temperature, pressure, and gas flow, for the next parameters,
thereby creating time-series data.

The semiconductor wafer yield is defined as the ratio of
the number of good chips to the total number of chips. Yield
is a widely used performance metric in semiconductor man-
ufacturing; moreover, maintaining a high yield via reliable
and accurate quality control is a key performance metric.
Accurate yield prediction is highly important for improving
productivity, customer satisfaction, and enhancing profitabil-
ity [9]. Reference to yield predictions enables semiconductor
manufacturers to implement supply chain management and
guarantee high-quality products. Yield prediction is becom-
ing more important as a future task [10]. Despite its impor-
tance and merits, wafer yield prediction has a significantly
challenging goal of being systematic with high quality and
accuracy. Under these conditions, many engineers in semi-
conductor manufacturing have attempted to predict the yield
constantly in practice. These yield prediction models still
need to resolve poor performance and are one of the most
important goals for the department of yield enhancement.
However, yield prediction models focus on the total average
wafer yield. Moreover, the wafer yield differs for different
regions of the wafer, consisting of the inner and edge yields.
In general, the edge yield is substantially lower than the inner
yield. Although the yield at the edge only accounts for a small
proportion of the wafer, it has a significant influence over the
decrease in the total yield. Thus, the edge yield is an important
aspect of wafer yield that should be prioritized. A typical
example of the inner and edge areas of a wafer is illustrated
in Fig. 1.

The process variation across a wafer may be greater at the
edge compared to that at the center, resulting in a higher yield
loss at the wafer edge [11]. The thinning process could induce
damage at the wafer edge, which would directly impact the
physical yield [12]. According to Yavas, several factors can
lead to significant edge yield loss. These factors include
non-uniformities in the wafer thickness and etch profiles
due to plasma inhomogeneity toward the wafer edge, wafer
bow due to film stress, residues at the bevel and backside,
chuck damage by reactive gases or particles, and plasma
or handling-induced mechanical damage at the bevel [13].
Almost every process is focused on the inner area of a wafer,
which may explain the aforementioned results. Because pro-
cess variation at the edge contributes to edge yield loss,
the edge yield should receive more attention. This motivated
us to propose a wafer edge yield prediction model using edge
parameters.
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FIGURE 1. Example showing two different wafer areas: the inner and
edge areas.

In this study, we used several fabrication parameters, that
is, metrology, virtual metrology, and equipment information
obtained during critical steps, as the features. We additionally
introduced a wafer edge yield prediction model that combines
long short-term memory (LSTM) with a feed-forward neural
network (FFNN) model. The main contributions of this work
are summarized as follows:

- We divide the dataset and input the smaller datasets into
the corresponding models to understand the characteristics of
the dataset. Because the data in semiconductor manufacturing
evidently exhibit the time-series property by R2R control
or engineers’ tuning to achieve the target value, this char-
acteristic should be included in the wafer yield prediction
model. Sequential data are used in the case of LSTM, and
the remaining data are fed into the FFNN.

- We use a time-series dataset consisting of data related
to the equipment and chambers. When several chambers are
connected to a single piece of equipment, they should be
regarded as independent entities because they are controlled
by different recipes. Data of different chambers do not over-
lap with each other when this sequential dataset is prepared
for the LSTM model.

- We propose a method for wafer edge yield prediction,
which is the key to enhancing edge yield, as opposed to
focusing on predicting the total yield of the wafer.

The remainder of this paper is organized as follows.
In Section 2, we describe previous studies in detail.
In Sections 3 and 4, we present the proposed method and com-
pare our experimental results with those of other well-known
methods. Finally, we present a brief conclusion and discuss
future work in Section 5.

Il. RELATED WORK

Several prior studies have focused on wafer yield prediction,
and the results of sequential research have been used in
semiconductor manufacturing.
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A. PRELIMINARY YIELD PREDICTION EXPERIMENTS

Shin et al. proposed a hybrid machine-learning strategy
using fabrication parameters. Their strategy involved a neural
network and memory-based learning for lot-based yield pre-
diction in semiconductor manufacturing [1]. Li et al. pro-
posed a comprehensive data mining method for predicting
and classifying product yields in semiconductor manufactur-
ing processes using a genetic programming approach [14].
Chien et al. suggested a framework for yield prediction and
the classification of abnormal process stages in semiconduc-
tor manufacturing using the Kruskal-Wallis test and a deci-
sion tree [15]. However, these lot-based prediction models
have limitations because only sampling and measuring two
to three wafers in one lot that includes 24 wafers may entail
an excessive assumption. This ultimately led to the proposal
of wafer-based yield prediction models.

Nam et al. proposed a prediction model to predict wafer
yield based on virtual metrology process parameters in semi-
conductor manufacturing [16]. Chien ef al. proposed a novel
data-driven approach to analyze big data generated during
semiconductor manufacturing. The method is intended for
low-yield diagnosis to detect the root causes of processes
for yield enhancement. The data reflect the production pro-
cess steps, tools, recipes, and vendors [17]. Jang et al
proposed a novel yield prediction model based on deep
neural network algorithms by using the spatial relation-
ships among the positions of dies on a wafer and die-level
yield variations extracted from a wafer test without process
parameters [18]. Although they used wafers for yield predic-
tion, their approach is problematic in that metrology parame-
ters are not included as features. Metrology parameters are
the most powerful features for predicting wafer yield with
high reliability because these parameters are the only values
that result from actual measurements. However, the use of
metrology for yield prediction is difficult because values will
inevitably be missing from metrology owing to productivity
and time limitations.

An et al. suggested an efficient way to distinguish high
yield and low yield using a stepwise support vector machine.
Measurements of the unit voltage, current, and other elec-
trical characteristics were used for yield prediction after
fab-out [19]. However, real-time prediction at the fabrication
level is not possible because the input dataset is obtained after
fab-out.

B. SEQUENTIAL RESEARCH IN SEMICONDUCTOR
MANUFACTURING

Yang et al. proposed a novel approach that incorporates
the interactions among spec-out events using spec-out event
network analyses with time-series process sensor data such
as temperature, pressure, and voltage data [20]. Lee et al.
proposed a convolutional neural network (CNN) model,
in which a receptive field tailored to multivariate sensor
signals slides along the time axis, to extract fault fea-
tures. In semiconductor manufacturing processes, all recipe
parameters should reach their individual set points in a timely
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manner and maintain the set points without severe fluc-
tuations for specified process durations [21]. Chen et al
proposed a method for anomaly detection in semicon-
ductor manufacturing through time-series forecasting using
three models: autoregressive integrated moving average,
multi-layer perceptron, and LSTM [22]. Kim et al. pro-
posed fault detection and diagnosis using self-attentive
CNNs for variable-length sensor data in semiconductor
manufacturing [23].

lil. PROPOSED METHOD

In this section, we present the details of the proposed model
for wafer edge yield prediction. First, various input features
for the proposed model are described. Second, we provide a
detailed account of the combined LSTM-FFNN model and
its ability to effectively use both time-series data and non-
time-series data.

A. DESCRIPTION OF INPUT FEATURES

The input features are summarized in Table 1. Four types of
input features are used: metrology, virtual metrology, equip-
ment output data, and equipment information. Furthermore,
semiconductor manufacturing involves numerous parame-
ters; therefore, the selection of an appropriate and optimal
dataset is necessary. Among the several selection methods,
domain knowledge from practical experience and statistical
analysis is adopted to select the features. While engineers
focus on yield analyses for defining the root cause, they not
only identify the critical process steps but also the fabrica-
tion parameters when the root cause matches the specific
fabrication parameters in the critical process steps. Three
critical steps, namely A, B, and C, from among hundreds
of process steps, and three additional steps, namely D, E,
and F, determined via statistical analysis (Kruskal-Wallis),
were selected [24]. The Kruskal-Wallis test entails the non-
parametric analysis of variance to compare several inde-
pendent samples. The results of the test are summarized
in Table 2. We represent the edge yields as Y (numerical
values) and all process steps as X (categorical values). Among
all the process steps, three steps, namely D, E, and F, were
found to have the lowest p-values. Steps B and A, which were
selected based on domain knowledge, are in the fourth and
fifth places on the list, respectively.

Step A is the most critical step; this is the reason metrology
and virtual metrology data are obtained after step A has
been completed. In the processing of step A, it is found that
the edge pattern is slightly different from the center pattern
because of the wafer topography. This difference is quantified
by metrology and virtual metrology, and also affects the edge
yield directly. Predicting wafer edge topography and then
interpreting this to yield and yield degradation classification
might be a more accurate method to determine edge yield,
however checking wafer topography is costly in terms of
money and time. Thus, in this study we predict edge yield
directly. Because the proposed prediction model is for wafer
edge yield, we only selected six metrology and twenty-three
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TABLE 1. Input features.

Feature Counts Description Wafer area Related process ~ Measuring rate
Metrology 6 In-line measurement Wafer edge A Under 100%
Virtual metrology 23 Calculated values by pre-trained algorithm Wafer edge A 100%
Equipment output data 3 Time value from process equipment Wafer average AB.C 100%
Equipment information 139 Names of the equipment in the six process steps - A,B,C,D.EF 100%
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FIGURE 2. Architecture of the proposed method.

TABLE 2. Result of the kruskal-wallis test.

Y(numerical) ~ X(categorical) p-value
STEP D 5.20E-93

STEPE 2.54E-35

Edge yield STEP F 1.32E-33
STEP B 5.65E-31
STEP A 8.01E-27

virtual metrology data corresponding to the wafer edge area
among tens of metrology and virtual metrology. All of the
virtual metrology used corresponds to data for the additional
values that make input features informative with metrology.
The measuring rate for metrology is less than 100%. The
output data obtained regarding the equipment are plasma-on
time values obtained from the process equipment, and the
equipment is set to plasma-on by each chamber after product
maintenance and plasma-off after the determined time passes
or serious events occur. These time values verified that the
start and end times affect the wafer yield due to fluctuations
in the processing rate. We extract these data from steps A,
B, and C. There are also hundreds of other equipment output
data. Some of them were used for input features, but they did
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not perform well because several wafers exhibited the same
value for each feature. Finally, equipment name information
was obtained for all six steps and converted to a one-hot
encoded dataset.

B. COMBINED LSTM-FFNN MODEL

In this subsection, we discuss the proposed prediction model
that combines LSTM with the FENN. The architecture of the
proposed model is illustrated in Fig. 2.

In general, the wafer yield prediction model uses only the
non-time-series data of each process step. However, certain
data clearly have time-series characteristics. Each data value
is connected to another because engineers in semiconductor
manufacturing refer to previous parameter values and engage
in a series of fine-tuned value adjustments for the next set of
data, thereby creating time-series data. Therefore, time-series
data should be taken into account when using fabrication
parameters as input features. The combined LSTM-FFNN
model proposed in this paper effectively uses both time-series
data and non-time-series data to improve the yield prediction
performance.
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First, we extract the features from the time-series data
obtained via metrology, virtual metrology, and equipment
output data corresponding to step A using the LSTM architec-
ture. We employ multi-layer LSTM as networks with stacks
of several LSTM models, where the hidden representation
of the previous layer is used as the input for the next layer.
Stacked-LSTM can solve more complex problems and extract
hidden hierarchical information. Assuming that 1 denotes a
layer, the hidden state of time-step t in layer hgl) can be
calculated as follows:

W = LSTM (x,, K ), M

where x; denotes the input metrology data at step .

In this study, we use a two-layer stacked-LSTM model, and
the final encoded metrology feature can be expressed as h;z).

Second, we extract the features from non-time-series-data,
that is, the equipment output data of steps B and C and the
one-hot encoded equipment name information. To this end,
we used multilayer neural networks. The output of the /-th
layer can be calculated as follows:

O = U(W(I)X(l) + b(l)), )

where XD, WO and b are the input, weight, and bias of
the I-th layer, respectively, and o is the activation function.
In our work, we used the rectified linear unit (ReLU) as the
activation function [25].

We designed fully connected neural networks with four
hidden layers. Each hidden layer consisted of 128 nodes.
The final encoded feature of the non-time-series data can be
expressed as s,

Finally, we concatenate the features h;z) and s®, which
represent time-series data and non-time-series data, respec-
tively, and the final wafer yield y; is obtained using a fully
connected neural network with one hidden layer.

The network is trained by conducting back-propagation
using the Adam optimizer with a learning rate of 0.001.
We use the mean squared error (MSE) as the loss function,
which can be calculated as follows:

1 N
rrgn =3 Z(f(G; xi) — i), 3)

where {x;}?_, are the training inputs, {y;}?_, are the wafer
yield labels, 6 are the weights of our architecture, and f is the
prediction function in our proposed combined LSTM-FFNN
model.

IV. EXPERIMENT

A. EVALUATION DATASET

The dataset we used consisted of data regarding an advanced
3D vertical-NAND flash memory device from a semiconduc-
tor manufacturing company in South Korea. Both the product
name and process step information are kept confidential for
security reasons. Data relating to a total of 89,093 wafers
were collected. In addition, we used a time-series dataset with
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data from equipment and chambers, and nearly 70 equip-
ment chambers corresponding to the process step A were
used. The dataset with time-series characteristics is prepared
using a three-sequence length for each equipment chamber.
A sequence length of 3 is used because engineers usually
tune the recipe for the equipment chamber by referring to
3 points of change when monitoring fabrication parameters.
An overview of the dataset is illustrated in Fig. 3. The training
set was composed of 71,108 data samples, and the test set
consisted of 17,778 data samples.

B. EVALUATION METRIC

To objectively evaluate the performance of the model, three
evaluation metrics were adopted to compare the quality of
different models: coefficient of determination (Rz), MSE, and
mean absolute error (MAE). These metrics are mainly used
to evaluate the performance of the regression model.

N
1 .
MAE = = Z lyi = 31, 4)

1 Y
MSE = Zij(yi — 7 Q)

L 0)2
R = 20 ®)
Y=Y
where y;, y, and y are the actual value of y, the predicted value
of y, and the mean value of y, respectively. N denotes the
number of observations.

C. COMPARING METHODS

In our experiments, we used four regression algorithms to
build the yield prediction models: neural networks, support
vector regression, decision tree, and partial least square (PLS)
regression.

o Neural networks [26] are widely used computing
systems inspired by biological neural networks for
time-series prediction, nonlinear multivariate prediction,
and anomaly detection in the field of manufacturing.
We used feed-forward neural networks with four hidden
layers and the Adam optimizer; the MSE loss func-
tion is the same as that employed in the combined
LSTM-FFNN model. The only difference between this
neural network and our model is the formation of the
inputs. Neural networks receive their inputs without
taking the sequence of the dataset into account, which
enables us to verify the effectiveness of a time-series
dataset in semiconductor manufacturing.

o Support vector regression [27] is a regression algorithm;
it adds an e-insensitive loss function for solving regres-
sion problems via the support vector machine [28], used
for solving classification problems. The support vector
algorithm is advantageous for complex models, and it
is sufficiently simple for analyzing a space-related non-
linear problem mathematically. This is because it corre-
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FIGURE 4. Results of the experiment.

sponds to a linear method in a high-dimensional feature
space that is nonlinearly related to the input space [29].

o Decision trees [30] are one of the most widely used
practical methods in statistics and machine learning in
terms of both classification and regression. The target
function of a decision tree has discrete output values,
assigns each example to a class, and efficiently classifies
new data. When the target variable takes continuous
values, it is known as decision tree regression. Decision
tree regression is a tree-based structure used to predict
the numeric outcomes of the dependent variable, and
these trees are constructed beginning with the root of the
tree and proceeding down to its leaves by minimizing the
predefined fitness function. The process continues until
the termination criterion is satisfied.

o PLS regression [31] is a statistical regression that com-
bines features from and generalizes principal component
analysis and multiple linear regression, respectively.
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The goal is to predict a set of dependent variables from
a set of independent variables or predictors. This predic-
tion is achieved by extracting from the predictors a set
of orthogonal factors known as latent variables, which
have the best predictive power [32].

D. EXPERIMENTAL RESULTS

The values of the three evaluation metrics of the five regres-
sion models are listed in Table 3 and illustrated in Fig. 4.
As shown in the table, R*> of the proposed combined
LSTM-FFNN model is 34.14%, which is significantly higher
than the R? values of other models. The value of R? for
the neural network is 24.46%, indicating that the proposed
method outperformed other methods. This demonstrates that
the use of a sequential dataset in semiconductor manufac-
turing is meaningful. With respect to the MSEs and MAEs,
the MSE and MAE of the combined LSTM-FFNN model are
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TABLE 3. Results of the experiment.

Model R? MSE MAE
Combined LSTM-FFNN 34.13%  0.00291  0.0397
Neural Network 24.46%  0.00293  0.0410
Support Vector Regression ~ 19.50%  0.00312  0.0416
Decision Tree 18.50%  0.00316  0.0427

PLS Regression 20.70%  0.00307  0.0421

0.00291 and 0.0397, respectively. Thus, the MSE and MAE
results are the most promising.

V. CONCLUSION

In this paper, we proposed a method for edge yield predic-
tion using a combined LSTM-FFNN model. Unlike previ-
ous research, we focused on the edge yield owing to the
higher yield loss at wafer edges. Six critical process steps
with four types of fabrication parameters (metrology, vir-
tual metrology, equipment output data, and equipment name
information) were used as features. The metrology, virtual
metrology, and equipment output data of step A were con-
nected via time-series to the LSTM model, and the other
equipment output data and one-hot encoded equipment name
information were used as inputs to the FFNN. Four regres-
sion algorithms—a neural network, support vector regres-
sion, decision tree, and PLS regression—were compared with
the proposed model. The experimental results showed that the
neural network outperformed the other regression models in
terms of all three evaluation metrics (MSE, MAE, and coeffi-
cient of determination). The combined LSTM-FFNN model
outperforms the other models with regard to all evaluation
metrics. Moreover, the sequential nature of the fabrication
parameters proved to be important. The following problems
remain to be addressed in future research. First, additional
process steps and parameters should be considered for a
high-quality prediction model; this is vital because semi-
conductor manufacturing involves hundreds of process steps.
However, both missing productivity values and time limita-
tions present problems. Furthermore, the number of missing
values may increase with the number of additional process
steps or parameters. A more accurate prediction model is
needed to consider the application of series metrology, a sys-
tem that consistently measures the same wafers across several
metrology steps. Second, in this paper, we only proposed
a model for edge yield prediction. Thus, a methodological
extension of total yield prediction should be researched.
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