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ABSTRACT Network anomaly detection aims to identify network anomalies, and it has obtained many
achievements using the supervised classification technique. Since the supervised classifier depends on the
prior data, it is difficult to accurately classify the rare anomalies when they account less in the training
set. Data augmentation can tackle the imbalanced training set problem through creating artificial rare
anomaly samples. However, the existing data augmentation methods either ignore the data distribution or
ignore the spatial knowledge between features. Therefore, this article addresses this issue by proposing a
NetworkAnomalyDetection Scheme based on featureRepresentation and dataAugmentation (NADS-RA).
Re-circulation Pixel Permutation strategy is first designed as feature representation strategy to construct
images, and it rotates each feature left by the times of feature number to maintain the spatial knowledge
between original network traffic features. An image-based augmentation strategy is thus designed to produce
augmented images according to the distribution characteristics of rare network anomaly images with the
help of Least Squares Generative Adversarial Network, which alleviates the effect of imbalanced training
set and avoids over-fitting. After that, NADS-RA is implemented on the Convolutional Neural Network
classification model. We conduct experiments on five public benchmark datasets, including NSL-KDD and
UNSW-NB15, and so on, and compare against 12 detection methods and 17 data generation methods. The
experimental results demonstrate the superior effectiveness of our work to state-of-the-art methods and the
general applicability in different scenarios.

INDEX TERMS Anomaly detection, rare anomalies, feature representation, data augmentation, network
security.

I. INTRODUCTION
With the fast development of the Internet, network secu-
rity has become increasingly challenging. Network anomaly
detection, as an effective scheme to identify the anomalous
behavior, has received some achievements by supervised
classificationmethods [1], [2]. Most supervised classification
models depend on prior data, and they assume an equal dis-
tribution of training data [3]. However, real-world situations
do not usually in line with such an assumption. For example,
in the nine weeks of network connectivity data collected from
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a simulated US Air Force LAN [4], the number of the normal
samples is more than 60,000, but that of user-to-root (U2R)
attack is less than 100. In this case, U2R can be seen as a
kind of rare anomalies. When the number of rare anomalies
is less than that of the normal samples [5], [6], supervised
methods are usually limited in classifying rare anomalies [7].
Generally speaking, in the training set, when the data of one
class is significantly outnumbered by the data of at least
another class, it can be considered imbalanced [8]. The clas-
sifiers are not generally prepared for the imbalanced training
dataset, and they are likely to predict new coming samples
as the majority class [9], and miss the real minority class that
might be harmful to the network, like U2R attack [10]. Hence,
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it is essential to classify rare anomalies from the imbalanced
data.

Data augmentation is well-known to tackle the imbal-
anced classification by creating artificial rare data, but it
is difficult to create realistic-looking data [11]. The com-
monly used Random Over-Sampling (ROS) and Synthetic
Minority Oversampling Technique (SMOTE) [12] meth-
ods produce data along the line segment that joins rare
data [13]. They over-sample data based on the local infor-
mation rather than the overall distribution of the rare class,
so the data generated by these methods might disturb the
global distribution of the original data and further weaken the
training effectiveness. Least Squares Generative Adversarial
Network (LSGAN) [14] has been successfully applied in
the image processing to produce similar images by learn-
ing the data distribution. It was firstly applied in network
security to produce similar network traffic [15] by learning
the data distribution of each feature independently, which
loses the spatial knowledge among the features. Represent-
ing network traffic features as images might overcome this
issue, but the existing network traffic feature representation
strategies [10], [16]–[18] encode the features by One-Hot
first, and then transform the encoded vectors into the pixel
values, which disrupts the feature unity and the spatial knowl-
edge of partial adjacent features. What’s more, it is prone to
over-fit [16]. Therefore, how to produce the realistic-looking
data, upon maintaining the spatial knowledge of features and
the distribution of data is especially challenging [19].

To solve this problem, we design an image-based data aug-
mentation strategy. To the best of our knowledge, it is the first
time that LSGAN is used to produce the augmented network
anomalies on the basis of network traffic feature images.
We rotate each feature left by the times of feature number
to construct a circulant matrix as pixel values [20]. The
raw network traffic features are thus represented as images,
thereby maintaining the spatial knowledge. Subsequently,
data augmentation strategy based on LSGAN is designed to
over-sample the rare anomalies automatically according to
the imbalance ratio, thus balancing the imbalanced training
set and avoiding over-fitting. The Convolutional Neural Net-
work (CNN) is trained on the obtained balanced dataset to
learn the spatial knowledge of training data. Finally, a com-
plete network anomaly detection scheme based on represen-
tation and augmentation (NADS-RA) is constructed in this
article.

We conduct experiments on five public benchmark
datasets including two well-known network anomaly detec-
tion datasets, namely, NSL-KDD [4] and UNSW-NB15 [21],
and one credit card fraud detection dataset [22], and two
software defect detection datasets [23], namely JM1 and
PC5. The experimental results validate the effectiveness of
NADS-RA, it not only improves the overall accuracy, but
also decreases the False Negative Rate (FNR) of rare anoma-
lies [24]. Besides, it suggests the superior performance to
other state-of-the-art methods, and the general applicability
of other areas.

The contributions of this study are summarized as follows:
(1) We design an image-based rare network anomalies

augmentation strategy that not only maintains the spatial
knowledge of network anomaly features, but also keeps the
distribution of rare network anomalies.

(2) The experimental results of comparing with state-of-
the-art methods suggest that the designed data augmentation
strategy can alleviate the effect of imbalanced training set and
further avoid over-fitting.

(3) The proposed NADS-RA is validated on five pub-
lic benchmark datasets, including network traffic anomalies,
software defects, and credit card frauds. The experimental
results suggest that NADS-RA is adaptable in different areas.

The remaining of this article is structured as follows.
Section II introduces the related work and Section III states
the problem. Section IV illustrates the main methodol-
ogy. The experimental results are described in Section V.
Section VI concludes the full article and the future work.

II. RELATED WORK
This article summarizes related work about network anomaly
detection based on CNN published in recent five years
in Table.1. They are all implemented in the real public
datasets. According to their experimental results analysis and
described future work, as well as the real situation where the
number of anomalies is less than that of the normal behavior,
the main challenges of network anomaly detection based on
deep learning technique can be summarized as feature rep-
resentation and imbalanced classification. How to represent
the network traffic as the images upon maintaining the spatial
knowledge, and how to train an effective classifier on an
imbalanced training dataset to classify the rare anomalies
are the main problems in the reported works. Therefore,
the related works are introduced from two perspectives, fea-
ture representation and imbalanced data classification, and
they are marked in the second column ‘‘Representation’’ and
the fifth column ‘‘Balance’’ of Table.1, respectively.

A. FEATURE REPRESENTATION
Deep learning technique has been widely used in
images-related area since its layer-by-layer processing ability
can automatically mine the hidden and high-level character-
istics of the input images. To utilize deep learning techniques
to improve the network anomaly detection, transforming the
raw network traffic features into images is the first step.
Many visualization techniques [31] have been designed, and
they can be divided into three types: data filtration and
transformation, graph theory, and pixel-based representation.
(1) Among the data filtration and transformation techniques,
principle component analysis (PCA) [32] is often used, but
PCA is considered as an orthonormal linear transformation
because it assumes all base vectors are orthonormal, so it
is not recommended to use PCA for analyzing categorical
data [31]. (2) Graph theory is suitable for the connection
network that includes nodes and links, and often used in
the network-communication-related scenarios. (3) On the

214782 VOLUME 8, 2020



X. Liu et al.: NADS-RA: Network Anomaly Detection Scheme Based on Feature Representation and Data Augmentation

TABLE 1. A Brief Review of Related Work.

contrary, pixel-based representation technique opens the
opportunities to apply deep learning techniques in the net-
work anomaly detection [33] and can be used to analyze
categorical data. It aims to change the feature elements into
colored pixels, and it supports the fixed size data conversion.

This article investigates the anomaly detection based
on network traffic features, so the pixel-based represen-
tation is deployed. To represent the network features as
pixel-based images, different feature encoding methods have
been explored. They can be deployed on the extracted fea-
tures [4] or the raw payload contents [9] or the combina-
tion of both [34]. Payload contents are often seen as the
natural language, and all the entities within the payload are
encoded by the word embedding methods. To control the
same length of encoded vectors, the short payloads are usu-
ally filled with zeros to obtain the same length of the longest
payload [25]. For the extracted features, they are generally
continuous or discrete values [26], [27]. Encoding discrete
features [10], [17], [30] or encoding all features [16], [18] by
One-Hot will also generate many zeros in the encoded vector.
For both encoding methods, the encoded vectors are rep-
resented as a sequence of 0 and 1. And then every eight
bits are transformed into a decimal pixel value. In this case,
the representation process can be seen as a sequential oper-
ation of decomposition and combination. The raw features
or raw contents are encoded into the binary space, and then
transformed into the decimal space, which might destroy the
unity of the raw feature or weaken the spatial relationship
between the raw features. The related research is marked
in the fourth column ‘‘Unity’’ of Table.1. Besides, there are
also some representation methods that reshape the original
features’ long vectors into a pixel matrix directly [28], [29].
Though this kind of methods retains the unity of the

feature, it will break the relationship between partial adjacent
features.

Hence, a pixel-based image conversion strategy to retain
the original spatial characteristics and the unity of features is
required.

B. DATA AUGMENTATION
In the real world, the anomalies generally occur less fre-
quently than the normal behaviour, so the number of anoma-
lies and that of the normal will be imbalanced in the collected
data. For example, in the nine weeks of network connectivity
data collected from a simulated US Air Force LAN [4],
the number of the normal samples is more than 60,000, but
that of user-to-root (U2R) attack is less than 100. In this
case, the supervised classifiers will be unable to learn the
characteristics of rare anomalies so that they are likely to
predict the rare anomalies as the normal, and might miss the
real attack, which will make the system enter into a dangerous
status. As shown in Table.1, the anomaly detection is studied
in the form of binary classification or multi-classification.
For the datasets that include many different attack labels, all
the attack labels are treated as the anomaly class generally
to perform the binary classification. No matter how many
classes to be classified, the imbalance problem exists. The
fifth column ‘‘Balance’’ indicates whether this research has
solved the imbalance issue. It can be found that the issue has
only been solved in a few studies.

To discover rare anomalies from imbalanced data, com-
monly used strategies are data re-sampling methods [35] and
classifier modification methods [10]. The classifier modifica-
tion methods aim to make the classifiers to be sensitive to the
rare classes. A sequential classifier [7] containing five clas-
sifiers was proposed to identify a specific attack in sequence.
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In spite of good performance, it needs expert knowledge to
judge the intermediate classification results. On the contrary,
the data re-sampling methods aim to equilibrate the imbal-
anced training dataset to enhance the characteristics of the
rare anomalies before the classification. Since most classi-
fiers are not generally prepared for the imbalanced training
dataset, how to balance the training dataset in advance and
then adapt the classifiers flexibly attracts many academic
attentions.

Over-sampling strategies [3], [12], [13] that aim to gener-
ate the similar data to increase the proportion of rare classes
has been widely used in the case where the number of rare
classes is very tiny. For example, in NSL-KDD, the number of
U2R is less than 100. They produce the similar data according
to the distance between samples, but they ignore the data
distribution. Generative Adversarial Networks (GAN) [36]
and Least Squares GAN (LSGAN) [14] have been proved
effective to learn the data distribution and produce the sim-
ilar data. They are firstly applied in network security to
generate network traffic data for enhancing the rare labeled
raw packet streams and then the enhanced data are used to
train a classifier to classify TCP streams [15], [37]. They
provide a promising guide for the imbalanced classification,
but they mimic each feature independently, which might lose
the spatial knowledge between features.

Inspired by the above over-sampling methods applied
in network anomaly detection, we absorb the advan-
tage of LSGAN to learn the distribution characteristics
of rare anomalies. Combined with the feature representa-
tion, an intelligent image-based augmentation method is
designed. It not only keeps the characteristics of data dis-
tribution, but also maintains the spatial knowledge of fea-
tures. NSL-KDD [4] and UNSW-NB15 [21] datasets are two
well-known benchmark datasets, and are used most often,
so they are also utilized in this article.

III. PROBLEM DESCRIPTION
According to the definition [8], any data set that exhibits
an unequal distribution between its classes can be
considered imbalanced. Analyzing the recent research [7],
[9], [16]–[18], [25], [28]–[30], it can be found that the
main challenge faced by many experiments is that some
rare anomalies sometimes are difficult to be discovered even
though the overall accuracy of imbalanced classification is
high. Our goal is to precisely classify rare anomalies: Given
a training set D = {N1, . . . ,Nn,A1, . . . ,Aa}, where n is the
number of normal data and a is the number of abnormal
data, by assuming that n is far more than a, n

a � 1000 is
considered in this article, the problem is to train a classifierC ,
so that when a new abnormal sample comes, the model C can
accurately predict whether this sample is abnormal or not.

To achieve this goal, constructing a balanced set
through over-sampling technique has been widely used [3],
[12], [13], [15]. Inspired by them, we focus on designing an
effective data augmentation strategy through over-sampling
the minority data. Thus our task can be summarized as

follows: given an imbalanced training set, how to generate
high-quality samples for augmenting the raw imbalanced
training set.

Considering that most of the traditional data synthesis
approaches either ignore the characteristics of data distri-
bution [12], [13] or disrupt the spatial features within the
data [15], [37], and these two issues have not been solved
well in the state-of-the-art works. So it is necessary for us to
provide a new solution to the data augmentation. To overcome
the influence of imbalanced data on the supervised classi-
fier in the network anomaly detection, how to produce the
augmented data to further enhance the characteristics of rare
network anomalies, upon maintaining the spatial knowledge
within each anomaly data and keeping the distribution of rare
anomalies is the main problem to be solved in this article.
Besides, obtaining the augmented network anomalies data,
how to control the mixing ratio of each class in the augmented
training set is also explored in this article.

IV. NADS-RA: A SCHEME FOR NETWORK ANOMALY
DETECTION
In this article, we design a network anomaly detection scheme
NADS-RA to decrease the FNR of rare anomalies. The imple-
mentation details of NADS-RA are illustrated in Fig.1. Fea-
tures are first extracted from the collected network packets
captured by the tcpdump, and we validate NADS-RA on the
public benchmark datasets that include the extracted features.
Then, all the features are pre-processed by feature encoding,
reduction, normalization and representation. Afterwards, data
augmentation is used to balance the training dataset. Finally,
the classifier CNN is trained on the balanced dataset and then
evaluated on the new coming test data.

FIGURE 1. The framework of NADS-RA.

A. DATA PRE-PROCESSING
1) FEATURE ENCODING
There are some discrete features or symbolic features that
cannot be directly accepted as the input of classifier, for
example, protocol (tcp, udp, http). We first encode the
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TABLE 2. Encoded Features After One-Hot.

discrete features into numerical vectors using One-Hot
encoder. Each discrete feature is transformed into aN-bit digit
that includes only one 1 and N-1 0, where N indicates the
unique values number of this feature. Thus, a discrete feature
is transformed into a sequence of binary digits. For example,
in Table.2, ‘‘tcp’’ is encoded into (1 0 0), ‘‘udp’’ is encoded
into (0 1 0) and ‘‘http’’ is encoded into (0 0 1). In this case, one
symbolic feature (‘‘protocol’’) is represented as three features
(‘‘f1’’, ‘‘f2’’ and ‘‘f3’’).

If one feature contains too many unique values
(a bigger N), it will generate many zeros, and the encoded
vectors are sparse with more zeros and less ones, which will
influence the convolution and optimization effect of CNN.
Besides, the feature dimension after One-Hot will increase.
Take an example in Fig.2, assuming that there are five
discrete features and they have different number of unique
values (N1 = 2,N2 = 4,N3 = 2,N4 = 5,N5 = 3),
the dimension of encoded feature vectors obtained from
One-Hot encoder is 16. Obviously, the feature dimension is
increased from 5 to 16.

FIGURE 2. The example of binary feature bundling.

Therefore, bundling the binary vectors is executed to avoid
the feature dimension increasing. We assume each discrete
feature has an equal weight and do not consider the order
of the feature. Then the bundling process transforms every
eight-bit binary digits into one decimal value. Continue to
see the example in Fig.2, 16 binaries obtained from One-Hot
will be transformed into two decimal values. In this case,
the feature dimension is reduced from 16 to 2. In the process
of bundling, we try to avoid splitting one discrete feature’s
binary vectors into two decimal values, so it can maintain the
integrity of each feature.

2) FEATURE REDUCTION
Later, to optimize the remaining continuous features,
a feature filter is designed to remove the useless. As the
dimensions of features are different, the standard deviation is
inappropriate to compare discreteness of features, so the coef-
ficient of variance Cv, as a type of classical statistical theory

is introduced, and the computation is defined as Equation 1.

Cvi =
σi

µi
∗ 100% (1)

where σi andµi are standard deviation andmean of ith feature.
Generally, a higherCv indicates a higher discreteness, and the
feature of a higher Cv plays a more important role. Specially,
when the mean µi of ith feature is zero, this feature will be
seen as unimportant relatively.

3) DATA NORMALIZATION
Normalization can eliminate differences among diverse
dimensional data, so it is therefore widely used in machine
learning. Because features of different scales will result in
unreliability of training model, we normalize them in the
same range. Rescale-min-max normalization is used in this
article as Equation 2.

x ′i =
xi − xmin
xmax − xmin

∗ (1− a)+ a (2)

where xmax and xmin represent the maximum and minimum
value of feature xi respectively, xi and x ′i represent the raw
feature and the normalized feature respectively. To avoid too
many zeros within the feature matrix, we rescale the range
of the normalized feature from [0, 1] to [a, 1] where the
indicator a is a predefined nonzero parameter, a ∈ (0, 1).
Afterwards, the minimum value of the normalized variable
will be changed into a.

4) IMAGE REPRESENTATION
To learn the deep characteristics of traffic feature automati-
cally, we first convert traffic feature vectors into 2-dimension
(2D) pixel-based images and then construct 3-channel
images [20]. A Re-circulation Pixel Permutation (RPP) strat-
egy is designed as Equation 3, it is used to convert a long
vector into a circulant matrix, where xi is the ith sample, and
it is an original long vector with M elements. x ′i is obtained
by moving every element xij(j = 1, 2, · · · ,M ) of xi one
unit forward every time, then x ′i is used to represent pixel
values of the transformed image whose dimension isM ∗M .
Afterwards, every pixel value is extended to the RGB image
pixel by adjusting the pixel value to different percentage on
the same position for 3 channels.

xi = [xi1, xi2, . . . , xiM ]→


xi1 xi2 · · · xiM
xi2 · · · xiM xi1
· · · xiM · · · · · ·

xiM xi1 xi2 · · ·


M∗M

= x ′i
(3)

Compared with the representation approach that reshapes
a long vector into a square matrix directly, RPP retains the
original spatial structure of sample, and every sub-image of
the converted images consists of the adjacent elements of the
original vector.
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B. DATA AUGMENTATION
From the perspective of data sampling, data augmentation
aims to increase the number of minority samples to make the
imbalance ratio closer to 1. The imbalance ratio is defined
as Equation 4, where N i

min and Nmax represents the number
of ith class of minority samples and the maximum number of
majority class samples, respectively.

γi =
N i
min

Nmax
(4)

A dynamic data synthesis strategy is designed in this article
with the consideration of data distribution. As shown in Fig.3,
it includes two roles, generator and discriminator. The gener-
ator generates random vector z first, and then samples partial
data that obeys the distribution z ∼ pz. The discriminator
judges the reality of z by comparing them with the real data
that obeys the distribution x ∼ pdata. If the discriminated
result is false, the generator will refine its generating algo-
rithm to make the generated data more similar to the real data
until the discriminator cannot judge the generated data, thus
they will be output.

FIGURE 3. The structure of data augmentation strategy.

To ensure the distribution of generated samples is realistic
looking to that of the real samples, original samples of the
same class are fed into the generation model in a batch every
time. The generation model will be executed multiple times
dynamically until the number of generated samples is not less
than that of the majority. The termination condition is γi>r
where r is a threshold to control the amount of generated
samples.

The data augmentation process is illustrated in
Algorithm.1, it will train the discriminator D D_steps times
first when parameters of the generator G are fixed, then
train the generator G G_steps times when parameters of
the discriminator D are fixed. In most cases, D_steps is
greater than G_steps in order to conduct a better G. Finally,
the generative data from G will be output.

min
D

J (D) = min
D
{
1
2
Ex∼pdata(x)[D(x)− 1]2

+
1
2
Ez∼pz [D(G(z))]

2
} (5)

Algorithm 1 Data Augmentation Algorithm
1: Input: Fake sample: random noise data z(dim_z); Real

sample: x(dim_x);
Parameters: batch size (mb_size), training steps (G_steps,
D_steps), training times (t_n);
Loss function: least square loss function;
Optimization solver: Adam optimizer;

2: for iteration in t_n do
3: while i < D_steps do
4: Train D in the unit of mb_size
5: Minimize discriminator’s loss function in

Equation 5
6: end while
7: while j < G_steps do
8: Train G in the unit of mb_size
9: Minimize generator’s loss function in Equation 6
10: end while
11: end for
12: Output: generative data from G

min
G

J (G) = min
G
{
1
2
Ez∼pz [D(G(z))− 1]2} (6)

The data augmentation strategy increases the proportion
of minority class in dataset, and tries to maintain the data
distribution in the same class. The enlarged training dataset is
nearly balanced and is used to train the classification model
to perform the final anomaly detection task.

C. CLASSIFICATION MODEL
After feature representation and data augmentation, a classi-
fication model is trained on the balanced training dataset and
further used to validate the NADS-RA. Convolution neural
network (CNN), as a type of deep learning algorithms, has
achieved great classification performance in learning the spa-
tial knowledge of images. This article uses CNN to extract
spatial characteristics of network traffic features, and then
compare with other methods.

FIGURE 4. The architecture of CNN.

The architecture of the commonly used CNN is shown
in Fig. 4. A complete CNN model contains multiple
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convolution layers and pooling layers. Convolution layer
mines the local spatial knowledge using the moving convolu-
tion kernel whose size is set as 5∗5, and pooling layer reduces
the dimension of images using pooling kernel whose size is
set as 2 ∗ 2 in Fig. 4. Repeating the convolution and pooling
operations, the spatial knowledge is obtained through layer-
by-layer processing. Finally, one or more fully connected
layers are used to accept the learned knowledge for decision
making, and the predicted label is output.

D. OVERALL WORKFLOW
The execution of NADS-RA is illustrated in Algorithm.2.
There are four main steps: data preprocessing, feature repre-
sentation, data augmentation and classification model train-
ing. Data preprocessing includes feature encoding, feature
reduction and normalization. Feature representation is per-
formed on training, validation and test datasets. Judging from
the imbalanced ratio of the training dataset, if it is checked
as imbalanced, data augmentation will be executed as Algo-
rithm.1 to generate the synthesis data. Through mixing the
original training dataset with the synthesis data, a balanced
dataset will be constructed to train the classification model.

Algorithm 2 NADS-RA Workflow
1: Input: Dataset D = training data, validation data, test

data;
2: Preprocess: Feature Reduction, Data Normalization;
3: Representation:
4: while x ∈ D do
5: x ′(1, :) = x = [x1, x2, · · · , xn]
6: for 1 ≤ i ≤ n do
7: x ′(i+ 1, :) = [xi+1, xi+2, · · · , xn, x1, · · · , xi]
8: end for
9: end while

10: An image dataset D’ is represented.
11: Augmentation: Calculate the imbalance ratio: γi;
12: if γi < 1 then
13: perform Data augmentation algorithm.1 → pro-

duced samples
14: update training data ← training data + produced

samples
15: end if
16: x ′ ∈ D′ : Train→ Validation→ Test
17: Output: acc_test, loss_test, confusion matrix and test

report

V. EXPERIMENT
A. EXPERIMENT CONFIGURATION
All the experiments are conducted on an Ubuntu 16.04 LTS
machine with Intel Xeon (R)W-2123, 3.6GHz CPU, GeForce
GTX TITAN Xp COLLECTORS EDITION GPU and 12GB
VRAM. We use ResNet50 as the CNN model for evalua-
tion. 50 epochs with a batch size of 1024 are used to train
ResNet50 where the Adaptive moment estimation (Adam)

optimizer is utilized, learning rate is 1e-3 and cross entropy
is used as the cost function. All datasets used in this article
are collected from different application scenarios of the real
world, and they have been labeled as normal and abnormal or
specific attack type. Except for the NSL-KDD and UNSW-
NB15, which have been divided into the training set and test
set, 80% of the other datasets are selected randomly for train-
ing, and the remaining are used for testing. The experimental
results are averaged from 100 groups of experiments without
special description.

1) DATASETS
WeevaluateNADS-RAonfive public datasets: NSL-KDD [4]
and UNSW-NB15 [21] are two well-known network datasets
and used as the main datasets. JM1 and PC5 [23] are two
software defect detection datasets, they and Credit card [22]
dataset are used to validate the general applicability of
NADS-RA in other scenarios.

a: NSL-KDD DATASET
There are four subsets in NSL-KDD [4], namelyKDDTrain+,
KDDTrain+_20 percent, KDDTest+ andKDDTest−21. There
are 41 features and 5 labels including one normal type
and four attack types: Denial of Service (DoS), Probe,
User-to-Root (U2R) and Remote-to-Login (R2L). As shown
in Table. 3, normal traffic accounts for more than half, but
U2R and R2L account for only 0.04 and 0.79 percent in
KDDTrain+ set.

TABLE 3. Details of the NSL-KDD Dataset.

b: UNSW-NB15 DATASET
It contains a large number of recent, legitimate and mali-
cious network instances, and it contains about 100GB of data
including 2,540,044 records which are stored in four CSV
files [21]. There are 42 features and ten types of labels (one
normal type and nine malicious types, Worms, Reconnais-
sance, Generic, Shellcode, Exploits, DoS, Backdoor, Fuzzers
and Analysis). It can be seen from Fig. 5 (a) that the normal
traffic accounts for more than half, but Worms, Backdoor and
Shellcode account for less than 0.1 percent.

c: JM1 AND PC5 DATASETS
They are two software defect datasets of NASA MDP
project [23]. JM1 dataset has 22 static code attributes and
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FIGURE 5. Distribution of five real Datasets.

8904 distinct modules out of 10878 modules. There are
2001 positive defect modules (account for 22.473 percent)
in this dataset. PC5 dataset has 39 static code attributes
and 1830 distinct modules out of 17186 modules. There are
484 positive defect modules (account for 26.448 percent) in
this dataset.

d: CREDIT CARD DATASET
It contains 284807 credit card transactions made over two
days in September 2013 by European cardholders [22]. After
removing duplicates, there are 446 positive fraudulent trans-
actions (account for 0.157 percent) in this dataset. Every
sample is represented as 28 numerical features.

The distribution details of the five datasets are shown
in Fig. 5, it can be found that NSL-KDD and these four
datasets all have serious class imbalance problems. There-
fore, they are all used to evaluate NADS-RA’s effectiveness.
NSL-KDD and UNSW-NB15 are the main datasets, and the
other three datasets are used to evaluate the general applica-
bility of NADS-RA.

2) METRICS
A good anomaly detection approach requires high true rate
as well as low false rate. The metrics are calculated using the
confusion matrix in Table 4, where TP (True Positive) and
TN (True Negative) mean the number of positive instances
(referred to Anomaly) and negative instances (referred to
Normal) that are correctly classified, and FN (False Negative)
and FP (False Positive) mean the number of positive instances
and negative instances that are incorrectly classified.

We evaluate the performance of our approach by the
following metrics, Precision, Recall, F1, False Positive
Rate (FPR) and False Negative Rate (FNR) and Gmean as
well as AUC. We report nearly all these metric values since
it is widely agreed that the accuracy alone is unable to pro-
vide an accurate evaluation of the classification performance,
especially for imbalanced datasets.

TABLE 4. Confusion Matrix of Binary-Classification.

Precision is the ratio of true positive samples to the samples
that are labeled by the system as positive. It represents the
confidence of retrieval. Thus, it should be as maximum as
possible.

Precision =
TP

TP+ FP
(7)

Recall, also called as Detection Rate (DR), is the ratio of
true positive samples to the real positive samples. It repre-
sents the completeness of retrieval, and it is a core metric
commonly used to measure the quality of the anomaly detec-
tion under consideration. Thus, it should be as maximum as
possible.

Recall =
TP

TP+ FN
(8)

F1 is defined as the harmonic mean of Precision and
Recall. It represents a synthesis of the performance of
retrieval. The higher value of F1 indicates that the approach
performs better on Recall and Precision. Thus, it should be as
maximum as possible.

F1 =
2 ∗ Precision ∗ Recall
Precision+ Recall

(9)

False Negative Rate (FNR) is the ratio of false negative
samples to the real positive samples. It represents the inability
to detect the real positive. If this value is high, the real attacks
will be missed, which makes the system to be exposed to
the malicious users and enter into a dangerous status. Thus,
it should be as minimum as possible.

FNR =
FN

TP+ FN
(10)

False Positive Rate (FPR), also termed as False Alarm
Rate (FAR), is the ratio of false positive samples to the
real negative samples. If this value is consistently elevated,
the security analysis operator will intentionally disregard the
system warnings, which makes the system to enter into a
dangerous status [38]. Thus, it should be as minimum as
possible.

FPR =
FP

FP+ TN
(11)

Accuracy is the most used metric from the overall view.
It is the ratio of correctly classified samples to the total
samples. It represents the confidence of the classification.
Thus, it should be as maximum as possible.

Accuracy =
TP+ TN

TP+ FN + FP+ TN
(12)
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Area under Curve (AUC), is the ability to avoid false
classification. It can be approximately seen as the arithmetic
mean of DR (Recall) and TNR (1-FPR) as Equation 13, and
it represents a good compromise between DR (Recall) and
FPRmetrics [39]. It is effective in measuring the performance
of classifiers for imbalanced data [40]. Thus, it should be as
maximum as possible.

AUC = (DR(Recall)+ (1− FPR))/2 (13)

Gmean, indicates the geometric mean of sensitivity and
specificity, where sensitivity = TP

TP+FN and specificity =
TN

TN+FP , and it can also be seen as the comprehensive mea-
surement of Recall and FPR. Thus, it should be as maximum
as possible.

Gmean =
√
sensitivity ∗ specificity (14)

In the binary-classification task, these metrics are used
directly. In the multi-classification task, the overall metric is
computed by weighted average to judge the overall effective-
ness of multi-type attack detection comprehensively in this
article.

3) OUTLINES
We conduct four groups of experiments in total as shown
in Fig. 6.

FIGURE 6. The outline of experiments.

Experiment 1: After feature representation, the raw data
are represented as images (marked as Image Dataset1). Since
the number of each specific attack and that of the nor-
mal is imbalanced, we label all the attacks as Anomaly to
avoid the influence of imbalance on representation. Then,
a binary-classification task for identifying anomalies from the
normal is abstracted to validate the effectiveness of the rep-
resentation strategy of NADS-RA. The experiments include
comparing with state-of-the-art representation methods, and
comparing with different detection algorithms.
Experiment 2: To detect multiple types of attack simul-

taneously, multi-classification task is needed. To improve

the detection accuracy of rare anomalies in the raw imbal-
anced dataset, the imbalanced Image Dataset1 is re-built by
data augmentation strategy of NADS-RA, and then the bal-
anced dataset is marked as Balanced Dataset2. The Balanced
Dataset2 is used to evaluate the effectiveness of augmen-
tation. A multi-classification task is abstracted for classify-
ing the known attack. The experiments include comparing
with state-of-the-art methods, and non-augmentation meth-
ods, and different data synthesis methods, as well as different
mixing ratios of training sets.
Experiment 3: NADS-RA focuses on network anomaly

detection, and the effectiveness is validated by two pub-
lic network datasets, namely NSL-KDD and UNSW-NB15.
Besides, we explore to apply it in other scenarios to evaluate
its general applicability, such as software defect detection and
credit card fraud detection.
Experiment 4: Statistical significance tests are conducted

to compare the performances of various approaches on mul-
tiple datasets.

B. REPRESENTATION ANALYSIS
We first construct the image datasets on raw NSL-KDD [4]
and UNSW-NB15 [21] datasets using the feature repre-
sentation strategy of NADS-RA, and then abstract the
anomaly detection as a binary classification problem on
image datasets. The comparison test includes two experi-
ments: comparing with other representation methods, and
comparing different detection algorithms.

1) COMPARING WITH OTHER REPRESENTATION METHODS
We compare our approach with those reported results in
other studies. Among them, supervised methods including
convolution neural networks (CNN) [16], [17], deep neural
networks (DNN) [41], and unsupervised methods including
clustering [42]–[46] are state-of-the-art methods. CNN and
DNN are recent methods based on feature representation. Our
approach can represent original feature vectors as pixel-based
imageswith spatial knowledge remained. Other deep learning
methods can also represent the feature vectors as images
but cannot maintain the spatial knowledge and feature unity.
We implement the baseline methods according to the descrip-
tions provided in the appropriate papers [16], [17], [41]–[46]
and compare NADS-RA with these methods using metrics:
accuracy, precision, recall, F1, Gmean, FPR, FNR and AUC.

The results on NSL-KDD and UNSW-NB15 are shown
in Tables.5 and 6. The overall classification measurements
of our approach are relatively better than that of the other
methods. Though previous methods [16], [17] take CNN
as the classifier as well, they encode all features [16] or
symbolic features [17] by One-Hot encoder, and then take
the encoded vectors as input directly. There are too many
zeros in the represented sparse vectors that influence the
optimization and convolution effect. On the contrary, we only
encode the symbolic features by One-Hot and subsequently
bundle the binary bits together into the decimal value, which
alleviates the influence of massive zeros on optimization and
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TABLE 5. The Comparison Results Of Binary-Classification of NSL-KDD.

TABLE 6. The Comparison Results of Binary-Classification of UNSW-NB15.

convolution. Specially, in the comparison results on test−21,
method of research [16] obtains the highest Accuracy, Recall,
F1 and the lowest FNR. However, its FPR is 0.998. Com-
bining its overall measurements, it occurs the over-fitting,
nearly all the test samples are detected as the anomaly, which
leads to the imbalanced results. The number of the anomaly
samples account for more than 80% leads to that the accuracy
is about 0.816. Hence, its biased results cannot reflect the
generalization ability. Compared to the methods [42]–[46]
that do not involve the representation, the results obtained
from the clustering methods are almost the lowest,
which further suggests the superior performance of our
approach.

We additionally utilize the full NSL-KDD set and
UNSW-NB15 dataset to evaluate the generalization ability
of NADS-RA. The Receiver Operating Characteristic (ROC)
curves of 5-Fold cross validation test are shown in Fig. 7.
It can be found that the detection results of five groups are
close. So NADS-RA has a better generalization ability.

Considering all metrics, we come to a conclusion that
our approach has clear advantages in feature representa-
tion. We can maintain the spatial knowledge of original fea-
ture vectors, and further contribute to training an effective
CNN classifier. The comparison of the experimental results
obtained from other state-of-the-art works deeply show the
superior performance.

2) COMPARING WITH DIFFERENT TRADITIONAL MACHINE
LEARNING ALGORITHMS
NADS-RA trains ResNet50 using represented images and
then detects the anomalies. To judge the general adaptabil-
ity of the feature representation method, various detection
algorithms are tested on the NSL-KDD dataset. Since the
representation methods combined with state-of-the-art deep
learning classifiers have been compared in the last subsec-
tion, we implement different traditional machine learning
classifiers and evaluate their performance. Figure.8 shows a

214790 VOLUME 8, 2020



X. Liu et al.: NADS-RA: Network Anomaly Detection Scheme Based on Feature Representation and Data Augmentation

FIGURE 7. ROC curves of 5-Fold cross validation on NSL-KDD and UNSW-NB15.

FIGURE 8. Comparison results of different detection algorithms on NSL-KDD.

comparison of experimental results obtained from two test
sets of NSL-KDD dataset.

The X-axis locates seven approaches: support vector
machine (SVM), k-Nearest Neighbor (KNN), Decision Tree
(DT), Random Forest (RF), Naive Bayesian (NB), Logis-
tic Regression (LR) and NADS-RA. Y-axis indicates seven
metrics. It shows that our approach yields the highest AUC,
Accuracy, Precision, Recall as well as F1, and the low-
est FNR, while FPR is the third lowest. When perform-
ing data fitting, deep learning models can extract more
complex features than traditional machine learning models
and mine the hidden characteristics of the samples. Hence,
deep learning models have better representation ability than
the shallow learning models [9]. Considering all metrics
used in these experiments, we can find that our approach
performs globally better than other traditional machine
algorithms.

C. AUGMENTATION ANALYSIS
To validate the data augmentation effect of NADS-RA,
we conduct four goups of multi-classification experiments
on two real imbalanced datasets, namely NSL-KDD [4] and
UNSW-NB15 [21]. The comparison test includes comparing
with state-of-the-art works, evaluating the necessity of data
augmentation, comparing different data augmentation meth-
ods and comparing different mixing ratios of training set.

1) COMPARING WITH OTHER WORKS
Wefirst compare our approach to other state-of-the-art works.
Tables. 7 and.8 show the multi-classification results on
NSL-KDD full set and UNSW-NB15 dataset. Since only
partial metrics are used in the reported works, we exhibit
the same metric values. Data augmentation strategy of
NADS-RA aims at creating new similar samples and then
injecting them into the original training set to clarify the
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TABLE 7. The Multi-Classification Results of Different Methods on NSL-KDD Full Set.

TABLE 8. The Recall Values of Different Multi-Classification Methods on UNSW-NB15.

characteristics of rare anomalies more evidently within the
same or nearly-same distribution. On the contrary, clus-
tering [42] or deep learning methods [18], [47] do not
involve the data augmentation, so the detection model cannot
learn enough characteristics from the original raw rare data.
sNDAE method proposed in [47] obtains the best precision
and F1, but it’s worth noting that its FPR is more than 14.6%,
yet the FPR of ours is only 1.1%. Consequently, we work
well in learning knowledge from the rare anomalies. The
comparison results show that we have an obvious advantage
on the overall classification performance.

2) COMPARING WITH NON-AUGMENTATION METHOD
To confirm the necessity of augmentation for detection
method, this subsection trains the same classifier on the aug-
mented balanced dataset and raw imbalanced dataset (marked
as ‘‘After augmentation’’ and ‘‘Before augmentation’’,
respectively) using NSL-KDD [4] and UNSW-NB15 [21]
datasets. The multi-classification results are exploited from
the perspectives of AUC, Accuracy, Precision, Recall, F1,
FNR and FPR.

Figure. 9 plots the results obtained from two test sets
of NSL-KDD and UNSW-NB15 dataset, respectively. Red
star and blue circle symbols indicate the results obtained
from NADS-RA which is trained after augmentation and
before augmentation, respectively. For the experiment on

UNSW-NB15, 80% of the full set are selected for training,
and the remaining are used for test. It can be found that for all
test sets, the AUC, Accuracy, Precision, Recall, F1 measure-
ments are improved, and the values of FNR and FPR are both
decreased. The trends of all these metrics have demonstrated
that the data augmentation is effective for improving true rates
and decreasing false rates compared with non-augmentation
method. Therefore, it’s necessary to augment the imbalanced
training dataset for pursuing a better detection result.

The detailed detection results for each class of NSL-KDD
and UNSW-NB15 are shown in Table. 9. There are two
values separated by ‘‘/’’ in each cell, and they indicate
the value obtained after augmentation and before aug-
mentation, respectively. For all classes, especially for the
attacks, the global metrics, such as F1, AUC and Accu-
racy, have improved after augmentation. Observations can be
found:

The most obvious observations of NSL-KDD can be found
in the first three rows, where ‘‘U2R’’, ‘‘R2L’’ and ‘‘Probe’’
attack detection results are given. The FNR of them has been
decreased by 14.5%, 29.4% and 15.2%, respectively on both
two test sets. It has almost no influence on the other classes.
This phenomenon can be reasoned by the data augmentation
that increases the proportion of ‘‘U2R’’ and ‘‘R2L’’ in the
training set without information loss, and simultaneously
clarifies the distribution of rare classes, which then facilitates
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FIGURE 9. Augmentation necessity on NSL-KDD and UNSW-NB15.

TABLE 9. The Data Augmentation Necessity Analysis Results of NSL-KDD and UNSW-NB15.

the classification model to better learn the knowledge of them
during the training process.

From a global view of all metrics of UNSW-NB15, the aug-
mentation effectiveness is shown more obviously on the
‘‘Analysis’’ and ‘‘Worms’’ attack detection. For ‘‘Analysis’’,
it corresponds with the nearly-least F1 and the nearly-biggest
FNR before augmentation, and in comparison, F1 has been
improved by nearly 60 percent and FNR has been decreased

by nearly 50 percent after augmentation. For ‘‘Worms’’,
it corresponds with the least F1 and the biggest FNR
before augmentation, and in comparison, F1 value has been
improved by 76 percent, and FNR value has been decreased
by nearly 61 percent after augmentation.

In all, data augmentation of NADS-RA is necessary for
detecting rare anomalies, and it is promising to alleviate the
influence of imbalance on FNR of rare anomalies detection.
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3) COMPARING WITH DIFFERENT DATA SYNTHESIS
METHODS
The effectiveness of data augmentation depends highly on
the quality of synthetic data, so we evaluate the qual-
ity of data produced by different data synthesis methods.
Imbalanced-learn is a common python package offering a
number of resampling techniques commonly used in datasets
showing strong between-class imbalance [35]. We set these
re-sampling techniques as the baseline methods. It contains
three categories: Over-sampling, Under-sampling and Hybrid
methods.
• Over-sampling technique tends to generate more
samples that are similar to the minority data to
increase the proportion of the minority class(es),
and it includes five classical methods: Random
minority over-sampling (ROS), Synthetic Minority
Over-sampling (SMOTE) [12], Borderline SMOTE
(bSMOTE) [50], SMOTE for Nominal Continu-
ous (SMOTE-NC) and Adaptive synthetic sampling
(ADASYN) [51].

• Under-sampling technique tends to discard partial
data of the majority class(es) to decrease the pro-
portion of the majority class(es), and it includes ten
classical methods: Random under-sampling (RUS),
Repeated Edited Nearest Neighbors (RENN) [52],
One-Sided Selection (OSS), Neighborhood Cleaning
Rule (NCR), Instance Hardness Threshold (IHT),
Condensed Nearest Neighbor (CNN), Edited Near-
est Neighbors (ENN) [53], NearMiss, Extraction of
majority-minority Tomek links (TL) and AllKNN [52].

• Hybrid-sampling technique tends to combine the
over-sampling and under-sampling technique to gener-
ate more samples that are similar to the minority class
of data and discard partial data of the majority class(es)
simultaneously to balance the proportion of both, and it
includes two classical methods [54]: SMOTEtomek -
SMOTE + Tomek and SMOTEenn - SMOTE + ENN.

The quality of synthetic data is measured by seven met-
rics, Precision, Recall, F1, FNR, FPR, AUC and Accuracy.
Comparison results on test+ and test−21 sets of NSL-KDD
are shown in Table. 10 where the methods’ names begin with
‘‘O_’’, ‘‘U_’’ and ‘‘H_’’ indicate the over-sampling meth-
ods, under-sampling methods, and hybrid-sampling methods,
respectively. For each group of comparison results, the best
metric values are marked bold in each column. Generally,
the higher true rate values and lower false rate values are,
the better quality of generated data is. Analyzing all themetric
values globally, most of the data re-sampling methods cannot
maintain the high true rates and low false rates simultane-
ously, since the imbalance problem is not well solved.

Most of the Over-sampling methods aim at duplicating the
original minority samples or producing new samples accord-
ing to the distance [12], which ignores the data distribution
so that the generated data will confuse the inter-class margin.
In contrast, we produce the data with the help of LSGAN
that can learn the distribution of minority samples and then

generate the similar samples that obey the same or similar
distribution. Therefore, the augmented training dataset con-
structed by our augmentation strategy is more effective than
other over-sampling methods.

Most of the Under-sampling and Hybrid-sampling meth-
ods solve the imbalanced training set by randomly discard-
ing partial majority class samples. They reduce the training
set, and thus decrease the training time and consume less
resources, but they ignore the distribution and might lose
the characteristics information that is useful to the majority
class [8]. On the contrary, we keep all the original sam-
ples of training set and avoid information loss. Furthermore,
we insert the similar samples in the raw training set to
enhance the characteristics of rare samples. Though the FPR
of U_IHT method is less than that of ours, its FNR is the
worst, and the over-fitting presents itself. FPR value of ours
is 0.126 and 0.098 for two test sets which are both the second
best of all methods. Hence, our augmentation strategy can be
approximately seen as the best method.

Overall, the metric values of test−21 set are less than those
of test+ set, because the test−21 set contains many unknown
attacks that do not occur in the test+ set, so the difficulty
of anomaly detection is increased. In conclusion, NADS-RA
outperforms other data re-sampling method.

4) COMPARING DIFFERENT MIXING RATIOS OF
AUGMENTED DATASET
After producing the high-quality samples, how to control
the proportion of each class in the augmented training set
is validated. According to the Table.3, there are five classes
in the NSL-KDD dataset, and U2R and R2L account 0.04%
and 0.79% in the raw training set, respectively. The main
challenge faced by many experiments of the state-of-the-art
works [18], [42], [47] is the low detection rates of U2R
and R2L. In an ideal balanced set, each class accounts the
same proportion that is 20% for each class in NSL-KDD.
We control the proportions of U2R and R2L the same, and
increase them from the original proportion that is less than
1% to 30%. AUC and ROC curves have been proved effec-
tive to evaluate the overall classification effectiveness of the
imbalanced dataset [40], so we use the average AUC obtained
from 100 groups of experiments.

Figure. 10 shows the ROC curves of NSL-KDD test+ and
test−21 set. Obviously, the AUC is the least in the raw imbal-
anced training set, and the AUC improvement is achieved on
all augmented training sets. A general trend appears that with
the increasing proportion, the AUC value tends to be bigger.
By comparing the AUC metric for different proportions of
U2R and R2L, it can be found that accounting 20% for
each class contributes to a more stable and effective classi-
fication performance. The classification details of each class
is shown in Figs.11 and 12. For U2R and R2L detection,
AUC is improved on the augmented training set, and the
other classes remain almost unchanged or increased. It can
be deduced that the produced rare data not only enhances
their characteristics, but also helps to improve the classifier’s
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TABLE 10. The Comparison Results of Different Data Re-Sampling Methods of NSL-KDD.

global learning ability. Therefore, the augmented training set
is helpful to improve the detection rate of rare anomalies, and
the balanced training set seems to be more promising to train
a globally effective classifier than the imbalanced training set.

D. GENERAL APPLICABILITY ANALYSIS
To prove the general applicability of NADS-RA, we also
implement it on another two scenarios including the credit

card fraud detection and software defect detection. Three
publicly benchmark datasets are used: one credit dataset [22]
and two software defect datasets (JM1 and PC5) from NASA
MDP project [23]. 30% of the dataset are selected as test sam-
ples and the remaining are used as training samples. To reflect
the average classification effect, we take 100 groups of exper-
iments by randomly sampling test samples, then present the
average results.
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FIGURE 10. ROC curves of different proportions (U2R-R2L) on NSL-KDD.

FIGURE 11. ROC curves of different proportions (U2R-R2L) on NSL-KDD test+ set.

FIGURE 12. ROC curves of different proportions (U2R-R2L) on NSL-KDD test−21 set.

1) CASE STUDY 1: CREDIT CARD FRAUD DETECTION
In this case, to identify the fraud transactions from the legit-
imate ones, a binary-classification task is abstracted. Since
Recall, F1, Gmean and FPR are used in the state-of-the-art
methods, these four metrics are used to evaluate the effective-
ness of NADS-RA. An ideal fraud detection system should
identify precisely the fraudulent transactions, prevent finan-
cial loss, and at the same time reduce the number of false
positive transactions that require control of human source
with significant costs. Table. 11 lists the comparison results
obtained before and after augmentation of different detection
methods (They are marked as ‘‘Method’’ and ‘‘Method+’’,
respectively), and they express the superior performance of
augmentation. Compared with the over-sampling method
used in research [55], we additionally represent the original
feature vectors into the images, which contributes to the better
learning of hidden spatial knowledge. Therefore, NADS-RA
provides promising support in the credit card fraud detection.

2) CASE STUDY 2: SOFTWARE DEFECT DETECTION
Since Recall, F1, Gmean and FPR are used in the state-
of-the-art methods, we present these metric values obtained

TABLE 11. Comparison With State-of-the-Art Methods on Credit Card
Fraud Detection.

from JM1 dataset and PC5 dataset in Table. 12. The detec-
tion results obtained before and after augmentation are
marked as ‘‘Method’’ and ‘‘Method+’’, respectively. As we
all know, a high Recall can maintain an accurate detection
of defects, and a low FPR involves less human investiga-
tors. Combining these metric values together, our method
takes on an advantage over others. Though the research [56]
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TABLE 12. Comparison With State-of-the-Art Methods on Software
Defect Detection.

obtains the high Recall and F1, its FPR is the too high to
require many human resources. According to the statistics
of research [57], the accuracy value is less than 50% when
there is no repeated data in JM1. In contrast, under the
same dataset without repeated modules, the accuracy value of
NADS-RA is about 67% on JM1 dataset. In all, the compari-
son results suggest that NADS-RA has a general adaptability
and applicability in different scenarios. Hence, NADS-RA
has a great potentiality to be applied in other security
fields.

E. SIGNIFICANCE TEST ANALYSIS
To strengthen our approach, the statistical significance tests
are conducted to compare the performances of various
approaches on multiple datasets. Friedman test and post-hoc
Nemenyi test are used to further analyze whether our
approach is statistically significant compared with others.
As shown in Table.13, the AUC values of SVM, RF, DT and
ours over the NSL-KDD, Credit card, JM1 and PC5 datasets
are demonstrated. After Friedman hypothesis testing, the null
hypothesis (the performances of all approaches are equiva-
lent) is rejected at α = 0.05 since the p-value is 0.0194. This
result indicates that our approach is significantly different
with other approaches.

Afterwards, it needs to conduct the post-hoc test to fur-
ther measure how significant are the performance differences
among the considered approaches. The post-hoc Nemenyi
test is adopted. The critical difference (CD) of 2.3452 is com-
puted at p-value = 0.05. For the AUC metric, the Friedman
average ranks of SVM, RF, DT and ours are 3.75, 2.25,

3 and 1, respectively. Generally, the lower the rank, the better
performance of the approach is. In Table.13, the best value
is indicated in bold. Ours appears as the best of the bench-
mark approaches, so it is picked as a control algorithm for
being compared with the remaining approaches. The rank
differences among SVM-ours, RF-ours and DT-ours, the first
one is bigger than the CD value and the latter two ones
are lower than the CD value, so it can be accepted at the
confidence degree of 0.95 that SVM is statistically different
from ours, and RF and DT have no statically significant
difference in terms of AUC, despite our method wins on most
of the datasets. This proves that the deep learning classifiers
or ensembling classifiers are more powerful in the big data
network anomaly detection.

F. DISCUSSION
Compared with the state-of-the-art works, we obtain a better
result in the imbalanced network anomaly detection. The
AUC of our presentation strategy is improved by an average
of 10 percent compared with 12 detection methods. Since
we absorb the advantages of the feature representation and
data augmentation together, and then propose an image-based
data augmentation strategy for network data. The existing
feature representationmethods either disrupt the feature unity
or lose the spatial knowledge of partial adjacent features,
so that the classifier trained on the obtained images do not
perform well due to the information loss. On the other hand,
our AUC is improved by at least 10 percent compared with
17 data generation methods. Since the conventional data gen-
eration methods produce data according to the distance or
density, which will disrupt the distribution of original data,
and even confuse the margin between the classes. In con-
trast, we utilize the Re-circulation Pixel Permutation (RPP)
strategy which retains the feature unity through bundling
the discrete features and keeping the original continuous
features. It not only maintains the spatial structure of raw
features, but also enhances the spatial knowledge of adjacent
features. Furthermore, with the help of LSGAN’s ability to
learn the data distribution, we produce the augmented image
data to enrich the rare class, and then improve the detec-
tion rate of rare classes and avoid over-fitting. Therefore,
our superior performance can be explained as that we not
only maintain the spatial features within each sample, but
also keep the distribution characteristics of rare class, and
then the augmented training set is used to train an effective
classifier.

Meanwhile, we cannot ignore the limitation in this article.
The larger represented image size and enlarged training set
might cost more training time and resources. Though we have
explored various training sets with different proportions of
rare classes, it is just for finding the optimal mixing ratios,
so a refined training set and fast training process is still
essential to be incorporated with the incremental learning
online in the big data environment. We will take this problem
as our future work.
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TABLE 13. Performance Results of all Classifiers w.r.t AUC Metric Along With Friedman Rank.

VI. CONCLUSION
A. SUMMARY
In summary, we study how to represent the network traf-
fic features as images and balance the imbalanced train-
ing dataset to improve the classification accuracy of rare
anomalies. The proposed NADS-RA produces augmented
data based on feature images, which maintains the spatial
knowledge between features and also keeps the data distri-
bution of each class. Through the experiments conducted
on five public benchmark datasets including NSL-KDD and
UNSW-NB15, and so on, NADS-RA is in good agreement
with experimental observations, and the advantages of feature
representation and data augmentation are explained. They
contribute to learning the high-level characteristics and the
hidden knowledge of data, making the classifier more pow-
erful. Overall, NADS-RA opens opportunities for improving
the imbalanced classification in the non-image-processing
area, and also provides a general deep-learning-based detec-
tion scheme for the imbalanced classification in different
scenarios.

B. FUTURE WORK
Our current work focuses on over-sampling each class of rare
data to balance the imbalanced training dataset. In the future,
we will study a more intelligent data generation method to
maintain the intra-class distribution and inter-class margin
and to further produce multiple classes of data simultane-
ously, as well as a fast trainingmodel to deal with the problem
of more training time and more computing resources brought
by the enlarged training set.
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