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ABSTRACT Fuzzy multi-state systems (FMSSs) comprise FMS components (FMSCs) aims at analyzing
non-probabilistic uncertain circumstances defined by fuzzy state-transition rate and performance numbers.
The triangular fuzzy number that features intuitive and algebraic operations is widely used for quantifying
fuzziness. This study aims to overcome the drawbacks of the existing FMSS availability index that either does
not conform to a normal convex set or is inconsistent with the crisp-circumstance multi-state system (MSS)
availability beyond summation over state probabilities that do no equal unity. The proposed method first
evaluates the instantaneous state probability (ISP) of FMSCs by establishing the FMSCs Markov model.
Subsequently, the FMSSs ISP is evaluated by integrating the FMSCs ISP using the fuzzy universal generating
function based on the system-structure function. A ‘‘constrained nonlinear parameter programming model’’
has been developed to evaluate the improved FMSSs availability. The corresponding availability index
features the normal convex set whilst fulfilling the MSS theory, which requires state probabilities to
equal unity during availability evaluation. The effectiveness of the proposed approach has been verified
using an illustrated community-based smart-grid system comprising three FMSCs—solar- and wind-energy
systems as well as diesel-generator equipment. Moreover, the results of an independent sensitive analysis
provide further insights into the improved FMSSs availability with regard to the time and circumstance
fuzziness.

INDEX TERMS Fuzzy Markov model, fuzzy multi-state availability, smart-grid system.

I. INTRODUCTION
Availability is a measure of the quality of systems and/or
products, such as mobile phones, vehicles, and televisions,
which find regular use. Owing to advancements in mod-
ern technology, the components used in the development
of such systems and products have become affordable in
terms of their environmental impacts, internal wear, cor-
rosion, etc. However, the use of conventional binary-state
reliability models may result in an inappropriate descrip-
tion of the dynamic performance of complex systems.
An apt example of this is the performance evaluation of a
power-generation system under several operating conditions,
including low, normal, and high loads as well as failure
or outage. Such systems feature multiple states character-
ized by degraded performance. Moreover, a combination of
subsystems or component states existing within a system
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may also exhibit multi-state performance distribution. Stud-
ies concerning the development of a reliability model for
multi-state systems (MSSs) have attracted increased attention
in recent times [1]–[3]. Lisnianski et al. [4] pointed out the
complications involved in the evaluation of MSS effective-
ness owing to an increase in the number of components
and degraded states involved in a complex MSS configura-
tion. Some of these components and states include parallel
multi-state component (MSC) systems, k-out-of-nMSSs, and
MSSs with standbys. Kaul et al. [5] used dynamic Bayesian
networks to evaluate a k-out-of-n MSS and suggested that
the difficulties in solving these models must be overcome
as the MSCs increase in an MSS. Fang et al. [6] employed
a discrete continuous-time Markov chain to determine the
performance of an engine capable of operating under four dis-
tinct output-energy states. The performance indicators con-
sidered in their study included the power-interruption rate and
expected capacity deficiency. Manesh et al. [7] improved the
calculation efficiency of a complex system by simplifying its
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state–space diagram before applying the Markov methodol-
ogy to a complex cogeneration system. The improvedMarkov
approach has proven to be efficient at state-probability pre-
diction and availability calculation among other indicators.
Other extant studies [4], [8], [9] have proposed the use of
a solution strategy that combines the universal generating
function (UGF) with MSC Markov models to determine the
dynamic performance of MSSs based on system-structure
functions. Their proposed strategy, which avoids directly
solving complex, large-scale stochastic MSS models, exclu-
sively uses easy-to-solve stochastic MSC models combined
with UGFs involving simple algebraic operations. Accord-
ingly, a model to evaluate the reliability indicators for an
MSS can be easily established. However, it is essential to gain
insights into additional aspects, such as the failure principle,
life prediction, and means to extend MSS life.

For scenarios with non-probabilistic uncertainties in
MSSs, access to crisp reliability-related observations is
impractical. Therefore, MSS performance can be more
precisely quantified using fuzzy MSS reliability models
compared to its conventional counterpart. Non-probabilistic
uncertainty is attributable to two main factors. First,
complicated MSSs degenerate with time. In the interim,
the embedded components suffer several shock damages
when operating in a dynamic environment. This makes the
failure rates uncertain with fuzzy randomness. Secondly, with
the advancement in technology, product-development-cycle
durations have been significantly shortened while product
lifespans have extended exponentially. Owing to time and
budget restrictions, some complex systems are commercial-
ized even before undergoing appropriate checks to meet reli-
ability benchmarks. Such phenomena make it difficult or
impossible to obtain sufficient amounts of accurate data. For
example, the smart-grid system involves extensive use of
wind, solar, tidal, geothermal, and other renewable energy
resources. Therefore, using the MSS feature of crisp obser-
vations lowers the inferred reliability. Ding et al. [10] pio-
neered the development of a fuzzymulti-state system (FMSS)
model that incorporates relative cardinality into the devel-
oped fuzzy universal generating function (FUGF). Accord-
ingly, their proposed model quantifies the extent to which
system performance meets mission demand to establish an
FMSS reliability index that features linearly triangular fuzzy
numbers (TFN). Liu et al. [11] further considered the α-cut
effect to improve the method proposed in [10]. Subsequently,
Hu aet al. [12] applied the approach proposed by Liu et al.
[11] to a reparable FMSS. Further, Hu et al. [13] calculated
the FMSS reliability of a discrete time-repairable MSS using
trapezoidal fuzzy numbers based on the approach presented
in [11]. Javid et al. [14] focused on the special structure of
ready-to-use systems to propose a reliability model based
on the Markov models and fuzzy theory. The effectiveness
of their model was verified using a system in its design
stage. Gao et al. [15] considered the system workload and
degradation intensity of components to establish their FMSS

reliability model. Considering an MSS with multiple uncer-
tain signals, Dong et al. [16] introduced the standard interval
fuzzy theory to expand the FUGF applicability. Wang et al.
[17] proposed a novel approach to analyze the reliability of
complexMSSs using trapezoidal fuzzy numbers. They used a
Bayesian-network-based parameter-planning model employ-
ing fuzzy mathematics and the gray theory. Hu et al. [18]
employed the probability and uncertainty theories to define
MSS features with random uncertainty. In their research,
the state probability and system-component performances
were considered non-probabilistic uncertain variables, and
subsequently, the uncertain UGF was used to evaluate the
MSS reliability with random uncertainty. Gao et al. [19] con-
sidered the master–slave relationship between components
to expand FUGF applicability in FMSS reliability models.
Roy et al. [20] evaluated the reliability of wind-power devices
using TFNs related to the failure- and repair-rate uncertain-
ties, which are mainly attributable to the randomness of nat-
ural resources. They proposed a fuzzy Markov reward model
whilst stating that traditional Markov reward models tend to
underestimate the mean wind-power availability. Addition-
ally, they reportedMSS reliability models to bemore accurate
compared to their binary counterparts when evaluating wind-
power reliability, notwithstanding the difficulty involved in
model construction and performing calculations.

In summary, the FMSS reliability models reported
in [13], [15], [16], [18]–[20] are based on the approach
proposed by Ding et al. [10], whereas those presented in
[12] and [13] are an application of the approach presented in
[11] involving the use of an FMSS reliability index to com-
pensate for the drawbacks of the method presented in [10]
that utilizes linear TFN to quantify circumstances with non-
probabilistic uncertainties. The approach proposed in [11]
considers the α-cut value in determining the extent to which
the state-performance membership function meets the mis-
sion demand. The FMSS reliability can be determined using
an established linear parameter-planning model subject to
summation over unit probability values. However, the fuzzy
principle of normal convex sets cannot be satisfiedmathemat-
ically. Most prior applications of FMSS reliability models are
based on the approaches presented in [10] and [11]. Both of
these approaches that either does not conform to a normal
convex set or is inconsistent with the crisp-circumstance
multi-state system (MSS) availability beyond summation
over state probabilities that do no equal unity can be fur-
ther improved. Accordingly, this paper presents an improved
availability index for reparable FMSSs. In addition to consid-
ering the influence of the α-cut level on the fuzzy availability
interval, the proposed method features the ‘‘constrained non-
linear parameter-planning model’’ to determine FMSS avail-
ability. The objective function of the said model measures
FMSS availability as optimized state probabilities, which are
normalized to ensure summation over unit probability values.
Application of a linear constraint results in the attainment of
linear TFNs for the availability membership functions with
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FIGURE 1. State-transition diagram for reparable FMSC.

the Karush–Kuhn–Tucker (KKT) conditions satisfied [21].
Therefore, improved FMSS availability can be optimized.

The rest of this paper is organized as follows. In Section II,
the preliminaries of the fuzzy Markov stochastic process and
FUGF are reviewed. The improved FMSS availability index
is explained in section III. Section IV describes the efficacy
of the proposed approach, determined through availability
analysis of a smart-grid system. Section V presents the sen-
sitivity analysis results to further verify the correctness and
effectiveness of the proposed approach. Finally, we present
the conclusions in section VI.

II. FUZZY MARKOV STOCHASTIC PROCESS AND FUZZY
UNIVERSAL GENERATING FUNCTION
Typical FMSS configurations comprise series, parallel, and
series–parallel systems, the state-transition rates and per-
formances of which are fuzzy numbers. The FMSS mod-
els proposed by Liu et al. [11] and Hu et al. [12] employ
a typical series–parallel configuration comprising several
fuzzy multi-state components (FMSCs). TFN, which features
intuitive and algebraic operations, is extensively employed
to measure FMSC-circumstance fuzziness pertaining to the
state-transition intensity and MSS performance [10]–[12],
[15], [19], [20]. Initially, FMSCs degrade from their best
to worse states over time. However, through appropriate
maintenance, they can be restored to previous better states.
Fig. 1 depicts the fuzzy state-transition diagram of the
l th FMSC in a reparable FMSS. The term λ̃l(i,j) (i, j =
1, 2, . . . , kl , i > j) represents the fuzzy number for the said
FMSCs degradation rate from a high-performance state to
a comparatively low-performance one, whereas µ̃l(i,j) (i, j =
1, 2, . . . , kl , i < j) represents the fuzzy number for the corre-
sponding maintenance rate from a low-performance state to
the previous high-performance one after appropriate mainte-
nance. In addition, kl and 1 denote the best and worst FMSC
states, and g̃(l,kl ) denotes the performance fuzzy number of
the l th FMSC in state kl .
FUGF combines UGF and fuzzy membership functions,

and it is widely used to determine the dynamic performance
of large and complex FMSS configurations [10], thereby
facilitating analysis of the transient FMSS dynamic perfor-
mance. If there exist M FMSCs in a given FMSS with

component l containing kl differently performing states, the
performance-state space of component l in the system can
be expressed as a fuzzy set g̃l = {g̃(l,1), g̃(l,2), · · · , g̃(l,kl )},
and its corresponding ISP can be expressed as a fuzzy set
p̃l(t) = {p̃(l,1)(t), p̃(l,2)(t), · · · , p̃(l,kl )(t)}. The notation g̃(l,i)
represents the performance fuzzy number for component
l in state i, whereas p̃(l,i)(t) represents the corresponding
ISP fuzzy number at time t with i ∈ {1, 2, . . . , kl} and
l ∈ {1, . . . ,M}. The fuzzy transition-intensity matrix for
an FMSC that combines λ̃l(i,j) and µ̃

l
(i,j) can be expressed as

Ãl
= [ãl(i,j)], i, j ∈ 1, 2, . . . , kl (Fig. 1). Therefore, the fuzzy

Chapman–Kolmogorov equations for an FMSC in a given
FMSS can be expressed as

dp̃(l,i) (t)
dt

=

 kl∑
j=1
j6=i

p̃(l,j) (t) ãl(j,i)

− p̃(l,i) (t) kl∑
j=1
j6=i

ãl(i,j)

i = {1, 2, . . . , kl}, l = {1, . . . ,M} (1)

Considering the FMSC to exist initially in its best-
performance state kl , which means the initial state is given
by p̃(l,kl )(0) = 1 and p̃(l, i)(0) = 0(i 6= kl), the fuzzy
ISP p̃(l,i)(t)—a function of the fuzzy state-transition-intensity
matrix Ãl and time—can be deduced by solving the above
fuzzy Chapman–Kolmogorov equations. According to the
fuzzy-extension principle [22], [23], the upper and lower
bounds (p̃U(l,i)α(t) = max f(l,i)(Al, t) and p̃L(l, i)α(t) =
min f(l,i)(Al, t), respectively) of the l th FMSC ISP in the α-
cut level interval could be obtained by optimizing the follow-
ing parameter-planning model.

1. Lower-bound optimization of FMSC parameter-
planning model:

min f(l,i)(Al, t) (t ≥ 0, 0 ≤ α ≤ 1, 1 ≤ l ≤ M)

s.t. λ̃l,L
(kl ,kl−1)α

≤ λl
(kl , kl−1)

≤ λ̃
l,U
(kl , kl−1)α

...

λ̃
l,L
(2,1)α ≤ λ

l
(2,1) ≤ λ̃

l,U
(2,1)α

µ̃
l,L
(kl−1,kl)α

≤ µl
(kl−1,kl)

≤ µ̃
l,U
(kl−1,kl)α

...

µ̃
l,L
(1,2)α ≤ µ

l
(1,2) ≤ µ̃

l,U
(1,2)α (2)

2. Upper-bound optimization of FMSC parameter-planning
model:

max f(l,i)(Al, t) (t ≥ 0, 0 ≤ α ≤ 1, 1 ≤ l ≤ M)

s.t. λ̃l,L
(kl ,kl−1)α

≤ λl
(kl , kl−1)

≤ λ̃
l,U
(kl , kl−1)α

...

λ̃
l,L
(2,1)α ≤ λ

l
(2,1) ≤ λ̃

l,U
(2,1)α

µ̃
l,L
(kl−1,kl)α

≤ µl
(kl−1,kl)

≤ µ̃
l,U
(kl−1,kl)α

...

µ̃
l,L
(1,2)α ≤ µ

l
(1,2) ≤ µ̃

l,U
(1,2)α (3)
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The FMSC ISP can then be established in the form of
FUGF Ũs(z, t) based on the FMSS structure function using
operator �̃φ reported in [24] as follows.
Ũs(z, t)

= �̃φ

 k1∑
i1=1

p̃(1,i1)(t) · z
g̃(1,i1) , · · · ,

kM∑
iM=1

p̃(M ,iM )(t) · z
g̃(M ,iM )


=

k1∑
i1=1

k2∑
i2=1

· · ·

kM∑
iM=1

[
M∏
l=1

p̃(l,il )(t) · z
φ
(
g̃(l,i1)

,··· , g̃(M ,iM )

)]

=

Ks∑
i=1

P̃(s,i) (t) · zg̃(s,i) (4)

Here,M denotes the total number of components constituting
the system with state Ks performance and φ(·) denotes the
FMSS structure-function. From equation (4), the FMSS ISP
can be expressed as

P̃(s,i) (t) =
M∏
l=1

p̃(l,il ) (t) (5)

Similarly, the upper (P̃U(s,i)α(t)) and lower (P̃L(s,i)α(t)) bounds
representing the FMSS ISP in the α-cut level interval can
be deduced by optimizing the following parameter-planning
model.

1. Lower-bound optimization of FMSS parameter-
planning model:

P̃L(s,i)α(t) = min
M∏
l=1

p(l,il ) (t),
(
t ≥ 0, 0 ≤ α ≤ 1,
1 ≤ l ≤ M

)
s.t. λ̃l,L

(kl ,kl−1)α
≤ λl

(kl , kl−1)
≤ λ̃

l,U
(kl , kl−1)α

...

λ̃
l,L
(2,1)α ≤ λ

l
(2,1) ≤ λ̃

l,U
(2,1)α

µ̃
l,L
(kl−1,kl)α

≤ µl
(kl−1,kl)

≤ µ̃
l,U
(kl−1,kl)α

...

µ̃
l,L
(1,2)α ≤ µ

l
(1,2) ≤ µ̃

l,U
(1,2)α (6)

2. Upper-bound optimization of FMSS parameter-planning
model:

P̃U(s,i)α(t) = max
M∏
l=1

p(l,il ) (t),
(
t ≥ 0, 0 ≤ α ≤ 1,
1 ≤ l ≤ M

)
s.t. λ̃l,L

(kl ,kl−1)α
≤ λl

(kl , kl−1)
≤ λ̃

l,U
(kl , kl−1)α

...

λ̃
l,L
(2,1)α ≤ λ

l
(2,1) ≤ λ̃

l,U
(2,1)α

µ̃
l,L
(kl−1,kl)α

≤ µl
(kl−1,kl)

≤ µ̃
l,U
(kl−1,kl)α

...

µ̃
l,L
(1,2)α ≤ µ

l
(1,2) ≤ µ̃

l,U
(1,2)α (7)

The FMSS performance g̃(s,i) = φ
(
g̃(1,i1), · · · , g̃(M ,iM )

)
can be evaluated using the previously obtained FMSC

state performance based on the FMSS structure-function by
employing a mapping procedure. The g̃(s,i) value in the α-cut
level interval can be obtained using the below expression.

g̃(s,i)α

=

minφ
(
g̃(1,i1), · · · , g̃(M , iM );µg̃(l,il ) (g(l,il )) ≥ α

)
,

maxφ
(
g̃(1,i1), · · · , g̃(M ,iM );µg̃(l,il ) (g(l,il )) ≥ α

) 
=

[
g̃L(s,i)α, g̃

U
(s,i)α

]
(1 ≤ l ≤ M , 0 ≤ α ≤ 1) (8)

Accordingly, the upper and lower bounds (g̃U(s, i)α and g̃L(s,i)α ,
respectively) of FMSS performance in the α-cut level inter-
val can be obtained by optimizing the following parameter-
planning model.

1. Lower-bound optimization of parameter-planningmodel
for FMSS performance:

g̃L(s,i)α = minφ
(
g̃(1,i1), · · · , g̃(M ,iM );µg̃(l.il ) (g(l,il )) ≥ α

)
,

(0 ≤ α ≤ 1, 1 ≤ l ≤ M)

s.t. g̃L(l,i1)α ≤ g(l,i1) ≤ g̃
U
(l,i1)α

...

g̃L(l,iM )α ≤ g(l,iM ) ≤ g̃
U
(l,iM )α (9)

2. Upper-bound optimization of parameter-planning model
for FMSS performance:

g̃U(s,i)α = maxφ
(
g̃(1,i1), · · · , g̃(M ,iM );µg̃(l.il ) (g(l,il )) ≥ α

)
,

(0 ≤ α ≤ 1, 1 ≤ l ≤ M)

s.t. g̃L(l,i1)α ≤ g(l,i1) ≤ g̃
U
(l,i1)α

...

g̃L(l,iM )α ≤ g(l,iM ) ≤ g̃
U
(l,iM )α (10)

For a commonly used series–parallel configuration
with a flow-transmission system, the FMSS-state per-
formance can be expressed as the following function
of the FMSC state performance in the TFN form—
g̃(l,il )

(
a(l,il ), b(l,il ), c(l,il )

)
(1 ≤ l ≤ M , 1 ≤ il ≤ kl)—based

on the MSS structure function φ(·) [10].
1. Parallel system:

g̃(s,i) = φp
(
g̃(1,i1), · · · g̃(l,il ) · · · , g̃(M ,iM )

)
=

(
M∑
l=1

a(l,il ),
M∑
l=1

b(l,il ),
M∑
l=1

c(l,il )

)
(11)

2. Series system:

g̃(s,i) = φs
(
g̃(1,i1), · · · g̃(l,il ) · · · , g̃(M ,iM )

)
= min

(
g̃(1,i1), · · · g̃(l,il ) · · · , g̃(M ,iM )

)

=


min

(
a(1,i1), · · · a(l,il ) · · · , a(M ,iM )

)
,

min
(
b(1,i1), · · · b(l,il ) · · · , b(M , iM )

)
,

min
(
c(1,i1), · · · c(l,il ) · · · , c(M ,iM )

)
 (12)
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III. IMPROVED FMSS AVAILABILITY INDEX
The FMSS availability index developed in previous studies
has two major shortcomings. First, the existing FMSS avail-
ability membership function breaches the concept of normal
convex sets [11], [12] in fuzzy theory beyond the fuzzi-
ness expansion of availability. Second, the said membership
function violates the rule of summation over unit probabil-
ities [10]. To address these concerns, this paper presents an
improved FMSS availability index that satisfies the fuzzy
principle as follows.
(1) The normal convex set principle is adhered to in fuzzy

theory.
(2) The improved FMSS availability with α-cut level equal

to 1 conforms to the MSS availability of crisp observa-
tions.

(3) The summation over state probabilities equals 1 when
determining the FMSS availability.

The following steps outline the calculation of the proposed
improved FMSS availability index.
Step 1: Establish the fuzzy Markov stochastic model for

FMSCs
The fuzzy Chapman–Kolmogorov equations (1) for

FMSCs in a given FMSS are first established using the fuzzy
transition intensities derived from the FMSC state-transition
diagram (Fig. 1).
Step 2: Determine fuzzy ISP of FMSCs
The MSS complexity caused by the inclusion of several

FMSCs makes it impractical to obtain analytical solutions.
To address this concern, the numerical–analytical approaches
extensively used across different fields can be used to evaluate
fuzzy FMSCs ISP given by p̃(l,i)α(t) [25].
Step 3: Establish FUGF for FMSS
The FMSS FUGF represents the FMSS ISP can be estab-

lished by substituting the FMSC FUGF as an algebraic cal-
culation (as described in (4)) as

ũl(z, t) =
kl∑
i=1

p̃(l,i)(t)zg̃(l,i) , l = 1, . . . ,M (13)

Step 4: Determine FMSS ISP interval and corresponding
performance

By establishing the FMSS parameter-planning model
using (6) and (7), the lower and upper bounds of P̃(s,i)α(t) =
[P̃L(s,i)α(t), P̃

U
(s,i)α(t)] can be obtained in the α-cut level inter-

val after completion of the optimization process. Similarly,
using (9)–(12), the lower and upper bounds of the FMSS
fuzzy-state performance g̃(s, i)α = [g̃L(s,i)α, g̃

U
(s,i)α] in the α-

cut level interval can be evaluated via the model establish-
ment and optimization processes.
Step 5: Establish improved FMSS availability index
By constructing a constrained nonlinear parameter-

programming model, the lower and upper bounds of
the improved FMSS availability index Ãα(t, w̃) =

[ÃLα(t, w̃), Ã
U
α (t, w̃)] in the α-cut level interval can be obtained

as follows.
1. Optimization model for lower-bound parameter

planning of improved FMSS availability index:

ÃLα(t, w̃)

= min
Ks∑
i=1

P(w,i)α (t) · |ari|relα , (t ≥ 0, 0 ≤ α ≤ 1)

s.t. µ̃ÃLα (t, w̃) = µA(t,w)+ m
L
(
ÃLα(t, w̃)− A(t,w)

)
P̃L(s,i)α(t) ≤ P(s,i)(t) ≤ P̃

U
(s, i)α(t) (14)

2. Optimization model for upper-bound parameter planning
of improved FMSS availability index:

ÃUα (t, w̃)

= max
Ks∑
i=1

P(w,i)α (t) · |ari|relα , (t ≥ 0, 0 ≤ α ≤ 1)

s.t. µ̃ÃUα (t, w̃) = µA(t,w)+ m
U
(
ÃUα (t, w̃)− A(t,w)

)
P̃L(s,i)α(t) ≤ P(s,i)(t) ≤ P

U
(s,i)α(t) (15)

The above equations use the relative cardinality |ari|relα
[11] to quantify the extent to which the FMSS per-
formance fulfills the mission demand. µ̃ÃLα (t, w̃) and

µ̃ÃUα
(t, w̃) denote the membership functions for ÃLα(t, w̃)

and ÃUα (t, w̃),respectively. A(t,w) is the crisp value of
availability, and µA(t,w) is the corresponding member-
ship function. Notably, the expression P(w,i)α (t) =

P(s,i)α (t)

/
Ks∑
i=1

P(s,i)α (t) in the objective function represents

a normalized probability responsible for unit FMSS probabil-
ities over states in the FMSS availability calculation.

In addition, the linear constraint confines the feasible solu-
tion area in a triangular compass with slopes mL and mU ,
thereby satisfying the KKT condition [21]. Thus, through an
optimization process, the improved FMSS availability index
features a linear TFN in compliance with the normal convex
set principle in the fuzzy theory. It is noteworthy that TFNs
are extensively used formeasuring fuzziness inmany applica-
tions owing to their intuitive and simple algebraic-operation
characteristics [26].

IV. ILLUSTRATIVE EXAMPLE
The construction of smart grids has attracted increased atten-
tion globally to harness green technologies for cost-effective
power generation and more importantly, reduce the harm-
ful effects of greenhouse-gas emissions. Japan’s efforts in
the construction of smart grids began with the Yokohama
Smart City Project (YSCP). A tailor-made smart-grid sys-
tem that considers specific local environmental features
not only utilizes natural resources but also offers further
insights into the applications of green technology. A smart
grid normally features multiple power performances with
non-probabilistic uncertainties related to natural resources
mainly owing to geographic reasons. This study focused
on a community-based smart grid that combines renewable
resources including solar and wind energy with diesel gener-
ators, which are traditional power generation sources, into a
repairable smart-grid system.
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FIGURE 2. FMSS configuration for community-based smart grid.

TABLE 1. TFN for Fuzzy Transition Intensities (Per Year).

Fig. 2 depicts the system configuration. Wind energy is
one of the fastest-growing renewable-energy resources, and
it has become an essential alternative to conventional means
of electricity generation [27]. However, renewable energy
is prone to uncertainties due to environmental changes, and
the development cycle of smart grids tends to shorten in
some cases. This may lead to non-probabilistic uncertain-
ties when performing reliability-related observations. There-
fore, it could be considered appropriate to use the fuzzy
multi-state modeling theory compared to the conventional
crisp approach to deal with such circumstances. Fig. 2 depicts
the two green renewable-energy apparatuses to be connected
in parallel and their combination to be serially connected with
diesel generators. In accordance with the proposed approach,
each energy-resource apparatus serves as an FMSC, thereby
constituting the community-based smart-grid FMSS. In this
analysis, TFNs were employed without loss of generation to
measure the fuzzy transition intensities and evaluate fuzzy
performance. Table 1 lists transition-intensity parameters
covering both the degradation and maintenance rates while
Table 2 lists TFN values for fuzzy power performance.
The TFN parameter for power demand was set to 1.9, 2.1,
and 2.3 (×103 kW ) for the solar-energy, wind-energy, and
diesel-generator apparatuses.

Based on the proposed approach, improved FMSS avail-
ability can be calculated in the following five steps.
Step 1: Establish fuzzy Markov stochastic model for

FMSCs
Substituting the TFN transition intensities (Table 1)

corresponding to each energy resource with degradation
and maintenance rates in (1) establishes the fuzzy
Chapman–Kolmogorov equations pertaining to the three
FMSCs based on their respective configurations as follows.

TABLE 2. TFN for Fuzzy Performance (×103) kW.

FMSC 1: Solar-energy apparatus
dp̃(1,1) (t)

dt
= −µ̃1

(1,2)p̃(1,1) (t)+ λ̃
1
(2,1)p̃(1,2)(t),

dp̃(1,2) (t)
dt

= µ̃1
(1,2)p̃(1,1) (t)− λ̃

1
(2,1)p̃(1,2)(t),

t ≥ 0

(16)

FMSC 2: Wind-energy apparatus
dp̃(2,1) (t)

dt
= −µ̃2

(1,2)p̃(2,1) (t)+ λ̃
2
(2,1)p̃(2,2)(t),

dp̃(2,2) (t)
dt

= µ̃2
(1,2)p̃(2,1) (t)− λ̃

2
(2,1)p̃(2,2)(t),

t ≥ 0

(17)

FMSC 3: Diesel-generator apparatus

dp̃(3,1) (t)
dt

= −µ̃3
(1,2)p̃(3,1) (t)+ λ̃

3
(2,1)p̃(3,2)(t),

dp̃(3,2) (t)
dt

= µ̃3
(1,2)p̃(3,1) (t)−

(
λ̃3(2,1) + µ̃

3
(2,3)

)
p̃(3,2)(t)

+ λ̃3(3,2)p̃(3,3)(t),
dp̃(3,3) (t)

dt
= µ̃3

(2,3)p̃(3,2) (t)− λ̃
3
(3,2)p̃(3,3)(t),

t ≥ 0 (18)

The best initial states for all FMSCs are assigned a probability
of 1 while other states are assigned zero probability.
Step 2: Determine fuzzy FMSC ISP
Using a numerical–analytical approach, the FMSC ISP

can be obtained by solving the simultaneous differential
equations established in Step 1. Further, the lower and
upper ISP bounds could be determined by establishing and
optimizing the parameter-planning models pertaining to the
solar-energy, wind-energy, and diesel-generator apparatuses
using (2) and (3).
Step 3: Establish FMSC FUGF and FMSS ISP
The FMSC ISPs for the solar-energy, wind-energy, and

diesel-generator apparatuses can be expressed in the FUGF
form as follows.

FMSC 1: Solar-energy apparatus

ũ1(z, t) = p̃(1,2)(t)zg̃(1,2) + p̃(1,1)(t)zg̃(1,1)

= p̃(1,2)(t)z(1.5, 1.6,1.7) + p̃(1,1)(t)z0 (19)

FMSC 2: Wind-energy apparatus

ũ2(z, t) = p̃(2,2)(t)zg̃(2,2) + p̃(2,1)(t)zg̃(2,1)

= p̃(2,2)(t)z(1.8, 2.0,2.2) + p̃(2,1)(t)z0 (20)
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FMSC 3: Diesel-generator apparatus

ũ3(z, t) = p̃(3,3)(t)zg̃(3,3) + p̃(3,2)(t)zg̃(3,2) + p̃(3,1)(t)zg̃(3,1)

= p̃(3,3)(t)z(3.6, 3.7,3.8) + p̃(3,2)(t)z(2.1,2.4,2.7)

+ p̃(3,1)(t)z0 (21)

Subsequently, the FMSS ISP for the entire community-based
smart grid can be expressed in the FUGF form by using an
integration operator and substituting the FUGF of the three
FMSCs as follows.

Ũs(z, t) = �̃ser
φ

(
�̃
par
φ (ũ1(z, t), ũ2(z, t)) , ũ3(z, t)

)
(22)

Here, �̃ser
φ and �̃par

φ denote integration operators for the
series and parallel configurations, respectively. The below
expression (23) elucidates the integration process for the
solar-energy apparatus with the wind-energy apparatus
connected in parallel.

�̃
par
φ (ũ1(z, t), ũ2(z, t)) = p̃(1,2)(t)p̃(2,2)(t)z(3.3,3.6,3.9)

+ p̃(1,1)(t)p̃(2,2)(t)z(1.8,2.0,2.2)

+ p̃(1,2)(t)p̃(2,1)(t)z(1.5,1.6,1.7)

+ p̃(1,1)(t)p̃(2,1)(t)z0 (23)

Likewise, the integration of the above combination con-
nected in series with the diesel-generator apparatus can be
performed as described in (24) below.

Ũs(z, t) = �̃ser
φ

(
�̃
par
φ (ũ1(z, t), ũ2(z, t)) , ũ3(z, t)

)
= p̃(1,1)(t)p̃(2,1)(t)p̃(3,1)(t)z(0)

+ p̃(1,1)(t)p̃(2,1)(t)p̃(3,2)(t)z(0)

+ p̃(1,1)(t)p̃(2,1)(t)p̃(3,3)(t)z(0)

+ p̃(1,1)(t)p̃(2,2)(t)p̃(3,1)(t)z(0)

+ p̃(1,1)(t)p̃(2,2)(t)p̃(3,2)(t)z(1.8,2.0,2.2)

+ p̃(1,1)(t)p̃(2,2)(t)p̃(3,3)(t)z(1.8,2.0,2.2)

+ p̃(1,2)(t)p̃(2,1)(t)p̃(3,1)(t)z(0)

+ p̃(1,2)(t)p̃(2,1)(t)p̃(3,2)(t)z(1.5,1.6,1.7)

+ p̃(1,2)(t)p̃(2,1)(t)p̃(3,3)(t)z(1.5,1.6,1.7)

+ p̃(1,2)(t)p̃(2,2)(t)p̃(3,1)(t)z(0)

+ p̃(1,2)(t)p̃(2,2)(t)p̃(3,2)(t)z(2.1,2.4,2.7)

+ p̃(1,2)(t)p̃(2,2)(t)p̃(3,3)(t)z(3.3,3.6,3.8) (24)

By extracting the FMSS ISP in the above FUGF form,
five distinguished five-state performances of the entire
community-based smart grid can be expressed as functions
of the FMSC ISPs as described below.
State 1: g̃(s,1)= 0

P̃(s,1) = p̃(1,1)(t)p̃(2,1)(t)p̃(3,1)(t)z(0)

+ p̃(1,1)(t)p̃(2,1)(t)p̃(3,2)(t)z(0)

+ p̃(1,1)(t)p̃(2,1)(t)p̃(3,3)(t)z(0)

+ p̃(1,1)(t)p̃(2,2)(t)p̃(3,1)(t)z(0)

+ p̃(1,2)(t)p̃(2,1)(t)p̃(3,1)(t)z(0)

+ p̃(1,2)(t)p̃(2,2)(t)p̃(3,1)(t)z(0) (25)

State 2: g̃(s,2) = (1.5, 1.6, 1.7)
P̃(s,2) = p̃(1,2)(t)p̃(2,1)(t)p̃(3,2)(t)z(1.5,1.6,1.7)

+ p̃(1,2)(t)p̃(2,1)(t)p̃(3,3)(t)z(1.5,1.6, 1.7) (26)

State 3: g̃(s,3) = (1.8, 2.0, 2.2)
P̃(s,3) = p̃(1,1)(t)p̃(2,2)(t)p̃(3,2)(t)z(1.8,2.0,2.2)

+ p̃(1,1)(t)p̃(2,2)(t)p̃(3,3)(t)z(1.8,2.0, 2.2) (27)

State 4: g̃(s,4) = (2.1, 2.4, 2.7)
P̃(s,4) = p̃(1,2)(t)p̃(2,2)(t)p̃(3,2)(t)z(2.1,2.4,2.7) (28)

State 5: g̃(s,5) = (3.3, 3.6, 3.8)
P̃(s,5) = p̃(1,2)(t)p̃(2,2)(t)p̃(3,3)(t)z(3.3,3.6,3.8) (29)

Step 4: Evaluate FMSS ISP interval and corresponding per-
formance

The upper and lower bounds of the five-state FMSS ISP
P̃(s,i)α(t) = [P̃L(s, i)α(t), P̃

U
(s,i)α(t)] and corresponding per-

formance g̃(s,i)α = [g̃L(s,i)α, g̃
U
(s,i)α] in the α-cut level set

can be evaluated post construction and optimization of the
parameter-planning models using (6), (7), (9), and (10) as
follows.

1. Lower-bound optimization of FMSS parameters-
planning model:
P̃L(s,i)α(t)

= min
3∏
l=1

p(l,il ) (t),

(
t ≥ 0, 0 ≤ α ≤ 1,
1 ≤ i ≤ 5, 1 ≤ i1 ≤ 2,
1 ≤ i2 ≤ 2,1 ≤ i3 ≤ 3

)
s.t. λ̃1,L(2,1)α ≤ λ

1
(2,1) ≤ λ̃

1,U
(2,1)α, µ̃

1,L
(1,2)α ≤ µ

1
(1,2) ≤ µ̃

1,U
(1,2)α

λ̃
2,L
(2,1)α ≤ λ

2
(2,1) ≤ λ̃

2,U
(2,1)α, µ̃

2,L
(1,2)α ≤ µ

2
(1,2) ≤ µ̃

2,U
(1,2)α

λ̃
3,L
(3,2)α ≤ λ

3
(3,2) ≤ λ̃

3,U
(3, 2)α, µ̃

3,L
(2,3)α ≤ µ

3
(2,3) ≤ µ̃

3,U
(2,3)α

λ̃
3,L
(2,1)α ≤ λ

3
(2,1) ≤ λ̃

3,U
(2,1)α, µ̃

3,L
(1,2)α ≤ µ

3
(1,2) ≤ µ̃

3,U
(1,2)α

(30)

g̃L(s,i)α

= minφ
(
g̃
(l,il )
; µg̃(l,il )

(g(l,il )) ≥ α
)
,(

0 ≤ α ≤ 1, 1 ≤ i ≤ 5
1 ≤ l ≤ 3, 1 ≤ i1 ≤ 2
1 ≤ i2 ≤ 2,1 ≤ i3 ≤ 3

)
s.t. g̃L(l,il )α ≤ g(l,il ) ≤ g̃

U
(l,il )α (31)

2. Upper-bound optimization of FMSS parameters-planning
model:
P̃U(s,i)α(t)

= max
3∏
l=1

p(l,il ) (t),

 t ≥ 0, 0 ≤ α ≤ 1,
1 ≤ i ≤ 5, 1 ≤ i1 ≤ 2,
1 ≤ i2 ≤ 2, 1 ≤ i3 ≤ 3


s.t. λ̃1,L(2,1)α ≤ λ

1
(2,1) ≤ λ̃

1,U
(2,1)α, µ̃

1,L
(1,2)α ≤ µ

1
(1,2) ≤ µ̃

1,U
(1,2)α

λ̃
2,L
(2,1)α ≤ λ

2
(2,1) ≤ λ̃

2,U
(2,1)α, µ̃

2,L
(1,2)α ≤ µ

2
(1,2) ≤ µ̃

2,U
(1,2)α

λ̃
3,L
(3,2)α ≤ λ

3
(3,2) ≤ λ̃

3,U
(3,2)α, µ̃

3,L
(2,3)α ≤ µ

3
(2,3) ≤ µ̃

3,U
(2,3)α

λ̃
3,L
(2,1)α ≤ λ

3
(2,1) ≤ λ̃

3,U
(2,1)α, µ̃

3,L
(1,2)α ≤ µ

3
(1,2) ≤ µ̃

3,U
(1,2)α

(32)
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g̃U(s,i)α

= maxφ
(
g̃
(l,il )
; µg̃(l,il )

(g(l,il )) ≥ α
)
, 0 ≤ α ≤ 1, 1 ≤ i ≤ 5

1 ≤ l ≤ 3, 1 ≤ i1 ≤ 2
1 ≤ i2 ≤ 2,1 ≤ i3 ≤ 3


s.t. g̃L(l,il )α ≤ g(l,il ) ≤ g̃

U
(l,il )α (33)

Thus, based on the calculations performed in this step, a
three-dimensional plot can be generated to depict the ISP of
the entire community-based smart grid with a mission time
of 60 years and membership values plotted on the x and y
axes, respectively. Figs. 3–7 depict the said three-dimensional
diagrams for FMSS ISPs for the said five states. As can be
seen in the figures, for α-cut = 1, the individual state ISPs
converge to a single-point time-varying probability, thereby
representing a crisp circumstance indicated by the red line.
This three-dimensional ISP patterns offer further insight into
not only the time-varying ISP trajectory but also the impact
of circumstance fussiness on ISP beyond the mission-time
and fuzziness interactions. The said plot facilitates engineer
to conceive a more cost-effective upgrade to existing smart
grids as well as improve maintenance strategies.

FIGURE 3. Three-dimensional FMSS ISP plot for State 1.

FIGURE 4. Three-dimensional FMSS ISP plot for State 2.

FIGURE 5. Three-dimensional FMSS ISP plot for State 3.

FIGURE 6. Three-dimensional FMSS ISP plot for State 4.

FIGURE 7. Three-dimensional FMSS ISP plot for State 5.

Step 5: Establish improved FMSS availability index
Given a target power demand of w̃ = (1.9, 2.1, 2.3)× 103

kW, the lower and upper bounds of the improved FMSS
availability in the α-cut level set for the community-based
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TABLE 3. FMSS steady-state availability in a-cut level set.

FIGURE 8. Comparison between steady-state FMSS availabilities
obtained using proposed approach and those presented in [10]–[12].

smart grid can be obtained using the proposed constrained
nonlinear parameter-planning model equations (14) and (15).
As observed in this case study, the performances of states
3 and 4 overlap with the target power demand, i.e., g̃(s, 3) ≤ w̃
and g̃(s,4) ≥ w̃. Table 3 compares the results obtained in this
study against those obtained using the method reported in
[11]. Fig. 8 presents a comparison between steady-state avail-
ability results obtained using the proposed method against
those reported in [10]–[12]. As can be observed, the proposed
improved FMSS availability for α-cut=1 converges to a crisp
value of 0.7949. For the general MSS considered in this case
with no fuzziness, the crisp values of the performance of
states 1–5 equaled 0, 1.6, 2, 2.4, and 3.6(×103kW ), respec-
tively. The corresponding MSS availability can be calculated
via probability summation over states 4 and 5 that fulfill the
power demand of w̃ = 2.1 kW. As observed, the result of the
calculation coincides with the proposed FMSS convergence
value of 0.7949. Notably, the methods reported in [11] and
[12] feature a nonlinear trajectory in Fig. 8 despite compli-
ance with the general MSS availability for a crisp circum-
stance. For example, the calculation performed in accordance
with [12] reveals that the lower bound of FMSS availability
reduces from 0.7714 to 0.7694 with an increase in the α-cut
level set in the 0.68–0.74 interval. This tendency violates the
normal convex set principle in the fuzzy theory.

As an added advantage, the three-dimensional plot (Fig. 9)
of the improved FMSS availability reveals a further insight

FIGURE 9. Improved FMSS availability with time and membership.

FIGURE 10. The improved FMSS availabilities for α-cut = 0 and 1.

in the efficacy and power capacity of the community-based
grid structure related to time and membership. As can be
seen, the black line depicts a tendency of a crisp circumstance
with α-cut=1. Fig. 10 compares the corresponding FMSS
availabilities for α-cut = 0 and 1, respectively. From Fig. 10,
it can be inferred that the availability initially reduces with
time attaining a steady-state after approximately 34 years,
given α-cut = 1.

V. SENSITIVITY ANALYSIS
By verifying the proposed approach beyond looking into
the robustness of mathematical models, sensitivity analyses
were performed in this study for three exclusive scenarios.
In the first scenario, the degradation and maintenance rates
were applied with scale-factor values of 0.9 and 1.1, respec-
tively. Subsequently, these scale-values for the said rates were
swapped, thereby simulating better and worse circumstances
compared to the current case settings with both factors set
to 1. In the second scenario, scale factors of 0.8 and 1.2 were
applied to the fuzziness of the maintenance rate to simulate
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TABLE 4. Altered parameter settings to simulate better and worse
circumstances of degradation and maintenance rates.

FIGURE 11. Improved steady-state FMSS availability considered altered
degradation and maintenance rates of entire smart-grid system.

the expansion and contraction of the FMSS fuzziness. Finally,
given the essential role played by the diesel-generator appara-
tus in the series–parallel configuration of smart-grid systems,
scale factors of 0.9 and 1.1 applied to the corresponding
degradation and maintenance rates, followed by subsequent
swapping, to simulate the better and worse circumstance
compared to the current case.

A. SENSITIVITY TO DEGRADATION AND MAINTENANCE
RATES OF ENTIRE SMART GRID
Table 4 presents a comparison between the better and
worse circumstances obtained via the application of the
above-defined scale factors to solar-energy, wind-energy,
and diesel-generator apparatuses of the smart-grid system.
The corresponding FMSS steady-state availability diagram is
depicted in Fig. 11. As anticipated, the better circumstance
(green trend) outperforms the worse circumstance (red trend)
in terms of the FMSS availability over a smaller α-cut level
set interval. The FMSS availability of the original setting
(blue trend) falls between the red and green trends. This veri-
fies the accuracy and effectiveness of the proposed approach.

FIGURE 12. Improved steady-state FMSS availability considering altered
maintenance fuzziness.

TABLE 5. TFN parameters settings for alteration of maintenance
fuzziness.

B. SENSITIVITY TO FMSS FUZZINESS EXPANSION AND
CONTRACTION
Table 5 presents the expansion and contraction param-
eters settings considered without altering the crisp-value
parameters associated with maintenance rates of the three
apparatuses. Calculating the FMSS steady-state availability
prior to generating the corresponding membership function
plot facilitates the investigation of the effect of fuzziness
expansion and contraction on FMSS steady-state availabil-
ity. Fig. 12 depicts the FMSS availability plot revealing
an expansion in FMSS-availability fuzziness when using
TFN-parameter settings corresponding to the red trend.
Conversely, the said fuzziness contracts when using TFN-
parameter settings corresponding to the green trend. The
ramifications of this result are consistent with mathematical
inference.

C. SENSITIVITY WITH RESPECT TO ALTERATION OF
DIESEL-GENERATOR DEGRADATION AND MAINTENANCE
RATES
Table 6 lists the altered parameter settings for the diesel-
generator apparatus, whereas Fig. 13 displays the results
of this sensitivity analysis in terms of the steady-state
FMSS availability. As can be observed, the better cir-
cumstance (green trend) with a small fuzzy interval out-
performs the worse circumstance indicated (red trend).
The FMSS availability corresponding to the original set-
ting (blue trend) falls between the green and red trends.
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TABLE 6. Altered TFN parameters settings to simulate better and worse
circumstances for diesel generator apparatus.

FIGURE 13. Improved steady-state FMSS availability considering altered
degradation and maintenance rates of diesel-generator apparatus.

Therefore, the TFN parameter settings considered in this
analysis for the diesel generator reflects the extent to
which the non-probabilistic uncertainty affects the FMSS
availability of the entire community-based smart grid.

VI. CONCLUSION
This paper presents an improved FMSS availability index by
establishing a constrained nonlinear parameter-programming
model that aims to address the shortcomings of previously
proposed indices. These include the violation of the nor-
mal convex set principle and contradiction of crisp FMSS
availability at α-cut= 1 beyond summation over FMSS prob-
abilities not equal to unity. The case study of a community-
based smart-grid system with three FMSCs—solar- and wind
energy as well as diesel-generator apparatuses—was consid-
ered to verify the efficacy of the proposed approach. The pro-
posed improved FMSS availability index offers the following
advantages.
(1) Compliance of FMSS-availability TFNs with the nor-

mal convex set principle in fuzzy theory.
(2) The improved FMSS availability with its α-cut level

equal to 1 conforms to the MSS availability of crisp
observations. Furthermore, the summation over state
probabilities equals 1 when the FMSS availability is
determined through a normalization procedure.

(3) The three-dimensional plot that depicts the improved
FMSS-availability offers further insight into the rela-
tionship between the availability, time, and circum-
stance fuzziness. This plot is expected to help engineers
use the availability trajectory to plan and establish

appropriate maintenance strategies, thereby making
subsequent upgrades more efficient to facilitate the sus-
tainable development of cost-effective and eco-friendly
renewable energy.

As a future endeavor, the authors propose to analyze
the aging of the apparatus during power plant life cycles
by applying the non-homogeneous Markov model in fuzzy
circumstances.
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