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ABSTRACT Considering the random and fuzzy nature of wind speed, this paper proposes a multi-objective
random-fuzzy chance-constrained programming optimal power flow (OPF) for wind integrated power
systems. The proposed method is based on random-fuzzy chance-constrained programming. The optimiza-
tion model aims at minimizing generation cost, carbon dioxide (CO2) emission, and system functional
power loss, and P-Q-V steady-state voltage stability is included in the constraints. Based on random-fuzzy
chance-constrained programming, the corresponding solution process of the proposed multi-objective OPF
is proposed, which is a hybrid of random-fuzzy simulation, non-dominated sorting genetic algorithm-II
(NSGA-II), and fuzzy satisfaction-maximizing decision-making method. The proposed approach is simu-
lated on the IEEE 30-bus system to provide an example of its application. The simulation results demonstrate
that the proposed random-fuzzy chance-constrained programming OPF has higher security and more
economy than dynamic stochastic optimal power flow (DSOPF) and dynamic fuzzy optimal power flow
(DFOPF).

INDEX TERMS Optimal power flow (OPF), random-fuzzy variable, chance-constrained programming,
wind power generation.

I. INTRODUCTION
Wind power generation (WG) is currently a popular form of
renewable wind energy. Since its power output is fluctuating
and uncertain, high WG penetration into a power system
brings the power scheduling challenges [1].

Traditionally, research studies on WG output mostly treat
its uncertainty either as randomness or fuzziness. A model
of WG output incorporating its random nature can be built
generally in two ways. One is to depict the statistically
uncertain characteristics by a probability distribution, usually
representing wind speed by Weibull distribution in simula-
tion followed by producing WG output based on the rela-
tionship between wind speed and power output [2]. The
other is to utilize the random time sequence methods such
as Markov chain [3] and autoregressive integrated moving
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average model [4]. Approaches to building a fuzzy model of
WG output can also be classified into two kinds: direct data
mining of historical statistics, or transferring WG’s fuzziness
into the fuzziness of forecast error [5].

However, for the uncertain wind speed, randomness and
fuzziness both exist. Although wind speed is generally
accepted to obey Weibull distribution, the parameters of the
Weibull distribution are fuzzy and typically limited by his-
torical statistics. In considering such phenomenon of a com-
bination of randomness and fuzziness, wind speed is more
accurately and rationally defined as a random-fuzzy vari-
able [6] based on the fundamental theory introduced in [7],
and the corresponding modelling and random-fuzzy simula-
tion methods are utilized. There also exist other ways to con-
sider randomness and fuzziness together. In [8], the electric
load is described as an uncertain variable which is divided
into the random part and fuzzy part, and random-fuzzy
neural network is applied to tackle the uncertainties of
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load forecasting. In [9], fuzzy-probabilistic modelling tech-
niques and a hybrid method of fuzzy set and Monte Carlo
simulation for power system risk assessment is proposed to
capture both randomness and fuzziness of loads and com-
ponent outage parameters. A random fuzzy model proposed
in [10] is to accommodate the impact of various operation
conditions and other factors on the failure probability of
system components.

Faced with the uncertainty of power system, probabilis-
tic optimal power flow (POPF) [11], [12] and stochastic
optimal power flow (SOPF) [13] are proposed to analyze
and optimize generation power schedule, as well as dis-
tributionally robust chance-constrained OPF in [14]–[16].
For situations where the uncertainty distribution is not fully
known, reference[14]solve the problem with distributionally
robust optimization, to ensure that any distribution in the
established fuzzy set satisfies the chance-constrained. SOPF
based on chance-constrained programming [13], [17] can
obtain optimal dispatch schedule, which meets with a certain
confidence level of chance-constraint. Chance-constraint in
SOPF is handled by probabilistic power flow (PPF). The
uncertainty quantification approaches proposed for PPF can
be technically divided into Monte Carlo simulation method,
analytic method and approximate method [18]. As for the
Monte Carlo simulation method, probabilities when state
variables satisfy the constraint are calculated after obtaining
repeated simulation samplings and stochastic power flow dis-
tribution of the system. Currently, research on SOPF mostly
concentrates on a single time section. In this direction, ref-
erence [19] from the aspect of day-ahead time horizon and
depicting WG output forecast via auto regression moving
average, has researched chance-constrained DSOPF which
considers randomness of forecast error and temporal-spatial
correlation. In [20], the scenario tree model is applied to
approximate the stochastic nature of WG in the 24-h oper-
ation horizon optimization problem. In [21], proposes a
improved black hole (IBH) algorithm, to achieve practically
coordinate the mobile PEVs in multiobjective constrained
constrained dynamic optimal power flow (DOPF)problem.
However, most of the above studies only focus on randomness
or fuzziness to study OPF of system. Once the uncertain
power injection of WG is depicted by the random-fuzzy vari-
able, traditional stochastic chance-constrained programming
should be extended to random-fuzzy chance-constrained
programming.

When the power system is under uncertain condition,
voltage stability plays an essential role in constraining the
operation. In [13], SOPF is extended to include constraints
for voltage stability as well as small-signal stability, based
on approximating the voltage stability and small-signal
stability constraint surfaces with second-order approxima-
tions in parameter space. In [22], voltage stability con-
strained optimal power flow model is presented, the text
pointed out that the stability index can be incorporated
via being added as a new voltage stability constraint in
the OPF constraints or being used as a voltage stability

objective function. These studies are mainly for post con-
tingency condition and on single time section. Besides, high
renewable energy penetrations in power systems impact the
investigation of steady-state voltage stability [23]. In [24],
a new index is proposed called area of the voltage stability
region (AVSR) assess steady-state voltage stability margins
via P-Q-V curve, which is superior in reflecting the boundary
of the maximum real/reactive power and the voltage collapse
magnitude in three-dimensional space. OPF considering
P-Q-V steady-state voltage stability is seldom reported.

Where there are multiple conflictive objectives to be taken
into account in OPF formulation, researchers have carried out
many studies on solving multi-objective OPF [25], such as
the multi-objective differential evolutionary algorithm based
decomposition (MOEA/D) in [26] and non-dominated sort-
ing genetic algorithm-II (NSGA-II) in [27]. In [28], the pro-
posed dynamic multi-objective unit commitment problem is
solved by NSGA-II to obtain Pareto optimal solutions, and
fuzzy satisfaction-maximizingmethod is adopted in decision-
making.

This paper considers the random and fuzzy nature of wind
speed. It proposes a random-fuzzy chance-constrained pro-
gramming OPF of wind integrated power system based on
random-fuzzy constraint programming. The significant con-
tributions are:

1) Current OPF study does not consider random-fuzzy
nature of wind speed. Therefore, in the OPF study of this
paper, to cover more information of wind uncertainty, and
solve the problem of errors in the digital features of random
variables due to insufficient historical data, WG power out-
put is depicted by a random-fuzzy model and simulated by
random-fuzzy simulation method;

2) Moreover, existed multi-objective OPF study does
not incorporate P-Q-V steady-state voltage stability. So a
multi-objective OPF model which incorporates P-Q-V
steady-state voltage stability constraint is established based
on random-fuzzy chance constraint;

3) Since a new multi-objective OPF model is proposed,
traditional solution process is not available to solve the
model. Based on random-fuzzy simulation and random-fuzzy
chance-constrained programming, the progress is a hybrid
of random-fuzzy simulation, non-dominated sorting genetic
algorithm-II (NSGA-II) and fuzzy satisfaction-maximizing
decision-making method.

II. RANDOM-FUZZY CHANCE-CONSTRAINT
A. Random-FUZZY MODEL OF WG POWER OUTPUT
Based on the previous studies, it is reasonable to assume that
wind speed v follows Weibull distribution, with the probabil-
ity density function [12],

fv (v) = k/c (v/c)k−1 exp
[
− (v/c)k

]
(2.1)

where c is scale parameter and k is shape parameter.
However, limited by historical stochastics, it is hard

to obtain the precise probability density function, i.e. the
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parameters of the density function are of fuzzy nature.
Through statistics and data mining, c and k can be depicted
by some specific fuzzy variables respectively as ξc and ξk [6].
Taking trapezoid fuzzy variable ξx = (r1, r2, r3, r4) as an
example (where r1 < r2 < r3 < r4), the membership
function is

µ(x) =



x − r1
r2 − r1

, r1 ≤ x ≤ r2

1, r2 ≤ x ≤ r3
r4 − x
r4 − r3

, r3 ≤ x ≤ r4

0, else

(2.2)

When r2 = r3, the trapezoid fuzzy variable is simplified to
a triangle fuzzy variable represented by ξx = (r1, r2, r4).

With parameters ξc and ξk , wind speed is depicted by
random-fuzzy variable ξv[7], and the chance measure distri-
bution function is [6]

F(ξv) = Ch(v < ξv) = 1− exp[−(ξv/ξc)ξk ] (2.3)

The active power output of a large scale wind farm can
be modeled approximately as the aggregation of single wind
turbines.

PWG

=


0, ξv< vci or ξvvco
NWG · PWGr(ξ3v −v

3
ci)/(v

3
r−v

3
ci), vci≤ξv≤vr

NWG · PWGr, ξv ≥ vr
(2.4)

where vci, vco and vr are respectively cut-in, cut-out and rated
wind speed; PWGr is rated power output of each WG unit;
NWG is the number of wind turbines.

Considering the wind farm is regulated under constant
power factor mode, working at leading phase ϕWG, its reac-
tive power injection is

QWG = −PWG tanϕWG (2.5)

B. RANDOM-FUZZY SIMULATION SAMPLING AND THE
CHANCE CONSTRAINT ON SYSTEM STATE VARIABLES
Generally, chance constraint in SOPF is handled by PPF. The
uncertainty quantification approaches proposed for PPF can
be technically divided into Monte Carlo simulation, analytic
and approximate methods [18].

As for analytic and approximate methods, the chance
constraint can be converted to a certain constraint and
then the optimization problem can be solved. However,
the random-fuzzy variable is with double uncertainty, and its
chance measure is a transformation from possibility space to
probability space which can be expressed as a mathematical
function from the interval (0,1] to [0,1]. Further considering
the fuzzy variable with its membership and the random vari-
able with its probability distribution, the complex relationship
between input variables and state variables of the power
system, it is hard to apply the analytic method.

In Monte Carlo simulation method of traditional SOPF,
after Monte Carlo simulation sampling of the input vari-
able, state variable samples and its statistical frequency are
obtained for chance-constraint. Thousands of simulation can
ensure the reliability of the results to a certain extent.

Inspired by these considerations, in this paper, we assume
that wind speed follows those above random-fuzzy Weibull
distribution, and daily active/reactive power output sequence
samples of WG are obtained through random-fuzzy simula-
tions. Then the Newton-Raphson power flow method brings
out the random-fuzzy power flow samples of the power sys-
tem, finally by calculating the frequency of satisfying the
node constraint conditions in the power flow result samples
by periods. This way, traditional stochastic chance-constraint
is extended to random-fuzzy chance-constraint.

The detailed process is described as follows:
1) Based on the membership functions, extract a combina-

tion of k-c which satisfies a particular membership level λ;
2) Examine if k < c. If so, this k-c combination is taken

as the Weibull parameters during this simulation time. If not,
the process returns to step 1);

3) Inverse transformation of (3) yields wind speed v

v = c[− ln(1− F(v))]1/k (2.6)

4) Daily power output sequences of the WG are obtained
by (4) and (5);

5) For power injection of WG in every time, period
Newton-Raphson method is applied to calculate power flow,
and power flow results such as bus voltage, generation reac-
tive power output are obtained;

6) Steps 1) ∼ 5) proceed for NS times, and power flow
samples of different periods are obtained;

7) The frequency that the samples satisfy the constraints on
bus voltage kU,t, generation reactive power output and AVSR
kAVSR,t of each time period are counted. Then the chance
measurements are calculated by

Ch
{
Umin
i ≤ Ũi,t ≤ Umax

i

}
(λ) =

kU ,t
NS

(2.7)

Ch
{
Qmin
Gi ≤ Q̃Gi,t ≤ Qmax

Gi

}
(λ) =

kQ,t
NS

(2.8)

Ch

{∫ Pcri,t

Pi
(AiP2 + BiP+ Ci − Qi)dP

> η

∫ Pcri,t

0
(AiP2 + BiP+ Ci)dP

}
(λ) =

kAVSR,t
NS

(2.9)

III. P-Q-V STEADY-STATE VOLTAGE STABILITY
CONSTRAIN
Steady-state voltage stability margin can be more compre-
hensively and accurately assessed using P-Q-V curve, which
shows the boundary of the maximum real/reactive power and
the minimum voltage magnitude in three-dimensional space.
P-Q-V curve is obtained via continuation power flowmethod,
with varied load increase direction indicated by different
power factors. Then, for a certain operating point Pi,Qi of
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a specific PQ bus indexed by i (i = 1, 2, · · · nPQ, nPQ is
the number of PQ buses), the voltage stability margin can be
estimated by calculating AVSRi

AVSRi =
∫ Pcri

Pi
[Q0i(P)− Qi]dP

=

∫ Pcri

Pi
(AiP2 + BiP+ Ci − Qi)dP (3.1)

where (Pcri ,Q
cr
i ) is the voltage collapse point of dn direction;

Ai, Bi,and Ci are parameters of voltage stability boundary
obtained by curve fitting [17].

A bus’s voltage steady-state stability can be ensured by its
AVSR value larger than zero. Allowing some margin, it can
be∫ Pcri

Pi,t
(AiP2 + BiP+ Ci − Qi)dP > η

×

∫ Pcri

0
(AiP2 + BiP+ Ci)dP (3.2)

where
∫ Pcri
0 (AiP2 + BiP+ Ci)dP is themaximummargin, i.e.

when the bus load is zero; η is the AVSR spare percentage.

IV. MULTI-OBJECTIVE RANDOM-FUZZY
CHANCE-CONSTRAINED PROGRAMMING OPF MODEL
The optimization for a whole day is split up into T (T = 24)
time periods. Within each time period t (t = 1, 2, · · · T ),
scheduling comprises the active power output P̄Gi,t of
coal-fired generation i (i = 1, 2, · · · nG− 1, nG is the number
of coal-fired generators, nG − 1 represents that the gener-
ation on reference bus is excluded), the generation voltage
ŪGi,t (i = 1, 2, · · · nG) and the shunt susceptance of shunt
capacitor B̄j,t (j = 1, 2, · · · nSC, nSC denotes the number of the
shunt capacitors). They constitutes the control variable u =
[P̄G1,t , · · · , P̄GnG−1,t , ŪG1,t , · · · , ŪGnG,t , B̄1,t , · · · , B̄nSC,t ].
The superscript ‘‘−’’ represents certain variable.

A. OBJECTIVES
The three objectives are the minimization of generation cost,
CO2 emission and active power loss of system.

f1(u) = min
T∑
t=1

[ nG∑
i=1

(
aiP̄2Gi,t + biP̄Gi,t + ci

)]
(4.1)

f2(u) = min
T∑
t=1

[ nG∑
i=1

(
αiP̄2Gi,t + βiP̄Gi,t + γi

)]
(4.2)

f3(u) = min
T∑
t=1

×

nbus∑
i=1

Ũi,t
∑
j∈0

Ũj,t
(
Gij,t cos δ̃ij,t+Bij,t sin δ̃ij,t

)
(4.3)

where ai, bi, ci are cost coefficients for coal-fired generation
i; αi, βi, γi are emission coefficients; Ũi,t is the voltage of
bus i (i = 1, 2, · · · , nbus, nbus is the number of system

buses) in period t; δ̃ij,t is the phase difference between bus
i an j; Gij,t and Bij,t are the conductance and susceptance of
branch between bus i and j; 0 is cluster of all buses connected
with bus i. The superscript ‘‘∼’’ in following content denotes
uncertain variable. Note that among all bus voltages of sys-
tem, voltages of PV buses are certain variables.

B. CONSTRAINTS
1) STATIC CONSTRAINTS
For ∀t = 1, 2, · · · T , the following static constraints need
to be satisfied: power balance, generation power output, bus
voltage, system spinning reserve and AVSR. Limits on con-
trol variables are expressed as certain inequalities, while those
for state variables are random-fuzzy chance constraints.

a: BUS POWER BALANCE CONSTRAINTS

P̄Gi,t+P̃WGi,t−PLi,t − Ũi,t
∑
j∈0

×Ũj,t
(
Gij cos δ̃ij,t+Bij sin δ̃ij,t

)
=0, ∀i=1, 2, · · · nbus

(4.4)

Q̃Gi,t+Q̃WGi,t−QLi,t−Ũi,t
∑
j∈0

Ũj,t

×

(
Gij sin δ̃ij,t+Bij cos δ̃ij,t

)
=0, ∀i=1, 2, · · · nbus

(4.5)

where PLi,t and QLi,t are active and reactive load on bus
i; and Q̃Gi,t denote reactive power output of generation on
bus i.

b: SYSTEM SPINNING RESERVE CONSTRAINT
nG∑
i=1

(
Pmax
Gi − P̄Gi,t

)
≥ µ

nbus∑
j=1

PLj (4.6)

where µ is the system spinning reserve percentage.

c: CONSTRAINTS OF CONTROL VARIABLES

Pmin
Gi ≤ P̄Gi,t ≤ P

max
Gi , ∀i = 1, 2, · · · nG (4.7)

Umin
Gi ≤ ŪGi,t ≤ Umax

Gi , ∀i = 1, 2, · · · nG (4.8)

Bmin
i ≤ B̄i,t ≤ Bmax

i , ∀i = 1, 2, · · · nSC (4.9)

where Pmin
Gi and Pmax

Gi are active power output limits of gen-
eration i; Umin

Gi and Umax
Gi are voltage limits of bus with

generation i;Bmin
i andBmax

i are the limits of shunt susceptance
input.

d: RANDOM-FUZZY CHANCE CONSTRAINTS OF STATE
VARIABLES

Ch
{
Umin
i ≤ Ũi,t≤U

max
i

}
(λ)≥ ρU , ∀i=1, 2, · · · nPQ

(4.10)

Ch
{
Qmin
Gi ≤ Q̃Gi,t≤Qmax

Gi

}
(λ)≥ ρQ, ∀i=1, 2, · · · nG

(4.11)

217960 VOLUME 8, 2020



R. Ma et al.: Random-Fuzzy Chance-Constrained Programming OPF of Wind Integrated Power

Ch

{∫ Pcri,t

Pi,i
(AiP2 + BiP+ Ci − Qi)dP

>η

∫ Pcri,t

0
(AiP2+BiP+Ci)dP

}
(λ)≥ρAVSR, ∀i=1, 2, · · · nPQ

(4.12)

where Umin
i and Umax

i (i = 1, 2, · · · nPQ) are the voltage
limits of PQ bus i; Qmin

Gi and Qmax
Gi are reactive power output

limits of generation i; λ and ρ are confidence levels.

2) DYNAMIC CONSTRAINTS
The active power ramp rate constraint of coal-fired genera-
tions is

−1PdownGi ≤ P̄Gi,t+1 − P̄Gi,t ≤ 1P
up
Gi,

∀i=1, 2, · · · nG, t = 1, 2, · · · ,T (4.13)

where 1PdownGi and 1PupGi are the maximum ramp rate and
descending rate of generation i.

V. SOLUTION METHOD OF MULTI-OBJECTIVE
RANDOM-FUZZY CHANCE-CONSTRAINED
PROGRAMMING OPF
A. SOLUTION PROCESS
The solution process for the proposed optimization is shown
in Fig. 1.

First, uncertainty of WG power output is neglected, and
the random-fuzzy expectation is taken as power injection.
By solving certain multi-objective DOPF via NSGA-II and
fuzzy satisfaction-maximizing decision-making method, pre-
liminary power schedule is obtained.

Then, under this scheme, WG power output is depicted
by random-fuzzy uncertain model. Times of random-fuzzy
simulations combining with Newton-Raphson power flow
calculations bring out random-fuzzy chance measure distri-
butions of each state variable in the system.

Subsequently, random-fuzzy chances are evaluated based
on the confidence level constraints. If confidence level is
satisfied, the process ends and the solution of multi-objective
random-fuzzy chance-constrained programming OPF and its
corresponding objective values and power flow are output.
If not, the upper and lower limits of chance constraints should
be adjusted, and process restarted from the very beginning.

Iteration process would come to an end when the scheme
which satisfies all chance constraint is found.

B. PENALTY FUNCTION METHOD OF STATE VARIABLE
CONSTRAINT IN MULTI-OBJECTIVE OPF
While solving the multi-objective DOPF, constraints on state
variables are achieved though dynamic penalty function
method. Note that the active power output of coal-fired gen-
eration on the reference bus is regarded as a state variable
during the optimization.

It is examined whether PV bus reactive power, PQ bus volt-
age, reference bus power and its generation ramp-rate, and
AVSR violate their limits. If so, the corresponding penalty

FIGURE 1. Solving process of random-fuzzy chance-constrained
programming OPF.

function of this section is set 0. Otherwise, it is calculated
according to the out-of-limit value. Total penalty function
is

H (ut )=HQ(ut )+HU (ut )+HGp(ut ,ut−1)+HAVSR(ut ) (5.1)

In NSGA-II optimization, non-dominated sort and crowd-
ing distant assignment proceed based on the calculation of
synthesized objective cfm(ut ),

cfm(ut ) = fm(ut )+ h(k) · H (ut ) (5.2)

where fm(ut ) denotes the value of objective m (m =

1, 2, · · ·M , M is the number of objectives); k is the current
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iteration times in NSGA-II; h(k) = k
√
k is the dynamic

adjustment factor.

C. FUZZY SATISFACTION-MAXIMIZING DECISION-MAKING
METHOD
The proposed model with three objectives is solved by a
hybridmethod ofNSGA-II and fuzzy satisfaction-maximizing
method, where NSGA-II is adopted as the solver and fuzzy
satisfaction-maximizing method as the chooser of all feasible
solutions. Rather than incorporating the objectives together
into one objective by ways of simple sum or weigh fac-
tor, NSGA-II can obtain Pareto optimal frontier by apply-
ing non-dominated sorting. Note that, Pareto frontier can
offer a number of optimal solutions for decision makers
to select according to their preference. Here the fuzzy
satisfaction-maximizing method is adopted only as an exam-
ple to make decision.

For a single non-dominated solution indexed by n (n =
1, 2, · · · ,N , N represents number of the non-dominated solu-
tions), satisfaction of each objective value is calculated by

µnm=


1, fm ≤ fmmin

(fmmax−fm)/(fmmax−fmmin), fmmin≤ fm≤ fmmax

0, fm ≥ fmmax

(5.3)

where fmmin and fmmax are respectively the maximum and
minimum value of objective m in the Pareto solution set.

Then the total fuzzy satisfaction µn of the nth non-
dominated solution in Pareto frontier is calculated by (5.4)
and the one with the maximum value is selected.

µn = (
M∑
m=1

µm)/(
N∑
n=1

M∑
m=1

µm) (5.4)

In this way, the optimization of the objective is represented
by fuzzy satisfaction. When making decision, it is fuzzy
satisfaction that makes sense, not the objective value itself.
So the units as well as magnitude order of the objectives are
not influenced with each other.

D. METHOD TO DEAL WITH RANDOM-FUZZY CHANCE
CONSTRAINTS
The random-fuzzy constraints shown as (4.11)-(4.13) can be
expressed in a standard form

Ch
{
xmin
i ≤ x̃i,t ≤ xmax

i

}
(λ) ≥ ρx (5.5)

PQ bus voltage Ũi,t is taken as an example. During the
uncertainty process, if its random-fuzzy chance measure does
not satisfy the confidence level, i.e. the chance that Ũi,t ∈
[Umin

i ,Umax
i ] is not greater than the set confidence level,

there are two situations. Ũi,t samples mainly fall in the lower
part or the higher scope. Hardly occurred is the situation
that samples scatter in the space lower than Umin

i and higher
than Umax

i .

So, when x̃i,t is unsatisfied with chance constraint, i.e.
Ch
{
xmin
i ≤ x̃i,t ≤ xmax

i

}
(λ) < ρx , the average of the sam-

ples fall out of [xmin
i , xmax

i ] which is represented by x̃avi,t is
calculated.

1) If x̃avi,t ≤ x
min
i , the upper limit of this state variable in this

time period remains unchanged and the lower one is adjust as{
xmax ′′
i,t = xmax ′

i,t

xmin ′′
i,t =x

min ′
i,t +

(
xmin
i !−x̃

av
i,t

)
×

[
1−Ch

{
xmin
i ≤ x̃i,t≤x

max
i

}
(λ)
]

where xmin ′
i,t and xmax ′

i,t are the current limits. The updat-
edlimits [xmin ′′

i,t , xmax ′′
i,t ] are applied in the next certain DOPF

process;
2) If x̃avi,t ≥ x

max
i , the lower limit of this state variable in this

time period remains unchanged and the upper one is adjusted
as{
xmax ′′
i,t =xmax ′

i,t −
(̃
xavi,t−x

max
i
)
×

[
1−Ch

{
xmin
i ≤ x̃i,t≤x

max
i

}
(λ)
]

xmin ′′
i,t = xmin ′

i,t

The updated limits are applied in the next DOPF process.

VI. CASE STUDY
An illustrative case is studied based on IEEE 6-units
\30-nodes system of MATPOWER. And set relevant param-
eters according to IEEE 30-nodes system of MATPOWER.
The optimization is for a day split into 24 time

periods. Load curve is shown in FIGURE 2. In the simulation,
to reduce the impact of wind power load access on the trans-
mission system, this paper chooses to connect the WG units
to bus eight, which has a more massive load. Parameters of
coal-fired andWG units are listed in TABLE 1 and TABLE 2,
respectively.
W0odel is according to data mining of historical wind

statistics from National Renewable Energy Laboratory in
America. It is estimated that the Weibull distribution parame-
ters of the August wind speeds are adequately represented by
triangle fuzzy variable ξk = (1.14, 1.75, 3.64) and trapezoid
fuzzy variable ξc = (2.95, 4.40, 6.40, 8.22) [6].
The random-fuzzy simulation times are set 500, each with

24 data samples. As for random-fuzzy chance constraint,
λ = 0.9 and ρU = ρQ = ρAVSR = 0.9. P-Q-V curve
for bus eight is obtained as FIGURE 3. shows. The blue
lines denote the variation of voltage magnitude against real
power P and reactive power Q in each dot,; the red line is the
P-Q-V voltage stability boundary [23]. AVSR spare is set
10%. Within NSGA-II algorithm, population size = 100,
Pareto fraction = 0.3 and generations = 500.
During optimization, Pareto frontiers were obtained as the

example shown in FIGURE 4. Within the figure, each dot
denotes a feasible optimal schedule, so the Pareto optimal
frontier can offer decision-makers options to choose from.
In this paper, the fuzzy satisfaction-maximizing method is
adopted to make decision.
Optimization finished in 8 iterations, and optimal power

scheduling is shown in FIGURE 5. FIGURE 5, comprises
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TABLE 1. Coal-Fired units Parameters.

FIGURE 2. Load curve.

TABLE 2. WG units Parameters.

FIGURE 3. P-Q-V curve.

FIGURE 4. Pareto frontier, 10th time period.

three sub-figures, which represent the active power output of
coal-fired generation, the generation voltage and the shunt
susceptance of shunt capacitor respectively. Random-fuzzy

FIGURE 5. Optimal power scheduling of random-fuzzy
chance-constrained programming OPF.

WG power output simulation samples set is shown in
FIGURE 6.

When the iteration process is finished, the updated limits
of state variables are obtained. By contrast with the original
constraints limit, it is easy to get adjustments. Take voltage
of bus 12 for example, the lower limits of voltage constraints
in almost each time period have been adjusted, as shown
in Table 3. It shows that with the random-fuzzy power injec-
tion of WG into the bus 12 is more vulnerable and the bus
voltage would easily rise. Under the DOPF schemes in the
first and last iteration respectively and with random-fuzzy
power injection samples of WG, the corresponding bus volt-
age sample distributions of bus 12 are as FIGURE 7. shows
(take 6th time period as an example). Apparently, by nar-
rowing the limits of constraints, the random-fuzzy samples
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FIGURE 6. Optimal power flow Random-fuzzy WG power output sampling.

TABLE 3. Adjustment of bus voltage constraint of bus 12.

FIGURE 7. Bus voltage sample distributions of bus 12, 6th time period.

finally fell mainly in the secure region, and the random-fuzzy
chance constraints were satisfied. Random-fuzzy chance is
0.274 in the first iteration while 1 in the last one. Constraints
on the reactive power of coal-fired units and AVSR were
seldom adjusted, as the AVSR samples of 6th period shown
in FIGURE 8. It indicated that the reactive power regulation
capability of the coal-fired units is abundant, so is the load
margin.

To test the advantages of the method proposed in this
article, compare it with the DSOPF and DFOPF algorithms.
For DSOPF case, we use Monte Carlo simulation processing,
here we take k= 2.07 and c= 5.49. For DFOPF case, we use
fuzzy processing on wind speed, set the confidence level to
0.9. Similarly, set the simulation time to 500× 24.
The maximum satisfaction compromise is listed in Table 4.

From the table, compared to DSOPF, the algorithm
proposed in this paper has less cost, power loss and iteration

FIGURE 8. AVSR sample distributions of bus 12, 6th time period.

TABLE 4. Maximum satisfaction compromise.

times, which has better economy. And compared to DFOPF,
the CO2 emissions, power loss and iteration times of the
algorithm proposed in this article have been improved, but
the cost is less. And the calculated standard deviations of
the random-fuzzy samples and fuzzy simulation samples are
5.1912 and 3.8762 respectively. It can be seen that the pro-
posed method can describe richer uncertainties.

The severe fluctuation of wind power injection causes
undulation of the power system’s state variables, and the
chance constraint is hard to be ensured. So the optimization
problem is hard to be solved, which results in more iteration
time in random-fuzzy chance-constrained programming OPF
than in DFOPF. However, when testing the optimal scheme
obtained in DSOPF and DFOPF with random-fuzzy WG
power output samples, a few state variables breach the chance
constraints. This phenomenon indicates that, when applying
the more rational random-fuzzy model to depict and simu-
late WG power injection, the optimal schemes of DSOPF
and DFOPF are incapable of meeting security requirement.
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So the proposed random-fuzzy chance-constrained program-
ming OPF is of necessity and significance. Besides, accord-
ing to the optimization results, it can be known that the
proposed method can obtain a safer and more economical
solution, and can describe richer uncertainties.

VII. CONCLUSION
This paper has studied multi-objective OPF of wind inte-
grated power system based on random-fuzzy chance-
constrained programming. Major conclusions are as follows:

(1) Modeling wind speed to follow a probability distri-
bution with its parameters represented as fuzzy, this paper
has proposed to use the random-fuzzy variable model to
depict wind speed and adopt random-fuzzy simulation to
produce WG power output samples. By comparing with
traditional Weibull distribution stochastic model and Monte
Carlo simulation method, it was shown to be able to cover
more information about wind uncertainty and uncertain sce-
narios of WG power output. So it is a more comprehensive
methodology.

(2) Faced with a random-fuzzy power output of WG,
multi-objective OPF model was established based on the
random-fuzzy chance constraint. The model included three
objectives, and P-Q-V steady-state voltage stability was
incorporated into regulations.

(3) This paper has provided the solution process to
the proposed optimization model. By adopting NSGA-II,
Pareto optimal solution sets were obtained. By the fuzzy
satisfaction-maximizing method, individual multi-objective
DOPF solution was selected as the preliminary dispatch
schedule. Then random-fuzzy power flow is calculated via
combining random-fuzzy simulation and Newton-Raphson
strategy, and chance measure distributions of state variables
are obtained. According to this, the upper and lower limits of
chance constraints are adjusted, and multi-objective DOPF
is solved again. Iterations bring out a multi-objective optimal
schedule which satisfies all random-fuzzy chance constraints.
Optimization result shows that the optimization model and
solution method is available.

(4) An illustrative case is presented based on the IEEE
30-bus system to verify the feasibility of the proposed
method. The simulation results demonstrate that the proposed
method can obtain a safer and more economical solution, and
can describe richer uncertainties.

Add system parameters and constraints, such as power
market, operating costs, load changes, etc. To meet the actual
needs of energy construction, consider extending the model
in the article to a larger node system.
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