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ABSTRACT Histopathological Whole Slide Imaging (WSI) has become a standard in the detection of
breast cancer. Automated image analysis methods attempt to reduce the workload from the clinicians and
Convolutional Neural Networks (CNNs) are a popular choice for this purpose. However, size of a WSI
image typically is approximately 40,000× 40.000 pixels (can reach up to 100,000× 100.000 pixels). CNNs
cannot handle such large images. Moreover, downscaling a WSI image causes degradation of small-scale
visual information. Hence, a large number of small patches (containing critical visual information) from a
WSI image are extracted by a trained pathologist and are used for training. However, it requires massive
amounts of time to precisely search and label appropriate class-representative patches. To address this issue,
a Deep Multiple Instance Learning (MIL) based CNN framework has been introduced in this paper. In the
proposed framework every slide is represented as a bag of extracted patches. Only the bag label is used for
training, thus eliminating the requirement to provide patchwise labels. The patches inherit the label of the
bag containing them. A WSI image (i.e. a bag) is labeled benign if all its patches are benign and labeled
malignant even if a single patch contains malignant cells. Learning can be carried out at the bag level even
with noisy patch labels. Performance of this method was evaluated using the BreakHis, IUPHL and UCSB
breast cancer datasets where 93.06%, 96.63%, 95.83% accuracy was achieved respectively.

INDEX TERMS Computer-aided diagnosis, convolutional neural network, multiple instance learning,
weakly supervised learning, whole-slide image analysis.

I. INTRODUCTION
Breast cancer (both sexes, all ages) constituted 11.6%
(2,088,849 cases) of all types of cancers (18,078,957 cases)
in 2018.1 Moreover, breast cancer based mortality among
women is very high, accounting to 42000 deaths in the USA
alone, in 2020 [1]. Early detection is the key to reduce the
number. Detection of breast cancer is done by palpation,
followed by non-invasive mammogram based critical point
identification. Invasive microscopic examination of biopsy
samples extracted from the critical mass of the breast is
carried out for confirmation and full profiling of the dis-
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ease. Whole Slide Imaging (WSI) has become a standard
practice in the field of microscopic investigation of tissue
pathologies (including breast cancer). The process starts with
collection of biopsy samples excised from a suspicious mass
of tissue, followed by fixation, slicing, laying the tissue on
a slide and chemically staining it to enhance the visibility
of the cell nuclei, cytoplasm and inter-cellular matrix. High
resolution microscopic imaging helps in visualizing different
tissue structures and cellular features, enabling pathologists
to differentiate primarily between benign and malignant tis-
sues or their sub-types. Due to the increasing number of
whole slide scans being performed,manual inspection of such
huge images is time consuming and strainous. Also chances
of missing out small cancerous regions on the slide are very
high as malignant cells in some of the cases may be sparsely
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FIGURE 1. In a WSI, we present the instances of healthy patches
(indicated in green) along with cancerous patches (indicated by red),
which visually appears very similar, making the task challenging. All the
patches are instances, which together represent a bag, with a single label.

located. In this context, machine learning based automated
inspection techniques allow fast and reliable identification of
cancerous cells and regions on the slide.

A typical WSI image is massive in size (varies between
40000 to 100,000 pixels), which a standard CNN [2]–[5]
is unable to handle. Alternatively, resizing a WSI image in
order to force fit into the CNN, puts down crucial fine-scale
descriptive information. Conventionally, a pathologist looks
for suspicious regions in a large WSI and inspects those
separately. A large number of class representative patches
from aWSI must be handpicked and labeled carefully to train
the CNN. This process is very costly in terms of man-hours
and suffers from inter-observer variability.

To address this problem, we propose a Multiple-Instance
Learning (MIL) [6]–[8] based Deep CNN architecture.
In MIL, a number of instances which collectively represent
a single object or entity, are referred to as a ‘bag’. The
bag is associated with a label corresponding to that object.
In our framework, each patch extracted from a WSI image
corresponds to a single instance. All the patches extracted
from a particular WSI image, together form a bag. This bag
corresponds to a particular patient. It must be noted that the
extracted patches can belong to benign, malignant or normal
tissue regions of the WSI image. However, only the bag label
is considered instead of the patch labels. A WSI image (i.e.
a bag) is labeled benign if and only if none of its patches are
malignant and labeled malignant even if a single patch con-
tains malignant cells. Fig. 1 illustrates the formation of a bag
corresponding to a cancerous WSI image, which comprises
instances (patches) from both malignant and normal tissue
regions.

In this paper, section II contains the prior art in this area.
Section III states the formal definition of the learning prob-
lem and section IV contains the detailed discussion of our
proposed method. It is followed by experimental validation
and discussion of results in sections V and VI respectively.
Section VII states the future scopes and concludes this paper.

II. PRIOR ART
Multiple Instance Learning (MIL) was first used for drug
activity prediction [9]. Its subsequent variants such as diverse
density (DD) [9], expectation-maximization of the DD func-

tion (EM-DD) [10], MI-support vector machine (MI-SVM)
[11] also gained popularity. MI-SVM [11] typically fuses
MI inferencing with the SVM framework. MILBoost [12] is
another well-knownmethod, whichmakes use of an ensemble
of multiple weak classifiers, within the MI context. Some
of the earlier works to make use of MI neural networks
include [13], [14], where instance-level decisions are aggre-
gated for the final classification. However, the techniques
mentioned till now suffer from a common drawback. All of
them are highly biased towards the presence of a positive
instance in the bag, to make the final decision. This discards
meaningful information conveyed by the other instances.
Some of the recent approaches attempted to overcome this
limitation by giving appropriate weightage to all the instances
[15], or some of the high responding instances [16], [17] in a
bag to aggregate for bag level predictions. Further advance-
ments ofMIL such asMultiple-Instance Learning via Embed-
ded instance Selection (MILES) [18], Joint Clustering and
Classification for Multiple Instance Learning (JC2MIL) [19]
and mi-Graph [20], introduced the concept of bag level com-
parisons for classification. MIL was first introduced the field
of Deep CNN for computer vision [21]–[23], in [24], where
bag-level aggregation of instances is performed in the label
space. Spatial relation of instances guided by few labeled
images was incorporated in [25]. Feature level aggregation
within shallow neural network was implemented in [26].
Attention based selective aggregation of features for bag level
prediction was done in [27]. Several works [28], [29] have
shown hybrid applications of MIL such as classification,
localization and pix-wise segmentation of objects.

MIL has been successfully deployed in multiple medi-
cal imaging problems, such as mass detection in digitized
mammograms [25], [30]–[32], cancer detection in digital
pathology images [33]–[37], ultrasound classification [38],
diabetic retinopathy screening [33], [39], [40] and malenoma
detection [41]. A recent work used MIL with Deep CNNs
for WSI image classification [17]. Another recent article
on deep MIL [42] proposed a two-stage process, where MI
context is used to select the most discriminative patches for
boosting CNN classifiers. In [43] sparsity was incorporated
in the instance level predictions on a Deep CNN for cancer
classification in digitized mammograms.

III. FORMAL DEFINITION
Let us consider xi to be the ith patch from the total N patches
extracted from a collection of WSI images. In the supervised
learning approaches, each of those patches (or instances) are
associated with a class label ωi to form the dataset D =
{(x1, ω1), · · · , (xN , ωN )}, which is used for training the clas-
sifier. The classifier provides decisions in terms of p(ω|xi),
estimated as

p(ω|xi) = H(ω← xi) (1)

where the mathematical functionH(·) is approximated by the
trained classifier.
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FIGURE 2. An illustration of the deep convolutional neural network with multiple instance level semi-supervised models. Bag level representation is
achieved by the strategy of instance features aggregation through feature level max-pooling layer (MIPool) at the feature embedding dimension of 4096.
Multiple margin-based instance level loss is introduced at multiple levels of architecture as side level supervisions of the architecture. It aims to perform
the instance level classification by inheriting the label from its corresponding bag. In this figure, the upper block comes to play during training and
inference both of the time, whereas the lower block comes to play only during training time.

However, in Multiple Instance Learning (MIL), multiple
patches extracted from a singleWSI image are treated as a bag
B, which is then associated with single class label. Thus the
ith WSI image is represented by the bag Bi =

{
x1, · · · , xni

}
,

containing ni number of patches and the dataset used for
training is given by DMIL = {(B1, ω1), · · · , (BNB , ωNB )},
where NB denotes the total number of WSI images. In con-
trast to Eq. 1, DMIL is used for training the classifier which
approximates

p(ω|Bi) = HMIL(ω← Bi =
{
x1, · · · , xni

}
) (2)

IV. SOLUTION TO THE PROBLEM
In this article, we propose an architecture that effectively
incorporates MIL within a CNN. Our method aims to over-
come the drawbacks of the existing methods. These are listed
below:

1) Our proposed approach requires only bag level annota-
tions (in contrast to many existing approaches which
use individual instance level annotations). Thus in
a limited time-span labeling mulltiple WSI images
becomes feasible for a pathologist, hence the cost in
terms of man-hours is also reduced.

2) We introduce a Multi-Instance Pooling (MIPool) layer,
placed at a high-dimensional feature space to aggregate
multiple instances in a bag.

3) The MIPool layer in our deep CNN architecture spar-
sifies the gradients in the training process. To tackle
this problem, we introduce single instance losses at
multiple locations in the form of side-level supervisory
arms. These use margin-level loss functions to prevent
incorrect update of network parameters due to the pres-
ence of noisy instance labels.

This architecture is an extension of our earlier work [44].
In our previous works, the patches were strongly labeled.
In this paper, we introduce a modified architecture that solves
the task of classifying large sized WSI images using weakly
labeled slides for training.

A. NETWORK ARCHITECTURE
Our MIL enabled deep CNN architecture is based on the
pre-trained VGG-19 network [21]. The MIL paradigm is
incorporated into the network by a Multiple Instance Pooling
(MIPool) layer, which performs a feature level max-pooling
operation, along the instances. This forms a unified bag-level
descriptor, which is used in the final stages of the decision
making process. We have placed the MIPool layer within the
fully connected (FC) layers, as given in Fig. 2. In the FC layer,
let us assume that the feature response for a given instance xj,
be represented as hj which is of dimension 4096 × 1. The
MIPool layer operates on the bag Bi, by taking the row-wise
max on the feature response matrix returning the ĥi vector.
Thus, if the feature responses of the instances are given by
h1, . . . .,hni for the bag Bi, they are staked columnwise to
form a matrix M of dimension 4096× ni. We then obtain ĥi
vector by stacking the row-wise maximum values from M.
The following operation is given as

ĥip = max{mpq : 1 ≤ q ≤ ni} (3)

where, ĥip is the pth element of ĥi and mpq is the element at
the pth row and qth column of the aggregation matrixM. Thus
ĥi characterizes the bag Bi by aggregating features from all
the instances ∀xj ∈ Bi. This is followed by a sequence of
operations on ĥi, consisting of FC layers, ReLU activation
functions and dropout layers. These embed the bag descriptor
ĥi to a further lower dimensional representation. Finally, it is
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passed through a softmax layer, to obtain the probabilities of
the bag belonging to each of the classes, represented as hBi :=
p(ω|Bi, ĥi). Here, the set of CNN parameters2 = {W, b} are
learned by optimizing the cross-entropy loss function at the
bag level, which is achieved by stochastic gradient descent.

Such end-to-end learning of the MIPool based bag-level
feature representation helps to (i) attentively boost the mean-
ingful and discriminative instances, (ii) while suppressing
the non-informative and weaker instances, (iii) and at the
same time working towards the improvement of the bag level
classification margin. Since the input to the network is a
bag of instances, we removed all batch-normalization layers
to preserve the descriptive information of all the instance-
based feature responses. Batch normalization layers within
the network would have blended non-informative features
with the informative instance feature responses, hurting the
impact of MIPool layer on the proposed architecture.

We also introduced multiple single instances arms
I1, . . . , IK , at different stages of the architecture, as exhibited
in Fig. 2. Each arm consists of spatial max pooling oper-
ations of different spatial dimensions followed by multiple
FC layers, ReLU activation function, and random weights
dropout function. Lastly, the output embedding has been
range limited to [−1, 1] by passing it through the hyperbolic
tangent activation function (tanh(·)) to generate an instance
representation defined as hIkj given the instance xj ∈ Bi and
the k-th instance arm of the network. Here, we used single
instance-level margin-based loss functions for training.

The rationale behind using the margin-based losses are:
(i) their high generalization capability and (ii) robustness to
noisy instance labels (i.e. instances with dissimilar labels
from the bag) [40]. Such arms ensure the preservation of
instance level information by learning from information-rich
feature maps at multiple scales in the network. Apart from
that, the dense gradients generated from these arms contribute
towards the efficient training of the network. It must be noted
that, the MIPool layer highly sparsifies the gradient flow and
without the aid of these arms, the training process slows down
and might not reach a feasible local minima.

B. BAG LEVEL ENTROPY LOSS
The bag level cross-entropy loss function can be defined as

lB(2) = −
1
NB

NB∑
i=1

ωl log
(
hBi
)

(4)

where, hBi = p(ωl |Bi) is the estimated probability of the bag
Bi belong to the class l. Here, ωl is a c × 1 one-hot ground
truth vector.

C. INSTANCE LEVEL MARGIN LOSS
Along with cross-entropy loss at the bag level, we intro-
duce margin-loss for the instance level classification problem

which is defined for the k-th arm as,

lIk (2) =
1
NB

NB∑
i=1

ni∑
j=1

max(0, λ− hIkj αj) (5)

where λ ∈ (0, 1] is a tunable margin parameter. Here,
αj ∈ [−1, 1] is the binary represented ground truth label
of instances inherited from its corresponding bag. As shown
in Eq. 5, instances will be correctly classified if it lies
on or beyond the margin, with hIkj α

+/−
j ≥ λ, on the other

hand instances get misclassified when hIkj α
+/−
j < λ.

In the margin-based loss, λ is an important hyper-
parameter. Setting λ to a larger value will force the instances
towards better separability. However, this tends to overfit
the network. Similarly, setting λ to a smaller value can
force the network to get affected by the noisy and weakly
labeled instances in the learning process. Margin-based loss
improves the accuracy by updating network parameters only
for wrongly classified instances, while correctly classified
instances do not contribute to the model updates [40]. On the
other hand, the cross-entropy as a loss only captures the errors
in the target class, while not getting biased by the prediction
probability represented in the negative class, thus focusing
only on improving the prediction performance of the true
class [40]. Accordingly, entropy as a loss for instance level
classification renders the network to be error-prone due to
weakly and noisy labeled instances. To perform instance level
loss over all the arms, we define lIK (2) as the sum of the
individual arm losses. It is given by

lIK (2) =
K∑
k=1

lIk (2) (6)

D. LEARNING OF MIL-CNN PARAMETERS
Training of the network is achieved by optimizing the com-
bined loss function defined as

0(2) = λ1lB + λ2lIK + λ3‖W‖2F (7)

where λ1, λ2 and λ3 are used to give appropriate weightage
to each of the individual losses as in Eq. (4) and Eq. (5) and
‖W‖F represents the Frobenious norm on W, which is the
collection of weights of the proposed architecture. Here we
estimate 2 = {W, b} i.e. the weights of the layers and the
bias by minimizing the overall cost function:

2∗ = argmin
2:{W,b}

0(2) (8)

where 2∗ = {W∗, b∗} is the optimal parameter set that
minimizes the overall cost function. The cost function is
optimized using the mini-batch stochastic gradient descent
(SGD) with back propagation of gradients. The gradients are
calculated using the derivative of the cost function w.r.t. 2

i.e.
∂0

∂2
. Now

∂0

∂2
=
∂0

∂h
·
∂h
∂2

, where the second term
∂h
∂2

is estimated via chain rule leading to the back-propagation of
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gradients. The first term estimated from Eq. (7) as:

∂0

∂h
= λ1

∂lB(2)

∂hBi
+ λ2

∂lIK (2)

∂hIKj
(9)

The derivative term for bag loss is derived from Eq. (4) as

∂lB(2)

∂hBi
= −

1
NB

NB∑
i=1

ωl

hBi
(10)

and the gradients back-propagated through the MIPool layer
is derived from Eq. (3)

∂ĥi
∂hj
=

{
1, ĥi = hj
0, otherwise

(11)

Here, Eq. (11) performs masking operation over the back-
propagation of gradients. Next, the derivative term for
instance level margin loss in Eq. (5) is derived to be

∂lIk (2)

∂hIkj
=

{
αj, hIkj ≤ λ
0, otherwise

(12)

V. EXPERIMENTS AND RESULTS
A. DATA-SETS
The proposed framework has been evaluated on three publicly
available data-sets containing WSI images collected from
breast tissue biopsies.

D1, Breast Cancer Histopathology Data-set, (BreakHis 2)
consists of H&E stained biopsy samples collected from breast
tumor tissues, and imaged at four different magnifications,
with labeling strategy as described in [45]. In this paper,
we make use of only two magnifications 40× and 200× for
our experiments. Multiple ROIs represented as instances are
acquired from the WSI image (which is considered as a bag).
It must be noted that each bag contains a varying number of
ROIs or instances.

D2, The Indiana University Health Pathology Lab
(IUHPL) dataset [46], has also been used for MIL related
studies [47]. It consists of WSI images of histopathology
slides collected from 40 patients : 20 of them representing
precancerous ductal hyperplasia (UDH) and the other 20 rep-
resenting ductal carcinoma in situ (DCIS). Due to the high
size of theseWSI images (9, 000×8, 000 approx.), 653 ROIs
each of size 1024 × 1024 px are collected in total. Multiple
patches (as instances) each of size 224 × 224 px are further
extracted from these ROIs (as bags).

D3, the UCSB Breast cancer data-set includes H&E
stained breast tissue micro-array (TMA) of biopsy samples :
26 malignant and 32 benign cases. This dataset has also been
used for bench-marking different MIL algorithms [34], [48].
Each image is of size 896×768 px. From these images, in our
experiment, we have extracted patches of size of 224 × 224
px, with 50% overlapping between them to generate a set of
non exclusive instances that forms a bag.

2http://web.inf.ufpr.br/vri/breast-cancer-database

The above three datasets have been tailored according to
our MIL approach, keeping in mind : (1) A cancerous bag
can contain multiple patches from normal or non-informative
tissues along with a very few patches representative of
malignancy. (2) On the other hand, it is necessary for a
benign or normal bag to have no cancerous instance. Data-
augmentation for the under-represented classes was achieved
by bag level over-sampling. Rotation, random flipping and
color jittering of the bag level instances was performed over
every iteration to introduce randomness in the training pro-
cess. Details of the number of instances per bag and the total
number of bags from each of the above datasets, as used in
our experiments are given in Tab. 1.

B. EXPERIMENTAL SETTINGS
In all ours experiments, we performed 3-fold cross validation
by splitting the datasets into non-overlapping patient-level
folds. Further, we resized all instances into the standard size
of 224×224 px images to be consistent with the proposed
architecture. The hyper-parameters in the loss function of
Eq. (7) were set as, λ1 = 1, λ2 = 0.1, λ3 = 0.001. This
combination was based on experimental observations. The
SGD optimizer were used with variable batch size (depend-
ing on the number of instances in a bag). The learning
rate was initially set to 0.001, decayed by 10% over every
50 epochs.Momentumwas set to 0.9. Trainingwas conducted
for 300 epochs until early stopping. Early stopping was
performed based upon the best validation accuracy. All the
experiments were run on a workstation with 2× Intel Xeon
ES2620 CPUs, 3× Nvidia Titan X GPUs with 12 GB DDRS
RAMs and 128 GB of system RAM. Ubuntu 14.04 LTS was
the OS and the experiments were implemented on Torch V7.
All the baselines were run till convergence. The evaluation
metrics used to quantify the classification performance were
accuracy, recall and specificity. The implementation of the
proposed method and different baselines are publicly avail-
able on the following link https://github.com/KausikDas-
10/Deep_MIL_WSI

C. COMPARATIVE METHODS AND BASELINES
1) COMPARATIVE METHODS
The performance of our proposed framework was evaluated
against the 10 conventional MIL algorithms and 3 recent
deep learning based MIL approaches. The conventional MIL
implementations were used from [49]. It must be noted, for
implementing the conventional MIL based methods, SIFT
features at the multiple scales (of 48×48 and 96×96, which
helps to extract multi-scale features of the tissue regions from
the pathology images) were computed and encoded for each
instance using the bag-of-visual-words (BoVW) model with
a dictionary size of 500. We also compared our proposed
architecture against the state-of-the-art deep CNN methods.
Those were: (i) MIL based CNN architecture proposed by
Wu et. al. [24] (MIL-CNN), (ii) CNN-Vote, where pre-trained
VGG network is trained based on the instances, and the final
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FIGURE 3. A set of four dataset images: (a) describes the pathology images from BreakHis datasets on 40×; and (b) on 200×; (c) the pathology images
from IUPHL datasets, and (d) represent the pathology images collected from UCSB cancer database.

TABLE 1. Total configuration of the datasets is being tabulated here to fully comprehend the settings of the experiments.

TABLE 2. Configuration of the different incremental baselines are introduced below, to validate the salient attributes of the proposed architecture. Here,
FC-Dim defines Fully Connected (FC) Layer at feature dimension (Dim) of the proposed architecture.

bag level labels estimated by average voting, (iii) Single
Instance based CNN (SI-CNN), where classifiers are trained
on the instance level and labels of the instances are borrowed
from their corresponding bags.

2) BASELINES
In addition to the above comparativemethods, we also present
the six plausible variations of our proposed network, by vary-
ing the loss functions as discussed in Sec. IV-B and IV-C,
position of the MIPool layer and the number of single
instance losses as explored in Fig. 2. The configurations of
all the baselines are shown in Tab. 2. The motivations of these
baselines are to investigate: (1) the significance of theMIPool
layer at different feature dimensions (BL-1-BL-2), (2) the
importance of single side level supervision for classification
(BL-2-BL-3), (3) the importance of proposed multiple side
level instance-based margin losses (BL-3-BL-4), and lastly
(4) the comparison between margin-loss and entropy loss at
multiple side-level supervisory arms (BL-4-BL-5).

VI. DISCUSSION OF RESULTS
A. ANALYSIS OF PERFORMANCE W.r.t THE MARGIN
PARAMETER λ

We have experimentally investigated the system performance
with different values of the margin parameter, λ (in Eq. (5)).

TABLE 3. Performance of all the datasets with resepect to different λ

parameters value are tabulated here. It can be noticed that the
performance with high λ-value decrease over all the dataset which
substantiates our observation.

We report the performance in terms of accuracy w.r.t. λ taking
the values 0.2, 0.4 and 0.8 in Tab. 3. We observe that the
performance of the proposed architecture performs best with
λ = 0.4. The performance deteriorated with λ = 0.8, which
substantiates our earlier statement that the margin loss with
higher λ can make the model sensitive to noisy and weakly
labeled instance images. On the other hand, we observe that
at a lower value of λ = 0.2 the model fails to separate
between the two classes. We keep the value λ = 0.4 for all
our experiments based on this analysis.

B. COMPARISON WITH OTHER METHODS
We have compared our proposed framework with other MIL
methods in Tab. 4, for each of the three data-sets. Across all
the data-sets, our framework performed generally performed
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TABLE 4. Comparison with different MIL comparative methods. The proposed MIL architecture achieved the best result on all data-sets.

better than the other methods. Non deep learning approaches
like CkNN [50], EMD-Kernel [51], MInD [52] and MILES
[18] exhibits similar performance ranges, while our frame-
work out-performs them by a margin of 10-15%, 12-14%,
12-15% and 13-21% respectively, on all the three data-
sets. In case of SI-SVM, we observe a significant drop in
specificity, as compared to all other MIL methods including
ours. This indicates the superiority of MIL approaches over
Single Instance Learning (SIL) based approaches. We have
also compared with some existing deep learning based
approaches. We observe that SI-CNN performed better than
all other non deep learning based MIL methods on the basis
of bag-level classification performance as reported in Tab. 4.
This indicates the fact that the quality of CNN learnt features
are much superior than those of the hand-crafted ones. How-
ever, SI-CNN doesn’t leverage the multi-instance learning
strategy, and are also vulnerable to noisy instance labels.
A similar behavior is observed for CNN-Vote approaches,
where all the instances are given similar importance. Next,
we compared with existing MIL-CNN [24], which is philo-
sophically closest to our framework. Interestingly MIL-CNN
exhibits the second best performance, substantiating the
effectiveness of the MIL based CNN approach. Our approach
outperformsMIL-CNN by 1-5% accuracy across all the data-
sets. It must be noted that in contrast to pooling multiple

instances in a bag after the softmax layer, aggregating them
at the feature level provided the extra boost in performance
(as evident in Tab. 4). However, a few popular CNN based
MIL methods [25], [28], [29] demonstrate state-of-art per-
formance on natural sized image. We could not apply these
methods to extremely large sized WSI images and hence
comparison with our method couldn’t also be done.

C. ANALYSIS OF PERFORMANCE W.R.T. MIPool’s
POSITION IN THE ARCHITECTURE
Among the baselines, BL-1 uses the pooling at FC-2, whereas
BL-2 uses it in FC-4096 of the architecture. Here, FC-2 and
FC-4096 defines Fully Connected (FC) Layer at feature
dimensions 2 and 4096 (as given in Tab. 2). Comparing the
classification accuracies of BL-1 and BL-2 in two of the
datasets, we observe a marginal increase of∼ 2% (as given in
Tab. 5). This indicates that aggregating instances at a higher
dimensional feature space yields better bag-level represen-
tation learning, in contrast to aggregating them at the label
space. Thus, aggregating with MIPool at FC-4096 was used
throughout rest of experiments. As mentioned in Sec. II, [26]
and [27] introduced similar feature level pooling functions
and proved its significance on shallow neural networks. How-
ever, such pooling layers also introduce the vanishing gradi-
ent problem on large CNN networks. In order to solve this
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TABLE 5. Performance of different baselines are being tabulated here. Here, Acc., Rec., Spe. and F1-Score represent Accuracy, Recall, Specificity and
F1-score repectively.

TABLE 6. Results of 3-independent folds on 4-independent data-sets, which ensembles to total 12-independent models are tabulated below.

issue, we incorporated an instance level arm (I1) with the
MIPool layer. Next section elaborates the significance of I1
in the proposed architecture.

D. EFFECT OF ADDING THE INSTANCE LEVEL ARM I1
Here we are compared the two baselines, BL-2 and BL-3 (as
given in Tab. 2). As we discussed in Sec. IV-A, the MIPool
layer sparsifies the gradients during training. The instance
level arm (I1) tries to make it non-sparse. It does so by
associating gradients from itself for those features which do
not exhibit a maximum value. These features don’t contribute
to the MIPool as a result of which remain at zero gradi-
ent value during back-propagation. Significant classification
performance improvement was noticed (0.94-1.31% classi-
fication accuracy) between BL-2 and BL-3 in the BreakHis
dataset. A similar observationwas found in case of the IUPHL
and UCSB cancer datasets where the classification accuracy
increased by 0.12% and 0.39% respectively while using BL-
3. This substantiates the importance of adding the single
instance loss function to our framework.

E. EFFECT OF MULTIPLE INSTANCE LEVEL ARMS
In this section, we choose the final design of the model,
through the comparison of two architectures defined as BL-
3 and BL-4 (in Tab. 2). BL-3 as discussed in the previous
section consists of a single instance level loss arm, whereas
BL-4 (proposed final architecture) contains five instance
level loss arms at multiple positions as illustrated in Fig. 2.
The performance of all of these three baselines are reported
in Tab. 5. Increasing the number of side level supervisory
instance loss arms improves the trainability of the network
but also increases its complexity. Comparing against BL-3,
the classification accuracy of BL-4 improved by a range

of 0.7-2.8% over all the datasets, which quantitatively sub-
stantiates its importance.

F. COMPARISON BETWEEN MARGIN LOSS AND ENTROPY
LOSS FOR THE INSTANCE LEVEL CLASSIFICATION TASK
In Sec. IV-C and Sec. VI-A, we emphasized the significance
of margin based instance loss over the traditional entropy
loss. In order to prove this experimentally, we introduce BL-
5 which uses only entropy based loss functions. Comparing
against our proposed architecture (BL-4), we observe a fall
in performance in the range of 0.29-6.28%. This endorses
the importance of the proposed loss function, which works
towards improving the classification performance while tack-
ling the weak supervision and noisy label problems of MIL.

G. ANALYSIS OF FOLDED CROSS VALIDATIONS
In order to fully comprehend the expertise of the proposed
architecture, we report its 3-fold cross validation perfor-
mances on three different data-sets. In the BreakHis dataset,
we have reported performances on two different magnifi-
cations (40× and 200×). Hence, we effectively had a total
of four different datasets, which along with the 3 folds,
altogether resulted in 12 independent training models. The
complete results have been given in Tab. 6. It needs to be dis-
cussed aWSI image is typically acquired from a stained tissue
slide prepared from a suspicious mass of tissue collected
from a subject. It is desirable to have a very high specificity,
in order to avoid the risk associated with the adverse effects
of unnecessary cancer treatment, and also a very high recall
to correctly detect positive cases. We have noticed a signifi-
cantly high recall and specificity in all the data-sets over all
the folds (as given in Tab. 6). In the BreakHis data-sets, due to
the imbalance present in data, we have observed variations in
performance over folds. However, performance is consistent
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in the other two data-sets where the data imbalance issue is
absent.

VII. CONCLUSION
In this article, we have proposed an end-to-end MIL guided
learning of a CNN architecture for the WSI image classifica-
tion problem. As compared to standard CNN based methods
our proposed MIL based CNN architecture has no depen-
dence on experts to mark the critical regions on a WSI image
for the purpose of learning. We showed that positioning the
MIPool layer at the higher dimensional feature space helps
to create better bag level WSI image representations. We also
showed the importance of multiple supervisory instance level
classification arms. Our proposed architecture is able to
expand the usability and scalability of WSI image based
breast cancer detection tasks. Experimental results demon-
strate the capability of the proposed algorithm over the other
state-of-the-art MIL methods.
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