
Received October 23, 2020, accepted November 8, 2020, date of publication November 24, 2020,
date of current version December 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3039858

Hardware and Software Optimizations for
Accelerating Deep Neural Networks: Survey of
Current Trends, Challenges, and the Road Ahead
MAURIZIO CAPRA 1, (Graduate Student Member, IEEE),
BEATRICE BUSSOLINO1, (Graduate Student Member, IEEE),
ALBERTO MARCHISIO 2, (Graduate Student Member, IEEE),
GUIDO MASERA 1, (Senior Member, IEEE), MAURIZIO MARTINA 1, (Senior Member, IEEE),
AND MUHAMMAD SHAFIQUE 3, (Senior Member, IEEE)
1Department of Electrical, Electronics, and Telecommunication Engineering, Politecnico di Torino, 10129 Torino, Italy
2Institute of Computer Engineering, Technische Universität Wien (TU Wien), 1040 Vienna, Austria
3Division of Engineering, New York University, Abu Dhabi, United Arab Emirates

Corresponding author: Maurizio Capra (maurizio.capra@polito.it)

This work was supported in part by the Ph.D. College Resilient Embedded Systems which is run jointly by TU Wien’s Faculty of
Informatics and FH-Technikum Wien.

ABSTRACT Currently, Machine Learning (ML) is becoming ubiquitous in everyday life. Deep Learning
(DL) is already present in many applications ranging from computer vision for medicine to autonomous
driving of modern cars as well as other sectors in security, healthcare, and finance. However, to achieve
impressive performance, these algorithms employ very deep networks, requiring a significant computational
power, both during the training and inference time. A single inference of a DL model may require billions of
multiply-and-accumulated operations, making the DL extremely compute- and energy-hungry. In a scenario
where several sophisticated algorithms need to be executed with limited energy and low latency, the need
for cost-effective hardware platforms capable of implementing energy-efficient DL execution arises. This
paper first introduces the key properties of two brain-inspired models like Deep Neural Network (DNN), and
Spiking Neural Network (SNN), and then analyzes techniques to produce efficient and high-performance
designs. This work summarizes and compares the works for four leading platforms for the execution of
algorithms such as CPU, GPU, FPGA and ASIC describing the main solutions of the state-of-the-art, giving
much prominence to the last two solutions since they offer greater design flexibility and bear the potential
of high energy-efficiency, especially for the inference process. In addition to hardware solutions, this paper
discusses some of the important security issues that these DNN and SNN models may have during their
execution, and offers a comprehensive section on benchmarking, explaining how to assess the quality of
different networks and hardware systems designed for them.

INDEX TERMS Machine learning, ML, artificial intelligence, AI, deep learning, deep neural networks,
DNNs, convolutional neural networks, CNNs, capsule networks, spiking neural networks, VLSI, computer
architecture, hardware accelerator, adversarial attacks, data flow, optimization, efficiency, performance,
power consumption, energy, area, latency.

I. INTRODUCTION
Artificial intelligence (AI) has become a fundamental pillar
in many applications and systems in recent years. It is trans-
forming the way we interact with technology, to the point

The associate editor coordinating the review of this manuscript and

approving it for publication was Shiping Wen .

that, very often, we use it without even realizing it. Many
techniques fall under the domain of AI, while one in particular
raised among all, the Machine Learning (ML). In the last two
decades, ML has been extensively employed in various appli-
cation domains, thanks to the wide range of flexible and easy
to learn statistical patterns.ML further consists of several sub-
topics, as shown in Figure 1. The most popular ones are the

225134 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-2500-2283
https://orcid.org/0000-0002-0689-4776
https://orcid.org/0000-0003-2238-9443
https://orcid.org/0000-0002-3069-0319
https://orcid.org/0000-0002-2607-8135
https://orcid.org/0000-0002-5048-0319

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

FIGURE 1. a) Artificial intelligence overview. b) Hardware platforms comparison [1].

brain-inspired models such as the Neural Networks (NNs),
including the Spiking Neural Networks (SNNs) and the Deep
Learning (DL) with Deep Neural Networks (DNNs).

DL shows superior accuracy, even claimed to exceed the
human one in certain cases, e.g., in image classification and
other problems of computer vision [2]. This is mainly enabled
because of the two factors: (1) the computational power of the
latest generation processors, and (2) the enormous amount of
available data for training, from which DL can learn different
patterns and can effectively derive certain predictions, using
deeper and complex models. The larger the training dataset,
the more and better the DL algorithms can learn and cover
corner cases, achieving the performance never seen before.
Since the training is a time-consuming task, effective hard-
ware solutions are required to provide ready-to-use models
within a reasonable time. This article mainly focuses on the
hardware solutions related to those Deep Neural Networks
(DNNs) that have captured much of the attention in the recent
years, discussed in Section II. This article will also provide
a brief overview of work on SNNs, which are becoming
increasingly popular due to their similarities to the human
brain and their energy-efficient computations. The applica-
tions that are already DL-based are numerous, and cover
many key areas:

• Computer Vision: It is fundamental to extract mean-
ingful features from video and pictures. Such tasks
include object localization [3], image classification [4],
and image segmentation [5]. Their use is valuable for
controlling web traffic [6] or for example, video surveil-
lance [7].

• Business and Finance: Financial techs deploy such
models to forecast market behavior [8], including insur-
ance [9] and lending [10].

• Healthcare: DL is widely used in cancer detection such
as lung cancer [11], brain cancer [12], skin cancer [13],
and many others are continuously rising. Moreover,
there is also a wide applicability of DL techniques in the

IoT-Healthcare use cases and Wearables, for instance,
to derive short-term and long-term health predictions.

• Robotics: In robotics, DNNs served in a wide range
of use cases like autonomous vehicles [14], humanoid
robots [15], assistive robots [16], swarms [17], and drone
control system [18].

• Smart Energy Management: DL can also be used to
preserve valuable resources such as electricity. Indeed
both managing [19] and forecasting [20] the required
amount of energy consumption can lead to significant
savings.

DNNs learn intelligent activities without the explicit hand-
crafted guidelines of experts. Although DNNs, particu-
larly CNNs and RNNs, represent the state-of-the-art in
a wide range of applications, their increasing complex-
ity demands for powerful hardware. Indeed, both inference
and training processes require tens of billions of multiply-
and-accumulate (MAC) operations that make these mod-
els extremely compute-intensive. Moreover, for each MAC,
at least two input elements must be fetched from memory.
As a result, performing these algorithmswithminimal latency
entails an additional critical constraint over thememory band-
width.

For the reasons stated above, in many cases CPUs are
not enough, therefore GPUs are one of the most appeal-
ing alternative to execute such complex models. However,
today’s trend is driven by the Internet-of-Things (IoT) [21]
applications that require more computation capability near
the sensors. This process ofmoving resources towards the IoT
nodes is also known as edge computing [22]. This has become
possible for two main reasons. Firstly the cost per silicon
area has fallen to such an extent that the production of large
scale devices to embed in IoT nodes is not an impediment
anymore. Secondly, by performing on-site operations, it is
no longer necessary to transmit the data to a central server,
thus distributing the computing capacity reduces both latency
and the large amounts of energy required for transmission,

VOLUME 8, 2020 225135

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

as well as preserving the privacy of data of edge nodes. The
mesh of these nodes is subjected to strict power constraints,
indeed, many of them are battery-powered or rely on energy
harvesting systems [23]. Therefore, the integration of a high-
end GPU into such a system is unfeasible since the required
power would go far beyond the power envelope of the IoT-
edge platforms.

In this scenario, DL algorithms need to be accelerated with
alternative technologies such as low-power FPGAs, that are
flexible and can be reprogrammed, or specialized accelerators
in form of ASIC-IPs that are highly optimized and tailored for
the application use case. This is also justified by the recent
trend of integrated systems to move towards heterogeneous
multicore systems (or heterogeneous multi-processor system
on chip, MPSoCs) [24], which embed a mix of low-power
general-purpose cores and specialized hardware accelerators.
The flexibility of FPGA and ASIC designs (Figure 1b) opens
up a whole series of possible hardware optimizations, ana-
lyzed in the following, that are required for energy-efficient
acceleration of DL models. This work analyzes several hard-
ware aspects that different platforms (CPU, GPU, FPGA, and
ASIC) provide for the acceleration of DNN models with a
comprehensive focus on dedicated accelerators. The latter,
as explained before, gained much attention in recent years,
thanks to their low-power and cost-effectiveness processing
profile. Having a broad overview of the latest state-of-the-
art concepts and methodologies can be very valuable for
designers.

Table 1 lists the acronyms used in this paper for a better
understanding.

Paper organization: this survey paper is organized system-
atically in different sections and sub-sections, as depicted
in Figure 2. Section II describes the background of DNNs and
SNNs, describing the evolution of networks over the years
and providing examples of DNN architectures considered the
milestones of the DL. Section III analyses different co-design
techniques to translate and map an efficient dataflow onto the
hardware. Section IV outlines the characteristics of the mem-
ory hierarchy, being this an extremely power-greedy element.
Section V presents the security issues related to ML mod-
els, providing examples on how to handle them. Section VI
identifies the most important DL frameworks besides the
datasets and the essential metrics to characterize both models
and hardware devices. Section VII provides some hints about
the research trends and future directions of ML and DL.
Section VIII provides a description of related survey works,
and our distinction. Finally, Section IX is reserved for the
conclusion and summary.

II. BACKGROUND ON DEEP NEURAL NETWORKS (DNNs)
The constituent element of a neural network is the neuron,
also called perceptron, a computational block that attempts
to model the behavior of a biological neuron, which is shown
in Figure 3.
A biological neuron consists of the cell body (soma),

the dendrites and an axon [25]. The dendrites and the axon

TABLE 1. List of Acronyms.

are filaments; the former receive stimuli, that are then pro-
cessed by the soma, while the latter takes the neuron output
signal to other neurons. Neurons are electrically excitable;
when the input voltage exceeds a certain threshold, a pulse,
called action potential, is generated on the axon. The neuron’s
response is all-or-none, i.e., the neuron can only have no
response or full response depending on the input voltage
value. The computational model adopted in artificial neural

225136 VOLUME 8, 2020

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

FIGURE 2. Paper outline.

FIGURE 3. Model of a biological neuron, adapted from [25].

networks has been modified in time [26], [27] until reaching
the configuration now adopted (Figure 4). In essence, it per-
forms a weighted sum of all its inputs (Eq. 1), to which a bias
term b is added to include a possible offset. The output of the
neuron is then obtained applying a non-linear function σ (·)
(Eq. 2).

g(x) =
N−1∑
n=0

x[n]w[n] (1)

y = σ (g(x)+ b) (2)

FIGURE 4. Model of an artificial neuron.

Artificial neural networks are constructed as directed graphs
whose nodes represent the neurons. If the graph is acyclic,
the network is a feedforward NN. If the graph is cyclic,
the network is recurrent and has a temporal dynamic
behavior.

As shown in Figure 5, the nodes are organized in lay-
ers: in a feedforward NN, each neuron of layer l receives
its inputs from layer l − 1 and sends its activation to the
neurons of layer l + 1. The inputs to the network form the
input layer, and there is at least one layer that processes the
input, which is called output layer. All the layers inserted
between the input and output layers are defined as hidden
layers. The number of hidden layers determines the depth of
a neural network. If there are more than three hidden layers,
the neural network is typically called a Deep Neural Network

VOLUME 8, 2020 225137

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

FIGURE 5. Examples of (a) a feedforward NN and (b) a recurrent NN.

FIGURE 6. Pseudocode of an FC layer.

FIGURE 7. Example of an FC layer (left) and of how it can be modeled by
a vector-matrix multiplication (right).

(DNN) [28]. An NN learns how to solve different problems
by finding the optimal values for the weights and the biases of
its neurons, that can be organized and connected in different
ways, as discussed in the following section.

A. LAYERS
1) FULLY CONNECTED (FC) LAYERS
In a Fully Connected layer, each neuron of layer l receives as
inputs all the activations of layer l− 1, therefore, each output
neuron performs a weighted sum of all the input neurons:

O[co] =
Ci−1∑
ci=0

W[co, ci]I[ci]+ b[co]

0 ≤ co < Co, 0 ≤ ci < Ci

whereCi andCo are the number of neurons of layers l−1 and l
respectively. Figure 6 shows the pseudocode that implements
an FC layer. In Figure 6 N is the batch size, where a batch is
a collection of inputs that can be processed in parallel.

From the equation and the pseudocode that describes it,
it is possible to see that an FC layer is a vector-matrix multi-
plication with the weights arranged in a Ci × Co matrix (see
Figure 7).
Since Ci and Co can assume high values, the number of

parameters of an FC layer is potentially huge. However, it is
not always necessary for an output neuron to receive informa-
tion from all the input neurons. For this reason, Convolutional
layers have been introduced.

2) CONVOLUTIONAL (CONV) LAYERS
FC layers are not well suited for tasks like object detec-
tion and recognition since their high degree of connectivity
leads to an explosion of the number of parameters required
to deal with high-resolution images. Moreover, FC layers
treat inputs that are close together or far apart equivalently,
ignoring the spatial structure present in images. To overcome
these two problems, in 1998 a new architecture was pro-
posed [29], known as Convolutional Neural Network (CNN),
that includes Conv layers and exploits the ideas of local
receptive fields and shared weights. The idea of local recep-
tive fields has its biological counterpart in the study of David
H. Hubel and TorstenWiesel [30] on the visual cortex of a cat.
They demonstrate that some neurons are activated when the
cat is visually exposed to vertical lines, while different neu-
rons respond to lines oriented along different angles. There
are thus locally sensitive neurons that are sensitive to a small
portion of the visual field and higher-level neurons that are
sensitive to larger portions and therefore analyze more com-
plex patterns. Adapting the same idea to a neural network,
the neurons are organized in a 2D grid, i.e., a feature map,
and a neuron of layer l does not receive all the activations of
the layer l−1, but it is instead connected to a small receptive
field of dimension [Hk ×Wk]. The size of the receptive field
and consequently of the weight matrix is commonly referred
to as kernel size and the distance between adjacent receptive
fields is defined by a stride parameter S. Applying the idea of
sharedweights, all the neurons of layer l have the samematrix
of weights, detecting the same feature in different locations
of layer l − 1. To detect multiple features, a Conv layer has
multiple channels, i.e., there are multiple feature maps.

The computations performed in a Conv layer involve an
input feature map Ifm of size [Ci ×Hi ×Wi], the weightsW
of size [Ci × Co ×Hk ×Wk], and a bias term b of size [Co].
The result of the computation is an output feature map Ofm
of size [Co × Ho ×Wo], computed as follows:

Ofm[co, ho,wo]

=

Ci−1∑
ci=0

Hk−1∑
hk=0

Wk−1∑
wk=0

×

(
W[ci, co, hk ,wk]Ifm[ci, Sho+hk , Swo+wk]+b[co]

)
0 ≤ co < Co, 0 ≤ ho < Ho, 0 ≤ wo < Wo

0 ≤ hk < Hk , 0 ≤ wk < Wk

Figure 8 shows the pseudocode of a Conv layer, and Fig-
ure 9 gives a graphical representation.

3) POOLING LAYERS
Pooling layers are commonly placed after a Conv layer.
Pooling layers have receptive fields, similarly to Conv layers.
For the group of neurons in each receptive field, they return
a single value that contains a statistic of the group, e.g.,
the maximum or the average value, as shown in Figure 10.

225138 VOLUME 8, 2020

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

FIGURE 8. Pseudocode of a Conv layer.

FIGURE 9. Graphical representation of the convolution operation in a
Conv layer. A sub-tensor of Ifm (red) is multiplied by a sub-tensor of W
and the results are accumulated to produce a single value (red) of the
Ofm.

FIGURE 10. Examples of MaxPooling (left) and AveragePooling (right)
layers.

The stride parameter is usually set equal to the dimension of
the receptive field to have non-overlapping windows.

Pooling layers reduce the number of activations of a layer,
and consequently decrease the memory requirements and the
number of computations to be performed after. Moreover,
pooling layers achieve invariance to small local translations.
The outputs of Conv layers depend heavily on the position
of the input, so even for minor variations of the inputs, there
are significant variations of the outputs. Pooling layers down-
sample the outputs, making them more robust to small input
variations.

4) NORMALIZATION LAYERS
The inputs to neural networks are usually preprocessed to
have a normal distribution, i.e., zero mean and unit variance.
Normalization is beneficial because it keeps different inputs
in the same range of values, making them easier to analyze by
the same model. Also, as will be seen in the following para-
graph, layers sometimes use saturating non-linear functions,
such as Sigmoid or Softmax. So having values centred on

zero avoids early-saturation of activations. To apply the same
normalization constraint that applies to the inputs to internal
activations, Normalization layers are inserted between Conv
and FC layers. It must also be noted that activations normal-
ization speeds up the training, as the layers do not need to
adapt to different distributions at each training step.

The commonly adopted normalization method is Batch
Normalization (BatchNorm) [31] (Eq. 3). The operation per-
formed by the BatchNorm layer is standardization:

y =
x − E[x]
Var[x]+ ε

· γ + β (3)

where E[x] and Var[x] are the mean and standard deviation
of the input tensor x, respectively. ε is a value necessary for
numerical stability, and γ and β are two trainable parameters
for the integration of the BatchNorm layer in the training
process.

5) NON-LINEAR ACTIVATION FUNCTIONS
Without a non-linear activation function, the NN would be a
simple cascade of linear algebra operations, unable to solve
complex non-linear problems. For this reason, different non-
linear functions are applied to the weighted sum of the inputs
of a neuron. Some of the most popular functions are:
• Rectified Linear Unit (ReLU) function forces the activa-
tions to be greater than or equal to zero. It is prevalent as
it is computationally efficient since it requires a simple
comparison between x and 0.

y =

{
0 if x < 0
x otherwise

There are some variants of the ReLU function, such
as Leaky-ReLU or Exponential Linear Unit (ELU). The
former has a negative slope for values x < 0; the latter
uses a log curve when x < 0. These variants have been
introduced to solve the dying ReLU problem, i.e., since
the slope of the ReLU for x < 0 is zero, the neurons
in this region are not trained. Moreover, Leaky-ReLU
and ELU are more balanced towards zero if compared
to ReLU, and this helps to speed up the training.

• Sigmoid function normalizes the output in the range
(0, 1). Contrarily to the ReLU function, it is computa-
tionally expensive, as it can be seen from its equation:

y =
1

1+ e−x

• Hyperbolic Tangent function (TanH) is the equivalent
of Sigmoid function to bound activations in the range

VOLUME 8, 2020 225139

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

(−1, 1), to model outputs that can assume negative val-
ues too.

y =
ex − e−x

ex + e−x

• Softmax function is also know as normalized exponential
function. It receives a vector of N numbers as an input:
each number is normalized in the range (0, 1) and the
sum of all N numbers is equal to 1. This function is
used mainly in output layers if the outputs represent the
classification probabilities.

yi =
exi∑N−1
j=0 exj

for i = 0, 1, . . . ,N − 1

B. TRAINING AND INFERENCE
A neural network can learn to solve a problem by determining
the correct values of the weights and biases of its layers: this
process is referred to as training. Using a trained NN, with
pre-learned weights and biases, is referred to as inference.
There are different ways of training a NN (see Figure 11):

Supervised learning: It requires a set of labeled input-
output pairs, i.e., a set of inputs (data) with the cor-
responding expected output (labels). This set of pairs
is called a training set. During the supervised learn-
ing, the model receives a labeled input and updates
its parameters based on the discrepancy between the
expected output and the actual output. Supervised
learning is predominantly used today in a wide range of
applications, in the big-data era, thanks to the immense
availability of datasets and its good performances.
Unsupervised learning: It is performed when only
non-labeled data are available. It lies in finding com-
mon patterns in the data. An example of unsupervised
learning is clustering, that clusters data based on their
shared attributes. Neural networks that apply unsu-
pervised learning are, for example, autoencoders and
Generative Adversarial Networks (GANs).
Reinforcement learning: Reinforcement learning is
the third main type of learning and, similar to the
unsupervised learning, it does not need labeled data.
The aim of reinforcement learning is the creation of
autonomous agents able to make decisions in a given
environment. The training scenario is composed of the
agent who takes actions in an environment. There is
then an interpreter who evaluates the agent’s actions in
terms of a reward, which is then fed back to the agent.
The goal of the agent is to maximize the reward.

A supervised-learning algorithm commonly used for the
training of DNNs is gradient backpropagation, where the
input samples are fed into the network, and the outputs
are computed using weights W. The network’s outputs and

FIGURE 11. Features, achievable tasks and applications of the three
existing ways of training (supervised, unsupervised, and reinforcement).

expected outputs are compared, and a loss (L) is calculated
with a loss function, such as Euclidean distance or Mean
Squared Error (MSE). To perform the learning process,
the weights are updated by a quantity proportional to the
partial derivative of the loss with respect to the weights
themselves, i.e., the gradient. The gradients are efficiently
computed with the backpropagation algorithm, which is the
chain rule of calculus applied to calculate the derivative of
the loss starting from the output of the network and going up
to the input layer.

The learning actually takes place by updating the weights
and biases of the network, which can be done with dif-
ferent optimization algorithms. The simplest optimization
algorithm is gradient descent (GD), shown in Eq. 4, where
θ is a parameter of the network and η is a scaling factor
referred to as learning rate. Other algorithms are, e.g., GD
with momentum [32], Nesterov accelerated gradient [33],
Adagrad [34], Adadelta [35] and Adam [36].

θ t+1 = θ t − η
∂L
∂θ t

(4)

During the training of neural networks it is common to
encounter the problem of overfitting, i.e., if a model is com-
plex and hasmany parameters, it is possible that it fits the data
of the training set too accurately. The model therefore ‘‘mem-
orizes’’ the correct result for each input rather than learning to
generalize, and has a poor performance on the inputs that are
never seen before. The solutions to the overfitting problem are
either the transition to a simpler model or employing different
regularization techniques. L1 and L2 [37] are common reg-
ularization techniques, both require adding a regularization
term to the loss function, which has the effect of reducing

225140 VOLUME 8, 2020

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

FIGURE 12. Timeline of significant neural networks models with the
accuracies achieved on the ImageNet dataset [39] and the number of
parameters.

the value of the weights. This results in a compressed and
simpler model. Another technique that gives good results is
dropout [38], i.e., at each iteration some neurons are ran-
domly selected and removed from the model.

C. DNN MODELS
Over the years, many CNNs models have been proposed to
achieve better to the best-possible performance for a given
task. Figure 12 shows a timeline of significant neural network
models with their classification accuracy in the image clas-
sification task on the ImageNet dataset [39] and number of
parameters. These models will be discussed in the following
paragraphs and compared in Table 2.

1) LeNet [29] (1998)
It has been one of the first neural network trained by back-
propagation with a convolutional structure and has been
the inspiration for the following research on CNNs. It was
designed for the recognition of handwritten digits represented
on 32× 32 pixels images. LeNet-5 is a version consisting of
five layers, of which the first two are convolutional layers, and
the last three are FC layers. The Conv layers have 5×5 kernels
and are both followed by 2×2 average pooling layers. All the
layers use hyperbolic tangent (tanh) as the activation function,
except the output layer that applies the softmax function.

2) AlexNet [40] (2012)
It is a CNN built for the ImageNet dataset [39], a database
of more than 1.3M of high-resolution 256 × 256 pixels
images divided into 1000 classes. It is the first (deep) CNN

TABLE 2. Comparison of the models presented in Section II-C.

architecture to win the ImageNet Large Scale Visual Recog-
nition Challenge 2012 (ILSVRC-2012) [41], achieving con-
sistent accuracy improvements compared to the traditional
non-convolutional networks winners of the previous editions.
AlexNet follows the architecture of LeNet, stacking more
Conv layers; it consists of five Conv layers and three FC
layers. AlexNet was the first NN to introduce Rectified Linear
Units (ReLU) as the activation functions, reducing the train-
ing time significantly. Moreover, to overcome the limitations
imposed by the memory size of the GPUs, AlexNet adopts
a parallel solution, splitting the architecture on two GPUs.
To reduce the communication bottleneck, the GPUs exchange
data in two points of the network only.

3) VGG [42] (2014)
Thanks to the availability of hardware resources supporting
heavier computations, the initial trend in NN research has
been the design of deeper and deeper architectures. VGG
is a model that takes the structure of AlexNet and furtherly
increases the number of Conv layers. In particular, VGG-
16 has 13 Conv layers and three FC layers, while VGG-19,
with a total of 19 layers, was the winner of ILSVRC-2014.

4) GoogLeNet [43] (2015)
It is based on the intuition of finding a dense structure, i.e., an
inception module, and then building the network by stacking
these modules. An inception module (see Figure 13) captures
features at various scales and concatenates them at the output,
passing to the next layer different levels of information. The
increase of the depth of the NNs has allowed to improve
their accuracy but has however led to the appearance of the
vanishing gradient problem. Since during backpropagation
the gradients are computed with the chain rule and the values
are often in the range [0, 1] or [−1, 1], the magnitude of
the gradients decreases exponentially with the depth of the
network. In the earlier layers, the gradients can become so
small that they prevent the correct training. To overcome

VOLUME 8, 2020 225141

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

FIGURE 13. Inception Module used in GoogLeNet [43]. Convolutions are
performed in four parallel branches and the four outputs are
concatenated to produce the single output of the Inception module.

FIGURE 14. Skip connection modules used in Residual Networks [44].
Three convolution are performed in series and a parallel connection is
added. In the parallel connection, it is possible to choose between a 1 × 1
convolution (left) or the identity function, i.e., no operation (right). The
results of the two branches are summed.

FIGURE 15. Dense blocks used in DenseNets [46]. The output and input of
each blue block, that is the series of two convolutions, are concatenated.

this problem, GoogLeNet has two additional classifiers used
for training only that take the activations at earlier stages of
the network, and therefore increase the magnitude of their
gradients. GoogLeNet successors are Inception-v3 [50] and
Inception-v4 [51].

5) ResNet [44] (2015)
To work around the vanishing gradients problem, Residual
Networks (ResNets) have adopted and made popular skip
connections, shown in Figure 14, that run in parallel to a
series of Conv layers and avoid excessive degradation of the
gradients during backpropagation. Moreover, ResNets are the
first architectures to use batch normalization layers. Based on
ResNet architecture, different models with higher accuracies
have been proposed over the years, such as ResNetXt [45],
ResNeST [52], or TResNet [53].

6) DenseNet [46] (2016)
Given the success of skip connections, DenseNets adopt a
regular and therefore simpler connection pattern. As shown
in Figure 15, in a Dense Block, every layer receives in input
a concatenation of the activations of all the preceding lay-
ers. A DenseNet is then built by stacking Dense Blocks of
different depth, interleaved by Conv and Pooling layers for
dimensionality reduction.

7) SENet [48] (2017)
Squeeze-and-Excitation Networks (SENets) modify tradi-
tional layers, e.g., Conv layers, or blocks, e.g., incep-

FIGURE 16. Residual module as modified in Squeeze-and-Excitation
Networks [48]. A skip connection is inserted in parallel to a pooling and
two FC layers, and the output of the two branches are multiplied. As in
traditional residual modules, a skip connection runs in parallel to the
whole block.

FIGURE 17. Capsule Network [47].

tion or residual modules, to model the relationship between
the different channels of the feature maps. Figure 16
shows how a residual module is modified following the
SE approach. SENet-154 is the NN winner of ILSVRC-
2017, which is built integrating SE blocks in a version of
ResNetXt [45].

8) CAPSULE NETWORK (2017)
The Capsule Networks were created in a try to solve some
of the problems of CNNs, such as the loss of data caused by
pooling layers or the high sensitivity to input shifts or rota-
tions. The idea of capsuleswas introduced in [54] and the first
network model was proposed in [47]. In [47], the neurons are
replaced by capsules, i.e., a vector of neurons. Each element
of the vector encodes an instantiation parameter of an entity,
e.g., the width or the rotation, and the length of the vector
represents the instantiation probability of the entity. Since the
length of the vector represents a probability, its value must be
in the range [0, 1]. For this reason, the squash function (Eq. 5)
is used as non-linear activation function in the capsule layers.

Ey =
|Ex|2

1+ |Ex|2
Ex
|Ex|

(5)

Moreover, in CapsuleNetworks, the pooling layers are sub-
stituted by a dynamic routing algorithm that strengthens the
connections between capsules of adjacent layers if relevant
entities are detected. Figure 17 shows the Capsule Network
model as proposed in [47]. The work in [55] proposes instead
a model in which the values of the capsules are arranged in
matrices, and the dynamic routing is substituted by the EM
routing.

9) NASNet [49] (2018)
NASNet is the first popular neural network model obtained
with neural architecture search. The approach of NasNet is
the search of a cell for a simple dataset in a small search

225142 VOLUME 8, 2020

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

FIGURE 18. Comparison of power consumption between conventional hardware architectures and neuromorphic architectures.

space. The cells can then be stacked to work on more com-
plex datasets. Other models resulting from neural architecture
search are PNASNet-5 [56] and EfficientNet [57].

D. SPIKING NEURAL NETWORKS (SNNs)
Recently, Spiking Neural Networks (SNNs), considered as
the third generation of neural networks [58], have received
an increasing interest in the fields of deep learning and neu-
roscience, because of their extremely energy-efficient nature.
SNNs, in contrast to the traditional DNNs, base their compu-
tational models much closer to that of the biological neurons,
with a spike-based communication mechanism [59]. Due to
their bio-inspired computations, SNNs bear a high potential
to be the most promising solution for bridging the energy
efficiency gap between the artificial machines and the human
brain. A custom SNN hardware support is provided by neu-
romorphic computing, a relatively novel branch of computer
architecture. The underlying goal is to reproduce in hardware
the same computations that are executed in the human brain.
Some examples of state-of-the-art neuromorphic designs, like
IBM TrueNorth [60], SpiNNaker [61], BrainScale [62] and
Intel Loihi [63], will be discussed in Section III-K. Fig-
ure 18 compares several hardware architectures, showing
how efficient in terms of power consumption are neuro-
morphic solutions, compared to conventional designs [64].
Moreover, another energy efficiency benefit in the neuro-
morphic research comes from the new sensor data formats.
For instance, the event-based sensors such as the dynamic
vision sensor (DVS) cameras [65] resemble the behavior of
the human retina, in such a way that spikes are generated only
when movements of the recorded subjects are detected.

1) SPIKING NEURON MODELS
Modeling a spiking neuron is a challenging task. These
models must be at the same time biologically accurate and
computationally simple. When an input spike arrives to the

FIGURE 19. Comparison of different spiking neuron models.

neuron, the associated synaptic weight wi is integrated on the
membrane and, consequently, the neuronmembrane potential
Vm is increased. When the membrane potential overcomes a
threshold Vt , the neuron fires, emitting a spike at the output,
and its membrane potential is reset to a value VR. Moreover,
the membrane potential decreases continuously through time
due to a leakage, according to a leak rate τm between spikes.
Different spiking neuron models have been proposed

in the literature. Figure 19 shows the trade-off between
biological plausibility and complexity of these models.
The Hodgkin-Huxley model [66] is very biologically-
plausible, but extremely computational intensive. The Izhike-
vich model [67] is slightly less complex, but still very com-
putational intensive. On the other end, the Integrate-and-Fire
is too simple and not very accurate in terms of biological
plausibility. Themost commonly adoptedmodel is the Leaky-
Integrate-and-Fire (LIF) [68], which is relatively simple and
also takes into account the membrane leakage.

2) SPIKE ENCODING
In order to provide input spikes and to collect the resulting
output spikes of the SNN, the information has to be properly

VOLUME 8, 2020 225143

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

FIGURE 20. Comparison between Rate, Inter-spike interval (ISI), and Time
to first spike (TTFS) encoding techniques for SNNs.

coded using spikes. Different approaches used to obtain such
a conversion [69] are shown in Figure 20:
• Rate coding: the information is coded as the mean firing
rate of the generated spikes in a defined observation
period.

• Inter-spike interval (ISI): the intensity of the activation
is coded as the precise delay between consecutive spikes.

• Time to first spike (TTFS): the information is encoded
in the latency that goes from the beginning of the stim-
ulus to the time of the first output spike. This solution
enables a very fast information processing, carrying
enough information.

3) SNN TRAINING
Regarding the SNN training algorithm, the different possi-
bilities have been explored are summarized in Figure 21.
For unsupervised learning, the possible algorithms are Heb-
bian Learning [70], the Spike-Time-Dependent Plasticity
(STDP) [71], [72], and the Spike-Driven Synaptic Plasticity
(SDSP) [73]. The most widely adopted method is the STDP,
which is based on temporal relations between the presynaptic
spikes (at the input of the neuron) and the postsynaptic spikes
(at the output of the neuron). Basically, the synaptic weight
is tuned accordingly to the temporal correlation between the
presynaptic and postsynaptic spikes. The STDP algorithm
can be optimized through the FSpiNN framework [74], for
executing energy-efficient SNNs on edge devices.

For supervised learning, a fundamental challenge arises,
because the traditional learning method, i.e., the backprop-
agation, cannot be applied due to the non-differentiability
of the SNN loss function [75]. Hence, two different proce-
dures can be adopted to solve or bypass the problem, thereby
achieving supervised learning for SNNs:

1) Approximate the derivative of the spike trains. This
solution has been extensively studied in the works
of [76], [77] [78], [79] [80], [81] [82], [83] [84],
[85], which provide different types of approximations.

FIGURE 21. Training techniques for SNNs.

The advantage is that the network can learn based on
the temporal information of the spikes. For example,
DECOLLE [86] introduces a local learning rule for
continuous SNN learning. On the other hand, with this
approach it is challenging to match the consolidated
state-of-the-art high accuracy results of the DNNs.

2) Train a DNN offline and convert it to SNN. This
approach [87] allows to use the most advanced train-
ing policies and techniques for DNNs. An efficient
conversion [88] requires a comprehensive study of
different conversion parameters to adapt the DNN-to-
SNN conversion process to the neuromorphic hard-
ware platform. The main drawback is that a certain
accuracy drop is encountered during the conversion.
To overcome this, the recent work of [89] proposed
a hybrid approach consisting of converting the DNN
to SNN ad then incrementally training the SNN with
an approximated backpropagation. Moreover, the max
pooling operations cannot be implemented with spike
rates [90]. Therefore, max pooling layers are replaced
by average pooling, which is easy to implement but
shows an accuracy drop.

III. HARDWARE SOLUTIONS AND CO-DESIGN
A. TEMPORAL VS SPATIAL ARCHITECTURES
Neural networks are a class of algorithms with an inherent
parallelism. Two types of parallelism can be identified [91].
The neuron and consequently the FC and Conv layers have a
topological parallelism since the Multiply-and-Accumulate
(MAC) operations that they perform have no data dependen-
cies and can be executed in parallel. Moreover, the training
sets consist of a large number of samples, that rather than
being processed one at a time can be fed into the network
in batches (operational parallelism).

The intrinsic parallelism of the layers can be exploited
using parallel computing paradigms to increase the perfor-
mance of the hardware implementations of NNs. Among
the various solutions for parallel computation, temporal and
spatial architectures [92] are distinguished. Both the archi-
tectures consist of a large number of Processing Elements
(PEs) that perform operations in parallel on the same or dif-
ferent data. In temporal architectures, the PEs can only access
data from the central memory, the control is centralized,
and there are no inter-PEs connections. In spatial architec-
tures, on the contrary, each PE can also have its control

225144 VOLUME 8, 2020

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

FIGURE 22. Basic models of temporal (left) and spatial (right)
architectures.

logic and one or more local memory locations. Most impor-
tantly, in spatial architectures, the PEs are interconnected to
exchange data with each other, creating a processing array.
Figure 22 shows the differences between temporal and spatial
architectures.

In the following, subsections III-B and III-C describe tem-
poral and spatial architectures in detail respectively, and how
to efficiently deploy neural networks on them.

B. TEMPORAL ARCHITECTURES AND SOFTWARE
OPTIMIZATIONS
Temporal architectures are commonly adopted in general-
purpose platforms, such as CPUs and GPUs. CPUs can
nowadays be realized as vector processors (e.g., Intel’s Xeon
Phi x200 and Skylake-X CPUs) with an ability of working
with multiple data elements simultaneously rather than with
a single data at a time. Vector processors have multiple
Arithmetic Logic Units (ALUs) that work synchronously and
perform an instruction on a vector of data. Therefore, vector
processors use the Single-Instruction-Multiple-Data (SIMD)
technique. Among the available hardware platforms, CPUs
are often the least used for DNNs inference or training,
as they provide lower FLOPS and FLOPS/WATT perfor-
mance (see Figures 23 and 24). However, manufacturers have
recently undertaken measures to accelerate the deployment
of NNs on CPUs. For example, at the instruction level, Intel
has added the AVX-512 Vector Neural Network Instructions
(AVX-512 VNNI) to the AVX-512 Instruction Set [93] to
accelerate CNNs. In addition, Intel announced that the next
generation of Cooper Lake and Sky Lake processors will sup-
port Brain Floating Point (bfloat16) operations [94]. bfloat16
is a floating-radix-point format on 16 bits with a dynamic
range comparable with the dynamic range of the 32-bit
IEEE 754 floating-point format. bfloat16 is also supported by
ARMv8.6-A andAMD’s ROCm library. Intel has also created
BigDL [95], an ML library for the distributed acceleration of
DNN algorithms on CPU clusters.

GPUs are manycore architectures with up to thousands of
cores that are specifically designed for parallel computation

FIGURE 23. GFLOPS comparison between different CPUs and GPUs.

FIGURE 24. GFLOPS/WATT comparison between different CPUs and GPUs.

(e.g., 5120 cores in Nvidia V100 GPU [96]). Similarly to
vector CPUs, GPUs adopt the Single-Instruction-Multiple-
Thread (SIMT) execution model, first introduced by Nvidia.
The SIMTmodel executes a single instruction simultaneously
on multiple cores. Each core receives a different data that
belongs to multiple threads running in parallel. GPUs are
the real workhorses for DNNs training in particular, and
in certain cases for inference as well. Among the various
GPU manufacturers, Nvidia has put a lot of emphasis on
GPU hardware and software optimization for DL. Most DL
frameworks support the execution on Nvidia GPUs, e.g.,
Pytorch [97], Tensorflow [98], or Caffe [99]. One of the great
advantages of Nvidia GPUs is cuDNN [100], a highly opti-
mized library of primitives for DNNs. cuDNN is not the only
library for DL, rather all Nvidia libraries for DNN/ML are
collected in CUDA-X AI [101]. In the latest high-end GPUs,
Nvidia has combined traditional CUDA Cores with Tensor
Cores [96], which are optimized for large matrix operations.
Tensor Cores can also support mixed-precision operations.
In the new Nvidia A100, the Tensor Cores support a new
format, the Tensor Format (TF32), with which performance
is 10x higher when compared to the performance of the

VOLUME 8, 2020 225145

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

FIGURE 25. Discontinuity in memory accesses when performing
convolution on a matrix stored by rows.

FP32 format on the V100 architecture [102]. In addition,
Nvidia A100’s Tensor Cores can also take advantage of the
sparsity of tensors, very common in DNNs, to achieve up to
2x higher performance.

At the software level, several libraries have been cre-
ated to optimize Basic Linear Algebra Subroutines (BLAS)
on both CPUs (e.g., AMD Core Math Library (ACML),
Intel Math Kernel Library (Intel MKL) or OpenBLAS) and
GPUs (e.g., Nvidia cuBLAS or Intel cIBLAS). Among the
numerous subroutines implemented, the BLAS also include
element-wise matrix multiplication, matrix-vector multipli-
cation and matrix-matrix multiplication, also called General
Matrix Multiplication (GeMM). For what concerns neural
networks the BLAS come in hand for the FC layer that,
as explained in Section II-A, can be seen as a vector-matrix
multiplication or as a matrix-matrix multiplication in case of
batched computation.

Optimizing the computation of the Conv layers is a more
challenging task. The operations between a weight kernel and
the subsets of the input feature maps are simple point-wise
multiplications of matrices, but the memory access pattern
is complex. Figure 25 shows how, if an input feature map is
stored by rows, it is necessary to perform accesses to non-
contiguous locations of memory.

Several computational transforms have been proposed to
apply the optimized BLAS to Conv layers. Many of the
software librariesmentioned above lower the convolution into
a GeMM as proposed in [103], [104] and shown in Figure 26.
A 4D-tensor of weights is flattened to a 2D matrix, while
the data in the input feature maps are duplicated and rear-
ranged following a pattern that leads to the correct result of
a convolution by performing a matrix multiplication. This
method is very efficient since the GeMM routine is highly
optimized. However, it requires data to be duplicated up to
Hk ×Wk times, with the dimension of the input feature maps
moving fromCi×Hi×Wi toCiHkWk×HoWo. This approach,
therefore, requires a large memory for temporary allocation.

The GeMM method for convolution can further be opti-
mized by applying the Strassen algorithm [105], [106] that
reduces the number of necessary multiplications by partition-
ing the matrices. The number of multiplications is reduced

FIGURE 26. Convolution lowering: mapping a convolution to a
matrix-matrix multiplication by rearranging the matrices.

of 1/8 at each partition, at the cost of a higher number of
additions.

A different approach consists of transforming both the
input feature maps and the weights from the space domain to
the frequency domain with the FFT algorithm [107]. In the
frequency domain, the convolution operation becomes an
element-wise multiplication of matrices. However, the FFT
algorithm introduces a high computational overhead for the
domain change, and its efficiency has only been proven valid
for largeweight kernels and unitary strides. Another approach
often used is based on the Winograd algorithm [108], [109],
which, unlike the FFT algorithm, is particularly efficient for
small kernels.

Direct convolution can also be performed exploiting the
parallel hardware solutions offered by modern CPUs and
GPUs. In [110] and [111] it is shown how to rearrange the
tensors to have more efficient memory accesses, and how
to perform operations to take full advantage of Intel AVX-
512 [93] vector instructions.

C. SPATIAL ARCHITECTURES AND DATAFLOW
PROCESSING
Spatial architectures are commonly implemented on FPGAs
and ASICs, that allow for a design tailored on specific appli-
cations at the price of less flexibility. Neural networks are
particularly suitable for this kind of hardware implementa-
tion since the type and order of operations of each layer is
fixed and known a priori. Therefore, it is possible to develop
specialized and highly optimized circuits.

The operations carried out in the neural networks are sim-
ple, mostly multiply-and-accumulate (MACs), but they must
be performed on a large set of data. Therefore, the bottleneck
is not caused by computation but by the memory accesses
that are necessary to fetch and store the inputs and the
results, respectively. EveryMAC requires three data elements
to be read from memory (input pixel, weight and partial

225146 VOLUME 8, 2020

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

FIGURE 27. Energy breakdown of two state-of-the-art DNNs accelerators.

FIGURE 28. (left) General structure of a hardware accelerator for DNNs
and (right) interconnection scheme.

sum) and one data element to be written (updated partial
sum). It has been demonstrated that a DRAM access has an
energy cost of ∼ 2 orders of magnitude higher than a MAC
operation [112]. The enormous DRAM access energy cost
compared to the computational energy has been observed
in many state-of-the-art DNNs accelerators such as Dian-
Nao [24] or Cambricon-X [113] (Figure 27).

A typical hardware architecture of a DNNs accelerator
(Figure 28 left) consists of:

• An off-chip memory (usually DRAM), to store the
weights and the activations of the whole network. This
level of memory can typically contain several GBs of
data.

• An on-chip global buffer (GLB), large enough to hold
the weights and inputs necessary to feed all the PEs. The
energy needed to access the GLB can be two orders of
magnitude lower than that of the DRAM [114].

• An array of hundreds of PEs, each containing an ALU
to performMACs operations in parallel. The PEs usually
also include one or more Register Files (RFs) to locally
store data with an energy cost-per-access lower than that
of the GLB.

• The PEs are connected with each other and to the GLB
by aNetwork-on-Chip (NoC). The data must be moved
coordinately through the PEs to obtain the correct result,
depending on how the operations are temporally sched-
uled and spatially distributed on the PEs. The NoC can
then assume different configurations to implement var-
ious communication patterns, represented in Figure 28
right, depending on how data must be delivered.

Given the energy cost required by a DRAM access,
the design of state-of-the-art DNNs accelerators focuses on

FIGURE 29. Data reuse in an FC layer and in a Conv layer.

the exploitation of data reuse, i.e., optimizing the archi-
tecture, the mapping of data on the PEs and the temporal
scheduling of operations to maximize the reuse of data when
they are stored in the lower-level memories such as the
RFs or the GLB.

The different layers in an NN allow for taking advantage
of various opportunities of data reuse, as explained in the
following.

1) FC LAYER
A FC layer can be described as a matrix-vector multiplication
and it therefore presents an opportunity for input reuse, since
the vector of the input neurons is dot-multiplied with each
row of the matrix of weights (see Figure 29).

2) CONV LAYER
The Conv layer has three different opportunities for data
reuse (see Figure 29). To perform the convolution operation,
a weight kernel is slid over thewhole input featuremap. There
is an opportunity for weight reuse since the same weight
kernel is multiplied for multiple subsets of the input feature
maps. In particular, each of the Co kernels is reused Ho×Wo
times.

There is an input reuse opportunity too, since the input fea-
ture maps are used Co times to generate all the output feature
maps. The last reuse opportunity is defined as convolutional
reuse [114], and it exploits the sliding window mechanism,
i.e., when computing two adjacent output pixels, there is
usually an intersection between the two subsets of pixels of
the input feature map used, as shown in Figure 29. The width
and height of the intersection depends on the dimensions of
the kernels (Hk ×Wk) and the horizontal and vertical strides

VOLUME 8, 2020 225147

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

FIGURE 30. Spatial and temporal mapping of the
Multiply-and-Accumulate (MACs) operations to the Processing Elements
(PEs).

(sx , sy). The convolutional reuse combines both the weight
reuse and the input reuse.

3) POOLING LAYER
Pooling layers do not demand the use of weights. There-
fore there are no opportunities of weight reuse. The stride
parameter is usually set to have non-overlapping receptive
fields, so it is not possible to exploit the sliding window
mechanism for input reuse. These layers do not allow for any
data reuse.

Given an array of PEs and all the MACs between weights
and input featuremaps that must be performed to calculate the
output feature maps, each PE will execute a subset of MACs,
and a number of MACs equal to the number of PEs will be
executed in parallel. The MACs must, therefore, be spatially
and temporally mapped to the PEs array (Figure 30). The
mapping consequently defines how data must be loaded and
stored from/to the memory hierarchy of the accelerator and
how the NoC must be designed to correctly and efficiently
deliver and collect the inputs, the weights and the partial
sums. The spatial and temporal mapping of the operations is
defined as dataflow [114].
Considering the high dimensions of the PEs array and the

vast number of MACs to be computed, the space of possible
mappings on a generic HW accelerator is enormous. Given
the considerations on the energy consumption of the memory
hierarchy, dataflows usually try to maximally exploit the
opportunities of data reuse provided by the different layers
of the NNs to minimize the accesses to the off-chip memory
and the global buffer, and to use the data stored in the RFs as
much as possible. Chen et al. [114] introduced a taxonomy to
classify existing accelerators based on their dataflow and on
how they exploit data reuse, that will be explained briefly in
the following.

4) WEIGHT STATIONARY
The weight stationary dataflow aims at exploiting mainly
the weight reuse to minimize the energy cost necessary to
fetch the weights from the DRAM and the GLB. A subset of
weights is read from theDRAM/GLB and stored in the RFs of
the PEs. All the operations that involve a certain weight are
then mapped to the PE where it is stored. Figure 31 shows
how operations are mapped to an array of 4 PEs to perform a
2× 2 convolution on a 3× 3 input feature map.
Since the weights are kept stationary in the PEs, the inputs

and the partial sums need to be coordinately moved through

FIGURE 31. Spatial mapping of the operations in a weight stationary
dataflow.

FIGURE 32. (top) PEs array and (bottom) temporal-spatial mapping of the
operations in a weight stationary accelerator with inputs broadcasting
and outputs forwarding.

the array to optimize the data movement on the NoC too.
A possibility consists of broadcasting a single input pixel of
the input feature map to all the PEs and in storing each partial
sum in a register then to pass it to the adjacent PE on the
right. As shown in Figure 32, there are time steps in which
some of the PEs perform operations that are not useful for
the result (denoted in white). Moreover, the partial sums at
the end of each row of processing elements needs to be stalled
for Wi − Wk time steps before being passed to the next row
of PEs. Therefore, all of these partial sums must be stored
in the GLB. The nn-X accelerator [115] allocates instead Hk
FIFOs at the end of each row, each of dimension Wi − Wk ,
to introduce the proper delay.

The input pixels can be moved with the forwarding scheme
to take advantage of the convolutional reuse in addition to
the weight reuse. The forwarding scheme consists of placing
additional registers in the PEs to store the input pixel that they
receive, and to then pass it to the neighboring PEs on the right
(horizontally-sliding window). Figure 33 shows a dataflow
with stationary weights and input forwarding. Both in [116]
and [117], Hk rows of the input feature map are processed in
parallel, and the partial sums of each row are then accumu-
lated. The inputs are therefore stored in Hk buffers, and the
pixels of the input feature map are moved from the (K − 1)
buffer to the 0 buffer (vertically-sliding window).

225148 VOLUME 8, 2020

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

FIGURE 33. (top) PEs array and (bottom) temporal-spatial mapping of
the operations in a weight stationary accelerator with inputs and outputs
forwarding.

FIGURE 34. Loop reordering of the 7-nested loops representation of the
Conv layer.

What characterizes the above-discussed dataflows is that
all the operations along dimensionsHk andWk are mapped to
the 2D PE array and executed in parallel. This mapping oper-
ation is defined as spatial unrolling in [118]. From a software
perspective this is equivalent to replacing the for loops in the
7-nested loop representation with parallel for loops (par_for)
as in Figure 34. In [118], the Hk |Wk syntax is adopted to
denote which loops are parallelized. The stationarity of the
weights is instead equivalent, from the software perspective,
to a loop reordering operation of the for loops, as shown
in Figure 34. Other architectures that adopt a Hk |Wk weight
stationary approach are [119], [120] and [121].

A different dataflow, but in which the weights are still
stationary, is obtained by spatially unrolling the dimensions
Co and Ci (Co|Ci). As shown in Figure 35, the operations that
must be performed are equivalent to a vector-matrix multi-
plication. It can be realized in hardware with a 2D systolic
array. In essence, the weights are internally stored in the PEs,
the inputs are horizontally forwarded, and the partial sums
are accumulated along the vertical dimension. An example of
Co|Ci-weight stationary dataflow can be found in in the Ten-
sor Processing Unit (TPU) [122] developed at Google. TPUs
are deployed in datacenters, and it has therefore been possible
to obtain statistics and metrics on real-life applications. It has

FIGURE 35. (top left) Reordered loops for a dataflow with weights
stationary along dimensions Ci and Co. (top right) Mapping the
operations of a Conv layer to a matrix multiplication. (bottom) PEs array
in a Ci |Co weight stationary accelerator with input and output forwarding.

FIGURE 36. (left) Spatial mapping of the operations in an output
stationary dataflow. (right) Modified PE for an output stationary
accelerator.

been observed that CNNs, on which the development of
HW accelerators is focused, actually represent the 5% of
all applications used in datacenters [122]. For this reason,
Google designers decided to focus on the acceleration of FC
layers, which are inherently vector-matrix operations and can,
therefore, be directly mapped to the matrix-multiply unit that
is the heart of the TPUs.

Because of its flexibility, the systolic array is often used
in configurable architectures that must support various layer
types [123], [124] [125]. This solution is also adopted for
the acceleration of Capsule Networks [126], [127] [128], that
consist of Conv layers, Conv layers of capsules and FC layers
of capsules.

5) OUTPUT STATIONARY
The output stationary dataflow has the purpose of minimizing
the data movement necessary to store and load the partial
sums in the GLB. With the weight stationary dataflow of
Figure 32, for example, the partial sum of a single output pixel
must be stored and reloaded to/from the GLB (Hk − 1)× Ci
times. In the output stationary dataflow, the PEs are modified
to have the possibility of locally accumulating the results of
the MACs that they perform (Figure 36). Each PE is there-
fore responsible for the computations necessary to obtain an
output pixel, whose partial sums are accumulated in a single
RF.

VOLUME 8, 2020 225149

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

FIGURE 37. (top left) Reordered loops for an output stationary dataflow .
(top right) PEs array and (bottom) temporal-spatial mapping of the
operations in an output stationary accelerator with input broadcasting
and weight forwarding.

FIGURE 38. Data movements in ShiDianNao accelerator [129].

Similarly to the weight stationary dataflow, it is possible
to spatially unroll the Ho and Wo loops to get an output
stationary dataflow. The input pixels and the weights can
then be read from the GLB and moved to the PEs array
in different ways. It is, for example, possible to broadcast
the input pixels to all the PEs and to forward the weights,
as shown in Figure 37.

A popular accelerator that adopts an output stationary
dataflow with Ho|Wo spatial unrolling is ShiDianNao [129].
Being an output stationary dataflow, each PE in the 2D grid
of ShiDianNao processes a pixel of an output feature map,
and all the results are then collected and stored in the global
buffer. A single weight is broadcasted to all the PEs at every
operation cycle. The PEs can read the input pixel either from
the GLB, from their right neighbor or their lower neighbor.
The PEs have a RF for the partial sum accumulation and
two FIFOs to store input pixels for inter-PEs communication.
Figure 38 schematizes data movement in ShiDianNao for a
2× 2 array of PEs.

Computing the output pixels in parallel along the dimen-
sions Ho and Wo is not the only possible solution to get
an output stationary dataflow. Origami accelerator [130], for
example, spatially unrolls three loops (Hk , Wk and Co) and
computes all the pixels along the output channel Co in paral-
lel, dedicating an accumulator to each one. In a compromise
between [129] and [130], in [131] the output pixels along

FIGURE 39. Different solutions [129], [131] [130] to spatially unroll the
computations in an output stationary dataflow.

FIGURE 40. Operations mapping in a row stationary dataflow.

dimensions Ho and Co are computed in parallel. Figure 39
graphically shows how [129], [131] and [130] spatially unroll
the computation of the output pixels.

It is important to notice that spatially unrolling the dimen-
sions Ci and Co can either lead to a weight stationary or an
output stationary dataflow. Beyond what data is kept station-
ary, Ci|Co dataflow is very common because it performs a
vector-matrix or matrix-matrix multiplication, and therefore,
it allows to easily map both a convolutional and a fully-
connected layer to the same array of PEs.

6) ROW STATIONARY
The row stationary dataflow is introduced in [114] and used
by the Eyeriss accelerator [132]. It has the purpose of max-
imizing the reuse of inputs, weights and partial sums all
together, in contrast to weight and output stationary dataflows
that focus on a single type of data reuse.

In the row stationary dataflow all the MACs necessary
to perform a row of the convolution (1D convolution) are
mapped to a single PE. A PE has a RF to keep stationary a
row of the weight kernel while the inputs are streamed in the
PE exploiting the sliding window mechanism. To perform a
whole 2D convolution, it is necessary to have a 2D array of
Hk×Ho PEs. Each column of the array computes theHk×Wo
partial sums that contribute to a row of the output featuremap,
that are therefore accumulated. Figure 40 shows how a 2D
convolution with a 3 × 3 weight kernel is mapped to a row
stationary dataflow, and how the partial sums are accumulated
along the columns of the PEs array.

From Figure 40 it is also possible to see the different
types of reuse obtained by the row stationary dataflow. The
optimization of data reuse is multi-objective, i.e., a row of
PEs shares the same weights, the input pixels are diagonally
reused, and the partial sums are vertically accumulated.

7) NO LOCAL REUSE
Thememory elements with higher energy efficiency are those
with a low storage capacity, but they are less efficient in
terms of area occupation (area/bit). Therefore, a RF has a

225150 VOLUME 8, 2020

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

FIGURE 41. No local reuse dataflow.

higher area/bit compared to a scratchpadmemory or a SRAM.
The no local reuse dataflow maximizes the area dedicated to
storage by removing register files from the PEs and allocating
all the on-chip memory in the global buffer. Having no local
reuse in the PEs, the traffic from and to the GLB on the NoC
will be higher.

Which dimension is spatially unrolled on the PEs is not
relevant for the no local reuse dataflow. Two accelerators that
adopt this dataflow are [24], [133] and [134], which execute
the loops along the dimensionsCi andCo in parallel. In [133],
Ci × Co multipliers are allocated to multiply the inputs and
the weights, and the Co outputs are then computed with adder
trees. An input pixel is multicasted to Co multipliers (see
Figure 41), while each multiplier reads a different weight
from the global buffer.

A critical aspect of the dataflow definition and accelerator
design has not yet been mentioned. Usually, the global buffer
size is not sufficient to fully contain the input feature maps,
kernel weights and output feature maps. For this reason, it is
necessary to apply the loop tiling technique, which consists
of partitioning the larger tensors into smaller tensors that can
be contained in the buffer. The for loops of the 7-nested
loops representation of the convolutional layer are therefore
split into multiple loops, as shown in Figure 42. The tiling
factors (TCo, TCi, THo, TWo) define the size of the innermost
loops and consequently of the global buffer size. In contrast,
the permutations of the outermost loops determine the off-
chip memory accesses and how the data are reused.

Due to the wide variety of layer types and sizes in DNNs
models, recently the reconfigurable accelerators that allow to
efficiently map different types of layers on the same hardware
have gained importance. For example, in [135], there are
two 16 × 16 arrays, whose PEs are divided into general
PEs and super PEs. The former are used to map the Conv
and FC layers, while the latter are used for the activations
functions, Pooling layers, and RNN layers. The arrays can
also be partitioned to process multiple layers in parallel and
the accelerator supports 8- or 16-bit operations. Another
example of a reconfigurable accelerator is the NPU that is at
the heart of Project Brainwave [136], the real-time AI FPGA
used in Microsoft’s servers. The Project Brainwave NPU
is a spatially distributed architecture with efficient matrix-

FIGURE 42. Loop tiling technique applied to the 7-nested loops
representation of the Conv layer. The outermost loops describe off-chip
memory accesses, and the innermost loops determine the dataflow.

vectors multipliers for the operations between tensors and
multifunction units that implement a wide variety of func-
tions. MAERI [137] obtains reconfigurability through the
interconnections. The multipliers are arranged in a 1D struc-
ture and the inputs are delivered with a flexible distribution
network that can be set to implement different dataflows.
Similarly, the outputs of the multipliers are collected with
an Augmented Reduction Tree of adders. A similar approach
is adopted in SIGMA [138], in which the flexible distribu-
tion and reduction networks allow to perform vector dot-
products of different sizes simultaneously. Cerebras Wafer
Scale Engine is the largest chip ever built, and it is optimized
for DL applications. The engine consists of a large amount of
flexible cores that target tensor operations but support general
operations too. The memory has a high capacity, in the order
of gigabytes, and is distributed on-chip. Huawei has released
the DaVinci AI core [139], which is completely high-level
programmable and consists of a vector engine and a 3D Cube
engine for matrix computations. Two or more DaVinci cores
can be combined to work in parallel, as in the Huawei Ascend
910 and 310 AI processors.

D. TOOLS FOR DESIGN SPACE EXPLORATION (DSE)
From the analysis of possible architectures and dataflows
discussed in the previous section it can be understood that
many aspects have to be considered during the design of
an accelerator, such as, architectural parameters, memory
hierarchy, spatial and temporal mapping, and tiling factors.
Exploring the whole space of possible designs is a tough task
(even an NP-hard problem considering a wide range of design
points), especially if the target platform of the accelerator is
an ASIC, whose development cost is high in terms of cost and
time. For this reason, many researchers have been focusing on
the development of tools and frameworks for efficient design
space exploration (see Table 3).

Peemen et al. [131] proposed a design flow that selects
the best computation schedules to maximize data reuse for
a determined on-chip buffer size, exploiting loop reordering
and tiling. Thewhole design space is explored to find the opti-
mized schedule that minimized off-chip memory accesses,

VOLUME 8, 2020 225151

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

TABLE 3. Comparison of the tools for Design Space Exploration.

discarding the configurations that do not satisfy the memory
size requirement.

In [133], loop tiling is realized so that the innermost loops
represent on-chip computation and the outermost loops the
off-chip memory accesses, as in Figure 42. Local memory
promotion [140] is then used to eliminate redundant memory
accesses. If one among the input feature maps, output feature
maps or weights is not addressed by the index of the inner-
most off-chip loop (woe in Figure 42), then it is reused for all
its iterations. Hence, there is no need for continuously loading
and storing back the reused tensor. The operations of load and
store can consequently be moved out of the innermost loop.
A polyhedral-based optimization is used to identify all the
possible combinations of loop schedules and tiling factors,
and local memory promotion is applied whenever possible.
The computational roof and the computation to communica-
tion ratio is calculated for each solution to identify the optimal
one.

In [141], Yang et al. showed a systematic approach to
loop blocking. Given a memory hierarchy, the systematic
approach consists of applying a loop blocking (i.e., loop tiling
and loop reordering) for each level of the memory hierar-
chy. Exploring the design space for a multi-level memory
hierarchy with the proposed methodology is computationally
expensive. Therefore, Yang et al. proposed an iterative opti-
mization where the loop blocking is applied to two levels
of memory at a time, starting from the lowest level to the
highest and re-adjusting the lower levels parameters at each
iteration.

SmartShuttle [142] is a framework that focuses on opti-
mizing off-chip memory accesses exploring the possible loop
schedules, that influence the data reuse, and the tiling factors.
In [142], it is noted that convolutional layers with differ-
ent shapes may benefit from different types of data reuse
and various tiling factors. SmartShuttle therefore adaptively
varies the ordering and tiling of the loops to match different
convolutional layers dynamically.

NNest [143] is a design space exploration tool for inference
accelerators that focuses on the optimization of the memory
hierarchy, of the memory accesses and the computational

resources too, covering all the main aspects of an accelerator
design. In [143] it is proposed a spatial accelerator archi-
tecture template that is parametrized, with the possibility of
setting the tiling factors, that directly define the size of the on-
chip buffers, the size of the PEs array and the possibility of
implementing different dataflows and reuse schemes. NNest
explores the whole design space and finds the Pareto-optimal
solutions for a NN layer. It also allows for a multi-layer
fitting.

In ROMANet [144], a systematic design space exploration
methodology is proposed for reducing the number of memory
accesses required for DNN inference. For each layer, an effi-
cient data partitioning and scheduling is designed, based on
the available on-chip memory and data reuse factors. More-
over, the proposed DRAM data mapping reduces the number
of DRAM row buffer conflicts, while improving the system
throughput, compared to a conventional DRAM design.

MAESTRO (Modeling Accelerator Efficiency via Spatio-
Temporal Reuse and Occupancy) [145] is an analytical
cost model that estimates the execution time, energy and
NoC of a hardware configuration applied to a DNN model
with a specific dataflow. MAESTRO is a cost model pre-
cise and efficient enough to be used for design space
exploration, and can be used to determine Pareto-optimal
architectural parameters given area, energy or throughput
constraints.

mRNA [146] is a mapper that performs design space
exploration to find the optimal mapping targeting the re-
configurable DNN accelerator MAERI [137]. Similarly to
other design space exploration tools, it explores all the possi-
ble permutations of the for loops of the Conv layer 7-nested
loop representation and all the possible combinations of tiling
factors. Given the high dimensionality of the design space,
mRNA reduces it by applying constraints based on domain
knowledge, for example setting the tile sizes as multiples
of the number of multipliers contained in MAERI to max-
imize resource utilization. mRNA experiments confirm that
dataflows that maximize the usage of available PEs have a
shorter runtime and that exploiting data reuse and broad-
cast/multicast reduces the energy cost.

225152 VOLUME 8, 2020

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

FIGURE 43. An overview of the hardware-aware NAS problem.

Timeloop [147] is a framework for the exploration of
the design space of DNN hardware accelerators and for the
evaluation of their performance and energy consumption to
make the design more systematic. The users can describe an
architectural model following a configurable template and,
given a workload, a mapper within Timeloop systematically
constructs the map space to be explored and evaluates every
possible mapping with its performance, area and cost models.

MAGNet [148] is a Modular Accelerator Generator for
Neural Networks that consists of the following threemodules.
(1) AMAGNet Designer, that, given a neural network model,
hardware constraints and performance goals, generates an
accelerator based on a parametric template. (2) A MAGNet
mapper that generates a valid mapping of the operations on
the accelerator, defining the tiling factors, the spatial and tem-
poral mapping. (3) A MAGNet tuner that uses Bayesian opti-
mization to efficiently explore the design space for hardware-
software co-optimizations.

XploreDL [149] is a design space exploration tool for both
training and inference accelerators. The tool can be employed
in an early stage of the design, because it estimates in a fast
yet fidelitous way the Pareto-optimal solutions for special-
ized accelerators executing CNNs and Capsule Networks,
given as optimization objectives the energy-efficiency and the
performance-per-area.

Since different level of DNN compression show different
on-chip memory accesses, depending upon the pruning strat-
egy, SuperSlash [150] integrates the pruning techniques with
existing design space exploration methodologies, evaluating
multiple data reuse strategies for each layer. For instance,
the off-chip memory access volume can be reduced by
directly using a layer’s output as the input for the processing
of the subsequent layer.

E. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH
Another interesting design strategy is to customize the DNN
based on the underlying hardware. The optimization goal
is then to jointly optimize the accuracy and the energy-
efficiency, given the underlying hardware (e.g., an acceler-
ator) and the dataset for the target application, as shown
in Figure 43.

One of the biggest challenges is caused by the explosion of
the exploration time and space, when all the hyper-parameters
of the DNN are considered. To overcome such a problem,
a fast yet accurate evaluation of the energy consumption and

performance of the hardware is key. Therefore, a high-level
modeling of the scheduling and dataflow, as discussed in the
previous sections, is required. Moreover, a smart search is
typically employed to speedup the exploration convergence.
In the literature, there exist mainly three types of heuristic
search algorithms for the hardware-aware neural architecture
search, which are (1) evolutionary algorithms, (2) reinforce-
ment learning, and (3) differentiable NAS.

The ProxylessNAS [151] can reduce the computational
demand of the search by executing partial tasks, such
as training on a smaller dataset, or learning with only a
few blocks, or training just for a few epochs. Afterwards,
the framework can directly learn the architectures for the
complete tasks and the target hardware platforms. The Mnas-
Net approach [152] directly implements and measures the
inference latency by executing the model on mobile phones,
and incorporates the model latency into the main objective
of the search, along with the accuracy. In [153], the authors
proposed a black-box profiling-based search in the first stage
of the accelerator-aware NAS pipeline using an ISA-based
DNN accelerator on FPGA, with a particular focus on the
accurate latency evaluation. The NASCaps [154] is a frame-
work integrating capsule layers in the search space. With a
multi-objective evolutionary algorithm, it jointly optimizes
the accuracy and the hardware efficiency of capsule-based
DNNs. In [155], the authors developed a NAS framework
which integrates the quantization and hardware implementa-
tion in the design flow.

The APNAS [156] is a reinforcement learning-based
exploration methodology, searching for high accurate DNNs
that also offer high execution performance. To speed-up the
search, instead of running millions of DNN configurations on
real hardware, the cycle count is estimated by analytical mod-
els. The FNAS framework [157] performs a hardware-aware
NAS targeting FPGA acceleration. In particular, it employs
an abstraction model to estimate the latency for meeting the
specifications. Moreover, a specialized scheduling mecha-
nism is proposed to execute the DNN inference on multi-
ple FPGAs. The HotNAS [158] is a hardware and neural
architecture co-search methodology, which starts the explo-
ration from a set of existing pre-trained models to reduce
the training time. In addition, it supports hardware for com-
pressed DNNs and it integrates the compression in the co-
search to improve the energy-efficiency. With the ENAS
approach [159], the authors proposed to share the parameters
between the child DNNmodels. It allows not only to speedup
the search, but also to achieve high accuracy, with similar
benefits as for the transfer learning [160].

The Single-Path NAS [161] is a method searching for
the optimal building block for the convolutional layers,
called superkernel, and then sharing the convolutional kernel
weights with a specialized encoding. The DNAS [162] is
a differentiable NAS framework, where the search space is
represented by a stochastic super net. It explores a layer-
wise space where each layer of the CNN can choose a dif-
ferent block, and the learning process is done by training the

VOLUME 8, 2020 225153

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

FIGURE 44. (top) 32-bit floating-point representation. (bottom) 8-bit
dynamic fixed-point representation.

stochastic super net. The SPOS [163] uses in a similar way
the supernet concept to perform NAS, where the constraints
such as latency and number of FLOPs are applied. The HUR-
RICANE framework [164] performs a two-stage search algo-
rithm for the automatic hardware-aware NAS. It can generate
different models for different types of hardware platforms for
executing the inference. In [165], the authors demonstrate
that competitive results for the NAS can be achieved by
using random search. This approach significantly reduces the
complexity, compared to other search methods.

F. FULL PRECISION VS QUANTIZED IMPLEMENTATIONS
As discussed in the previous sections, one of the main obsta-
cles to the deployment of DNNs on edge devices is their large
memory footprint, the high energy cost of memory accesses,
and the energy required for computations.

One of the most popular methods for reducing memory
and computation requirements is quantization. Quantization
is the process of mapping values from a continuous or large
set to a discrete and smaller set by applying a function that
can be either linear or non-linear. The difference between the
quantized value xq and the original value x is the quantization
error eq (Eq. 6).

eq = xq − x (6)

From a hardware perspective, quantization reduces the
precision of the values, and consequently, the number of bits
necessary to represent them. It is, therefore, possible to move
from the floating-point representation to a shorter fixed-point
representation (see Figure 44). According with the IEEE
754 standard, in 32-bit floating-point representation, one bit
expresses the sign s of the number, 8 bits represent the expo-
nent e and 23 bits the mantissa m. The value of the number is
(−1)s ·m ·2e−127 and can be in the range of 10−38 to 1038. An
N-bit fixed-point number in two’s complement has an integer
part of NI bits and a fractional part of NF bits. The width
NF of the fractional part can be seen as a scale factor that
determines the position of the decimal point. Numbers can
be in the range [−2NI−1, 2NI−1−2−NF] and the quantization
step is 2−NF .

The scale factor NF can be varied to have different ranges
and different precision, making the fixed-point representa-
tion dynamic. This is particularly useful for neural networks,
as weights and activations fall in very different numerical
ranges depending on the layer.

The fixed-point representation allows for memory and
energy saving, e.g., a MAC performed on an 8-bit fixed-point
number consumes 20x lower energy than a MAC on a 32-bit

floating-point number [166]. Moreover, a number expressed
on 8 bits has a memory footprint of 4x smaller than one on
32 bits. This allows us to understand the large potential of
gain, in terms of energy and memory, that can be achieved
through quantization of data.

The purpose of quantizing the neural networks is to reduce
the size of the models, obtaining a lower memory footprint
and at the same time, a lower energy cost for both the
computations and memory accesses. However, quantization
carefully must be applied without reducing the accuracy of
the models.

In NNs, there are three sets of values that can be quantized:
the weights, the activations and the gradients. Earlier works
on quantized NNs focused on the weights only since they
directly affect the memory requirements [167], [168]. While
the activations must be quantized at each execution of the
algorithm, the weights can only be quantized once off-line
after the training. This has two advantages:

• The quantized weights can be further fine-tuned to
recover a possible accuracy degradation following the
precision reduction.

• Since the weights are quantized offline, it is possible
to apply complex quantization functions or stochastic
functions, without affecting the computational resource
required on-chip.

Recently researchers have started to focus on the quantiza-
tion of activations too [169], [170] [171], that affect the mem-
ory footprint and bandwidth depending on how the dataflow
is implemented, as well as directly affecting the required
computational resources.

The study of gradient quantization is limited, mainly for
two reasons:

• The training of aNN is very sensitive to even small varia-
tions in weight values, and there is a risk of not achieving
convergence. Therefore quantizing the weights is com-
plex.

• Usually the training is done only once offline on a
GPU or a CPU, and not on the edge devices, so there
is no reason to devote too much effort to reduce the size
of the model and to reduce the energy consumption.

Several studies have been made on quantization meth-
ods [172]. In the following, we will provide an overview
of hardware-friendly quantization methods, distinguishing
between linear and non-linear methods (see Figure 45).

1) LINEAR QUANTIZATION
It is characterized by evenly-spaced quantization intervals,
as shown in Figure 45.a. An example of linear quantization
is the above-discussed fixed-point coding, which has been
widely studied and applied to NNs because its hardware
implementation is well known.Moreover, most CPUs support
fixed-point arithmetic on 8, 16, or 32 bits. Given the strong
diffusion that the quantization of NNs is having, the Nvidia
Tesla GPU supports 8-bit fixed-point operations, and so do

225154 VOLUME 8, 2020

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

FIGURE 45. Linear, logarithmic and vector quantization techniques.

the Tensor Processing Units (TPUs) [122] used in Google
datacenters.

It has been demonstrated by several works that both
the weights and activations can be quantized to 8-bit
dynamic fixed-point numbers for inference without signif-
icantly affecting the accuracy [173] [169]. The Ristretto
framework [173] identifies the quantization parameters
(bitwidth and scale factor) by running a statistical anal-
ysis on the weights and activations. The weights are
furtherly fine-tuned with a re-training step. With the
Ristretto framework, complex models such as AlexNet [40],
SqueezeNet [174] or GoogleNet [43] are inferred on 8 bits
with less than 1% accuracy loss. In [170], an NN for speech
recognition is implemented on 8-bit fixed-point numbers
exploiting the Intel SSSE3 instruction set for SIMD execu-
tion. A speed-up of 7.6x is achieved compared to the floating-
point baseline.

Given the great diversity between the various layers of an
NN, it may be useful to use a different precision across the
model, i.e., a variable bitwidth depending on the layer. Works
in [117] and [175] show that the bitwidth can be set depending
on the position in the model, making a per-layer optimization
of the number of bits of weights and activations. In particular,
in [175], it is stated that the bitwidth used for the weights
can decrease approaching the last layers of the NN, while
the bitwidth of the activations remains more or less constant.
Following these ideas, Q-CapsNets [176] analyzes the layer-
wise quantization capabilities of weights and activations of
CapsNets, with a cross-layer optimization of the bitwidth
and a fine-grained tuning for the dynamic routing operations.
Finding the optimal bitwidth for each layer of a DNN is
a complex task. For this purpose, HAQ, a hardware-aware
quantization framework, is introduced in [177]. It applies
reinforcement learning to determine the optimal bitwidths for
weights and activations, using as feedback the results of a
hardware simulator.

The research on fine-grained bitwidth optimization is also
backed by the parallel development of hardware acceler-
ators that support flexible bitwidth arithmetic operations.
BISMO [178] is a matrix-matrix multiplication core with
variable parallelism and precision to adapt to the require-
ments of different applications. It supports precision from
1 to 8 bits exploiting bit-serial computation. Stripes [179]
is an accelerator for DNNs with flexible bitwidth for the

TABLE 4. Comparison of different variable-bitwidth HW platforms.

activations that uses bit-serial operations. UNPU [180] has
a similar approach, but the bits of the activations are kept
constant to 16-bits and the weights have variable bitwidth.
Loom [181] adopts bit-serial multiplicators and both weights
and activations have fully variable bitwidth, from 1-bit to 16-
bit. Bit Fusion [182] instead implements variable precision
operations for DNNs with a spatial approach, using an array
of bit-level PEs combined together according to the required
bitwidth. BitBlade [183] is an optimization of Bitfusion,
in which bit-wise summations substitutes the shift-add logic.
On the industrial front, in 2018Apple released theA12Bionic
chip with a Neural Processing Unit (NPU) that supports
variable precision; Nvidia Turing Tensor Cores, available
in the Nvidia Turing architecture [184], support operations
from 32/16-bit floating-point down to 8/4-bit fixed-point; the
Imagination PowerVR Series2NX architecture has adjustable
bitwidth from 16 to 4 bits. The above-discussed platforms that
provide variable bitwidths are compared in Table 4.

Both weights and activations can be quantized to very
low bitwidths. BinaryConnect (BC) [167] introduced the idea
of binary weights, included in {−1, 1}. Binary Weight Nets
(BWN) [185] approximate a filter W as αB, where B is
a filter whose values are binary, and α is a scale factor.
The operations are performed between full-precision inputs
and binary weights, and the output is then multiplied by α.
In Ternary Weight Nets (TWN) [168] the same approach is
adopted but the weights are ternary, i.e., in the set {−1, 0, 1}.
Quantized Neural Networks [171] and DoReFa-Net [186]

have an even more aggressive approach using binary weights
and 2-bit activations. Finally, Binarized Neural Networks
(BNN) [187] and XNOR-Nets [185] use both binary weights
and activations. XNOR-Nets use the same approach as BWN
and TWN to limit accuracy reduction by multiplying the
outputs with a scaling factor.

Several hardware accelerators have been proposed to
support efficient inference of binary NNs: YodaNN [188]
and Hyperdrive [189] are accelerators for binary weights
only NNs; BRein [190], XNOR Neural Engine [191] and
XNORBIN [192] accelerate NNs with binary weights and
activations, while BRein supports ternary weights too.

2) NON-LINEAR QUANTIZATION
Weights and activations in an NN usually have non-
uniform distributions, so they can benefit from the non-linear

VOLUME 8, 2020 225155

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

quantization, where the quantization intervals are unevenly
distributed, as shown in Figure 45.b and 45.c.

An example of a non-linear quantization scheme is the
logarithmic quantization, first applied to NNs in [193]. The
dot product between a vector of weights w and activations
x can be approximated as follows adopting the logarithmic
quantization:

w · x =
N∑
i=0

wixi '
N∑
i=0

wi2x̃i =
N∑
i=0

wi � x̃i (7)

x̃i = Int(log2(xi)) (8)

From Eq. 7 and Eq. 8, we can notice that the multipli-
cations can be substituted with shift operations. With the
same bitwidth used, logarithmic quantization reduces the
accuracy loss compared to linear quantization. With respect
to a floating-point baseline, the accuracy loss of VGG16 with
a 3-bit linear quantization is 6.2%, while with logarithmic
quantization it is only 0.6%.

In [194], [195] and [196], NN accelerators with logarith-
mic numerical representation are presented. They are char-
acterized by processing elements whose multipliers used for
MACs are replaced by barrel-shifters.

Another type of non-linear quantization is vector quanti-
zation. It consists of applying clustering algorithms to the
weights of an NN. The centroids of the clusters to which
the weights belong are used as quantization values. For the
first time, this method was applied to the quantization of NNs
in [197]. The vector quantization can be applied offline before
inference, so it does not need accelerators with specialized
architectures to support it.

G. METHODS FOR MODEL COMPRESSION
As seen in Section II-C, the trend to achieve greater accuracy
has been the development of deeper and deeper NNs with a
higher number of layers and parameters. This evolution is
hardly compatible with the recent desire to deploy NNs on
mobile and edge devices. During the last few years, therefore,
there has been a big push towards the research of methods to
compress the models of NNs without affecting the achieved
accuracy [198]. Themost prominent works are in the domains
of network pruning, architectural choices and knowledge
distillation, as described in the following paragraphs.

1) NETWORK PRUNING
Given the redundancy of the parameters in NNs, network
pruning consists of removing, i.e., set to zero, those parame-
ters that do not affect the performance (i.e., network accuracy)
of the model. Pruning was first explored in Optimal Brain
Damage [199], where the weight with lower influence on
the loss function during the training were pruned. A simpler
method [200] consists of pruning the weights with small
magnitude after the training and then in performing a fine-
tuning of the remaining weights to recover possible accuracy
losses. This method, straightforward and linear, allows to

FIGURE 46. Various pruning techniques.

reduce the number of parameters in AlexNet, for example,
by 10x [200].

Subsequent works have proposed variations of the pruning
method in an attempt to obtain a high yet accuracy-wise effec-
tive compression of the models. In [201], instead of removing
individual weights, entire neurons are pruned. In [202], full
channels are pruned from featuremaps by applying a two-step
algorithm based on LOSSA regression for channel selection
and least square reconstruction. In [203], Deep Compression
is proposed, a three-stage pipeline that applies, in order,
pruning, quantization and Huffman coding. PruNet [204]
iteratively applies a magnitude-based Class-Blind pruning
followed by weight retraining. In [205], the pruning is guided
by an estimate of CNN’s energy consumption, to optimize
the model’s energy performance and not just minimize the
number of parameters. A similar approach based on energy
constraints is adopted in ECC [206]. In [207], quantization
and pruning are performed jointly, and fine-tuning is run in
parallel. In AMC [208] and [209], learning-based approaches
are adopted to prune and quantize the models for algorithm-
hardware co-design. In APQ [210], pruning and quantization
are optimized jointly with the NN model avoiding any accu-
racy loss.

The pruning has the advantage of making the matrices of
the weights sparse. Section III-H explains in detail how it is
possible to take advantage of sparsity in neural networks.

2) ARCHITECTURAL CHOICES
Some researches have explored new architectures with a
lower number of parameters by construction. The basic idea
is to replace a large kernel with a series of two or more
smaller kernels. In this way, an equivalent receptive field is
obtained but with fewer parameters. For example, a 5 × 5
kernel can be replaced by a series of two 3 × 3 kernels,
reducing the number of weights from 25 to 18 (see Figure 47).
In SqueezeNet [174], most of the 3 × 3 kernels are substi-
tuted with 1 × 1 kernels that have 9x fewer parameters, and
the input channels to the 3 × 3 convolutions are reduced.
SqueezeNet achieves the same accuracy of AlexNet with 50x
fewer parameters. InMobileNet [211], a standard convolution
is divided in a depthwise convolution and a point-wise convo-
lution. The depthwise convolution applies a different kernel
to each input channel, while the point-wise convolution uses
1× 1 kernels to combine together the output channels of the
depthwise convolution. This factorization reduces the number
of parameters. Xception [212] adopts this same approach.

It is also possible to obtain smaller tensors from large
tensors after training by applying the Tensor Decomposition,

225156 VOLUME 8, 2020

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

FIGURE 47. Reduction of the number of parameters by splitting a large
kernel in a series of two smaller kernels while maintaining the equivalent
receptive field equal.

which is a low-rank factorization technique. The kernels of
the convolutional layers are 4D tensors, while the weights
of the fully-connected layers are organized in a 2D matrix.
With tensor decomposition, these can be broken down into
tensors of lower dimensionality by Canonical Polyadic (CP)
decomposition [213]. Since CP is not numerically stable for
tensors with dimension higher than two, it is possible to adopt
Tucker decomposition [214].

3) KNOWLEDGE DISTILLATION
Higher accuracies are obtained with very deepmodels or with
ensembles of models, whose results are then averaged. Using
a deep model or even several models at once requires consid-
erable computational effort. However, it is possible to transfer
the knowledge of one or more large models (teachers) into a
smaller model (student). This process is commonly known
as knowledge distillation and has been introduced in [215]
and [216], for shallow and deep teacher models respectively.
In [215] and [216], the (trained) teacher models receive a
dataset of unlabeled data and classify them, producing a
synthetically-labelled dataset. This dataset is then used to
train the shallow student model, that, therefore, learns to
mimic the classifying function of the teachers. The knowl-
edge distillationmethod has shown promising results and sev-
eral variations have been proposed in subsequent work [217],
[218] [219], [220].

H. ACTIVATIONS AND WEIGHTS SPARSITY: STRATEGIES
AND ENCODING
Recent studies have shown that most DNNs are subject
to redundancy concerning the weights. Consequently, it is
possible to prune them without affecting the accuracy as
demonstrated in [200] and [201]. Both works show that the
synapses can be reduced to percentages ranging from 20%
to 80%, depending on the considered layers. As explained
in Section III-G, pruning weights results in zero values that
make the matrices sparse. On the other hand, during infer-
ence, the ReLU clamps negative activations to zero. The
null activations range from about 50% to 70%. Hence, these
represent the two primary sources for sparse matrices for
both activations and weights. Sparsity represents an excellent
opportunity to optimize the inference for two main reasons:

• The basic operations of the DL is the multiplication
between a weight and an activation. However, whenever
one of the two is zero, the operation has no reason to be
performed, as the result, will be null too. Therefore, it is

possible to skip such operations to speed up execution
and save the energy.

• By using compression techniques, it is possible to save
only the non-null elements and their relative positions
in the matrices. This reduces the storage requirements
with the possibility of fitting more data into the on-chip
SRAM, thereby cutting off the accesses to the off-chip
DRAM significantly.

Although numerous compression techniques can be found
in literature, DNNs and CNNs rely mainly on three hardware-
friendly methods. Such methods consist of two sets of data:
one represents all the non-zero values, while the other repre-
sents the metadata or the indices necessary to reconstruct the
original pattern. Compressed Sparse Row (CSR) and Com-
pressed Sparse Column (CSC) are two formats belonging to
the class of compressed stripe storage [221]. Both CSR and
CSC can be seen as a collection of scattered vectors, which
allows random access to entire rows or columns respectively,
equipped with an efficient count of non-zeros within each
row or column, as detailed in the following.

1) COMPRESSED SPARSE ROW (CSR)
As shown in Figure 48(a), a single array (Non-zero array)
stores all the non-zero values of the sparse rows in order, and
an integer array (Column indices) stores the corresponding
column indices. A third array (Row pointer) stores the offsets
within the previous two vectors, indicating the number of
non-null elements per row in an incremental fashion. Such
a structure allows fetching any row thanks to an efficient
element enumeration. The number of bits required for such
a representation is given as:

I · (Nb · (1− Sp)+ Ni · (1− Sp))+ (H + 1) · No (9)

where I is the input size, Sp the sparsity percentage, H the
height of the input matrix, andNb,Ni andNo are the bitwidths
of data, indices and offset, respectively.

2) COMPRESSED SPARSE COLUMN (CSC)
CSC works like CSR, but this time data are organized by
columns. A single array (Non-zero array) stores all the non-
zero values of the sparse columns in order, and an integer
array (Row indices) stores the corresponding row indices.
A third array (Column pointer) stores the offset within the
previous two vectors, indicating the number of non-null ele-
ments per column in an incremental fashion. Figure 48(b)
shows an example of the CSC coding. The number of bits
required for such a representation is quite similar to the
previous one, i.e.,:

I · (Nb · (1− Sp)+ Ni · (1− Sp))+ (W + 1) · No (10)

whereW is the width of the input matrix.

3) COMPRESSED IMAGE SIZE (CIS)
This data format consists of a sparsity map and a non-zero
value list, as depicted in Figure 48(c). The former is a mask

VOLUME 8, 2020 225157

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

FIGURE 48. Step-by-step compression formats comparison: (a) Compressed Spare Row (CSR), (b) Compressed Sparse Column (CSC), (c) Compressed
Image Size (CIS), (d) Run Length Coding (RLC).

with the same shape of the original data (1D vector, 2D
Matrix or 3D matrices array) having one bit per entry. The bit
is 0 if the corresponding value is null, 1 otherwise. The latter
is an array composed of all non-zero values. With respect to
CSR and CSC this technique allows an easier representation
with no need for decompression. In this case, the number of
required bits has a simpler equation, as given below:

I · (Nb · (1− Sp)+ n) (11)

where n is typically 1 bit.
Figure 49 compares the compression ratio of CSR, CSC

and CIS methods. This is the ratio between the compressed
bit size and the original model. The picture includes two
boundaries for the three formats. The upper case is based on
the filter size of Conv 4 for AlexNet (3× 3× 384) with data

parallelism of 8 bits, while the lower bound is based on Conv
1 for the same neural network (11 × 11 × 3) represented on
32 bits. As it is possible to notice, the CIS format performs
better than the CSR or CSC formats in almost all the sparsity
range. However, the coding choice often depends on how the
data will be handled by the hardware.

For the sake of completeness, a fourth method should be
introduced, namely Run Length Coding (RLC).

4) RUN LENGTH CODING (RLC)
It is a simple data format that is able to compress the consec-
utive repetition of the same value as depicted in Figure 48(d).
In the case of sparsity, it is mainly used to compress consec-
utive zeros in a single zero and the count of them. Although
it is very easy to implement, it is only effective when zeros

225158 VOLUME 8, 2020

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

FIGURE 49. Compressed ratio with variation in sparsity of CSC, CSR, CIS and RLC. The picture
includes two boundaries: the upper bound refers to Conv 4 of AlexNet (3 × 3 × 384) with
data parallelism of 8 bits, while the lower bound is based on Conv 1 (11 × 11 × 3)
represented on 32 bits.

manifest in a compact and consecutive manner (high percent-
age of sparsity). In addition, the RLC is designed for data
arrays, so it is not optimal when operating on matrices.

The following, and last proposedmethod represents a mile-
stone in the history of compression. However, for reasons of
complexity it is difficult to use in hardware architectures.

5) HUFFMAN CODING
As is well known, Huffam coding is the most efficient
method to encode scattered data thanks to its optimal com-
pression rate. However, its complexity makes it difficult to
employ since it would require computation-hungry com-
pressor/decompressor schemes (large silicon area). More-
over, the continuous data manipulation would introduce a
power overhead, which can hardly be compensated by saved
computations. Thus, such a non-friendly-hardware coding
approach is only used in software-level implementations.

Even though it is proved that the above-mentioned tech-
niques bring benefits, compression introduces irregular data
patterns that are reflected in irregular memory accesses.
Moreover, ad-hoc hardware support is required to identify
useful operations. In this scenario, general-purpose platforms
like CPUs and GPUs are not very prone to use sparsity as an
advantage, but rather, random memory accesses represent for
those a source of inefficiency.

Thus, many FPGA and ASIC architectures leverage
sparse matrices to accelerate the inference stage thanks to
custom hardware. For example, Cnvlutin [222] relies on
the ReLU function to compress activations with a CSR
approach, but it does not consider weight sparsity. On the
other hand, Cambricon-X [113] employs the weight spar-
sity, having a PE-based implementation, where each PE

stores compressed synapses for asynchronous computation.
SCNN [223], instead, is able to take care of both sparsity
simultaneously in CNNs by means of an input stationary
dataflow. Activations and weights in a CSC scheme are
provided to a multiplier array that generates scattered par-
tial products, subsequently added together using a dedicated
interconnection mesh. Despite the fact that it reaches an
excellent PEs utilization efficiency over convolutional layers,
fully connected ones represent a bottleneck since it is impos-
sible to reuse values. EIE [224] encodes the sparse weights
using the CSC format as well, avoiding the use of the DRAM
for 120x energy saving. Moreover, the ability to skip zero
activations makes its matrix-vector multiplication inference
engine extremely efficient. NullHop [225] is a CNN FPGA-
based hardware accelerator which embodies both a zero-
skipping ability over null activations and a CIS compression
over the synapses. The first comes without any clock cycle
waste, while the second allows acting directly on compressed
data thanks to its hardware-friendly representation. Squeeze-
Flow [226] exploits a different approach by introducing con-
cise convolutional rules. Such rules reduce the computation
by avoiding part of the useless operations (null values). The
hardware implementation enables the acceleration of dense
DNNs without intrusive PE variations.
Eyeriss [132] simply exploits sparsity by clock-gating the
PEs with zero value, i.e. not performing the multiplica-
tion. Although this reduces the power consumption, highly
sparse DNN models could cause a poor PE array utilization.
ZeNA [227] was the first zero-aware architecture target-
ing the CNNs, able to skip ineffective computation induced
by both weights and activations. Moreover, it addresses
the unbalanced workload among PEs due to the zero-skip
operation by introducing a novel load distribution method.

VOLUME 8, 2020 225159

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

TABLE 5. Summary table of sparse architectures.

FIGURE 50. Opportunities for employing approximate computing in deep
learning.

Huan et al. [228], instead, proposed an approximate architec-
ture that skips near-zero multiplications, providing a further
reduction of computation (1.92x over LeNet5) with negligible
accuracy loss.

Table 5 summarizes what has been discussed in previous
paragraphs about the sparse architectures analyzed in this
section. It reports the data compression format and which
data among activations (A) or weighs (W) is subject to the
compression. Besides, the last column reports the type of data
for which unnecessary operations are skipped.

I. APPROXIMATE COMPUTING FOR DEEP LEARNING AND
THEIR RESILIENCE
Approximate computing is a well known paradigm, whose
basic idea is to trade quality for efficiency, at differ-
ent abstraction levels [229]. Therefore, it is desirable for
non-safety-critical tasks, or for applications that are resilient
to approximation errors [230].Many studies have analyzed its
applicability on DL-based applications [231]. An overview
of the possibilities of employing approximate computing is
shown in Figure 50.
The most compute-intensive operations that are performed

in the inference are the multiplications. Approximate multi-
pliers can be employed in DNN accelerators to reduce the
power consumption [232].

At the architecture-level, systematic resilience analyses are
needed for applying approximate computing in CNNs [233]
and CapsNets [234]. The error generated by approximate
MAC units in systolic array-based DNN accelerators can be
mitigated by employing curable approximations [235]. This
is extremely useful for reducing the critical path and energy

consumption of the DNN accelerators, without sacrificing
the classification accuracy. AxTrain [236] is a framework for
DNN training that enables approximate inference. Otherwise,
a layer-wise approximation of DNN accelerators at the infer-
ence stage can be done automatically [237]. CAxCNN [238]
is a methodology for approximating the filter weights of
DNNs without retraining and executing DNN inference with
low-complexity multipliers.

Approximate memories [239], [240] can further reduce
the energy consumption of DNN accelerators and systems.
The work in [241] optimized the communication network
for reducing the computational cost of DL training and
inference.

A cross-layer approach [242] leads to integrate approx-
imate computing in a compression framework for further
reducing the energy consumption of DNN accelerators.

J. EMBEDDED VS CLOUD COMPUTING
So far, the focus has been mainly on the development of
embedded architectures for deep learning. However, it is also
necessary tomention the other solution that is gaining ground,
namely cloud computing. Cloud computing is a paradigm of
service delivery, especially storage of data and computational
resources, offered by a provider to a client through the Inter-
net.

Cloud computing offers some advantages when applied to
deep learning. As demonstrated in the previous paragraphs,
deep learning is based on the availability of a large amount
of data, especially during the training phase. For the latest
models of neural networks, many computational resources
are also required. These resources may not be available and
accessible to everyone, so services provided by third parties
may be a valid solution. Besides, cloud services have a very
flexible availability of resources, which can be scaled during
the development of a project to better adapt to different needs.
Finally, many cloud computing services for AI and machine
learning offer solutions and resources that do not require in-
depth technical knowledge, allowing even inexperienced peo-
ple to approach this field and exploit its potential. There are
currently several providers offering cloud computing solu-
tions, among them Alibaba Cloud [243], Amazon Web Ser-
vices (AWS) [244], IBM Cloud [245], Google Cloud [246],
Google Colab [247] and Microsoft Azure [248].

However, cloud computing has some disadvantages that do
not make it suitable for all applications. First of all, cloud
computing is based on the availability of an Internet connec-
tion, and it is therefore not ideal for applications that do not
permit interruptions of service, such as self-driving vehicles.
Data transmission between client and server is also subject
to security issues as it is more vulnerable to breaches. Cloud
computing is, therefore, not suitable for applications where
there are strict regulations on data security, such as gov-
ernment or defence services. Finally, in latency-constrained
applications, such as again self-driven vehicles or virtual
reality applications, it is preferable to have near-sensor com-
puting rather than relying on the transmission of data via the

225160 VOLUME 8, 2020

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

Internet. However, the advent of 5G could potentiallymitigate
this problem.

K. SNNs HARDWARE ACCELERATORS
Modern computing systems based on the Von Neumann
architecture are not efficient for the SNNs implementation,
because of the physically separated computational and mem-
ory units [249]. Therefore, novel computational architectures
are necessary to implement SNNs with high performance
and low energy. Several accelerators for SNNs have been
proposed in the literature. Themost popular ones are adopting
the neuromorphic architecture.

SpiNNaker [61] is a system designed to implement large
SNNs in real-time. Using ARM9 cores as building blocks,
it implements event-driven computation and communication,
interfacing with Python libraries such as PyNN. Its second
version, SpiNNaker 2 [250], increases the number of cores
for implementing deep learning with sparse connectivity.

IBM TrueNorth [60] is designed with a 28-nm CMOS
technology, with 4,096 neurosynaptic cores. Each core has
12.75 KB of local SRAM and can support up to 256 neurons.
The scaling and integration of multiple chips is allowed by
the spike-based nature of the communication and routing
infrastructure in an asynchronous-based NoC.

Intel Loihi [63] provides highly parallel and power efficient
asynchronous computations. The chip implements in a 14-nm
CMOS technology a mesh of 128 neurocores, each of them
having 1,024 spiking neurons and 2 Mb of SRAM. Scaling
is possible through a hierarchical connectivity between chips.
Moreover, several neuromorphic learning rules are supported.

BrainScaleS [62] is a mixed analog-digital system, with
analog neurons and digital communication. Like SpiNNaker,
it also allows PyNN interface.

IV. MEMORY HIERARCHY
While optimizing the algorithms and accelerating the imple-
mentation of computational primitives is of fundamental
importance to achieve the best performance, inefficient mem-
ory management could undermine all efforts made to achieve
high throughput and energy efficiency claimed by the accel-
erator design [251]. Typically, memory accesses dominate
the energy consumption of a system [252]. As depicted in
Deep Compression [203], [253], using a 45 nm technology,
a 32-bit adder consumes 0.9 pJ, while SRAM and DRAM
access require respectively 5.5× and 711× more energy. In
such a situation where the storage elements constitute a clear
efficiency bottleneck, memory must be taken into account
from the earliest design steps as a first-order concern.

Conversely to processors, where the general-purpose struc-
ture prevents adaptation to the workload, for other platforms
it is possible to make a tightly tailored design on the spe-
cific algorithm in order to reduce at minimum the memory
transfer. These considerations are crucial, especially in the
field of machine learning, where the enormous number of
MACs to be performed requires an enormous and continuous
datamovement towards the processing units. Considering, for

example, a 1G fully connected layer running at a typical video
recording frame rate (30 fps), using the above DRAM tech-
nology, its computationwould require (30 fps)(1G)(640 pJ)=
19.2W that is a considerable amount of power, unaffordable
for mobile devices.

1) INFERENCE vs. TRAINING
From a memory perspective, training is way more intensive
than inference. While in the latter the NN is crossed only
once, in the former the backpropagation mechanism imposes
to cross it backward, reloading both activations and weights.
Thus, the training has an almost double cost. Generally speak-
ing, in most of the industrial, medical and commonly used
applications, there is no reason for on-line training. Usually,
neural networks are trained on a dataset off-line and then
delivered to the end-users. As the dataset is periodically
improved by adding corner cases, networks can be realigned
through a new off-line training session. Since such an oper-
ation is performed off-line, there is no need for highly opti-
mized hardware platforms, but rather for high-speed general-
purpose architectures, such as GPUs, able to scale down the
training time with no constrains over the power envelope.
Moreover, even though ML researchers are very interested in
speeding up learning, from a business perspective, this repre-
sents a small market. According to the above, and knowing
that the nature of the computations required to carry out the
backpropagation and the inference is almost identical, from
now on we mainly focus on the inference stage that offers
more case studies.

As mentioned before, accelerating large size ML algo-
rithms involves high memory traffic. Focusing on the cur-
rently most known and used networks, DNN and CNN,
we analyze in detail their main fundamental layers from a
typical processor memory organization perspective, provid-
ing an idea of the number of operations to be carried out and
the possible optimizations.

2) FULLY CONNECTED LAYER
Among NN layers, FC ones are those which require the
highest memory transfer due to their topology. Considering
a layer composed of Ci input neurons and Co output neurons,
the synapses (i.e. weights) are represented by a Ci × Co
matrix. Thus, the execution of the entire layer can be sum-
marized in a matrix-vector multiplication that needs a total
number of memory transfers equal to Ci × Co + Ci × Co +
Co where each addendum represents respectively the inputs
loaded, the weights loaded and the output written back to the
main storage.

The matrix-vector multiplication is a critical operation,
especially in case the weight matrix is larger than the low-
est cache level capacity. In such a case, it is impossible
to reuse the matrix values, and new memory accesses are
performed every cycle. In the case of CPUs and GPUs,
this problem can be overcome by batching [254]. This tech-
nique allows to group multiple input vectors into a single
matrix and reuses the weight parameters. However, real-time

VOLUME 8, 2020 225161

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

applications cannot use this optimization because a certain
latency is introduced. Therefore batching can only be used
during offline training, where the dataset is provided a priori.
As far as inference is concerned, we prefer techniques capable
of overcoming the bottleneck represented by memory by
spatially and temporally distributing the workload as seen
in Section III-A, or compressing the network by reducing
the number of parameters as shown in Section III-G. Nev-
ertheless, compression generates irregular patterns that make
CPUs and GPUs ineffective.

Theoretically, input activations can be reused for each
output one, but unfortunately, their size ranges from few
thousands to hundreds of thousands, making them unfeasible
to be stored on an L1 cache. Tiling could be used to subdivide
the loop over the input neurons. However, it is not possible to
perform loop tiling over a factor without affecting the rest of
the execution. Indeed, increasing the reuse of the input neu-
rons, the amount of the partial output sums to be stored back
to the main storage increases as well. Thus, the input memory
bandwidth saved from the tiling is partially compromised by
the partial sums write back, but still advantageous. As far as
weights are concerned, they are unique for each input, so it is
not possible to reuse them. Moreover, in the DNNs these vary
from tens of millions to some billions, making it impossible
to store them even on higher cache levels.

3) CONVOLUTIONAL LAYER
With respect to FC layers, the convolutional ones are built on
a 2D scheme (3D considering the channel direction), exhibit-
ing an input and an output feature map. The input feature map
can be reused as many times as the number of kernels. More
precisely, since the convolutional windows tend to overlap,
the single input feature map windows, with size equal to the
kernel one, can be reused Hk×Wk

Sx×Sy
times as shown in Figure 29,

whereHk andWk are the sizes of the kernel and Sx and Sy are
the stride over x and y directions. Consequently, as described
above for FC schemes, it is possible to perform a tiling loop
over the two dimensions of the IFM with a reuse strategy to
reduce the accesses to the main storage. In this case, tiling
the input does not affect the output. Consequently, in GPUs
and CPUs, no tiling is performed since it is possible to fit
an entire kernel volume in an L1 cache; thus, an entire OFM
can be produced without the need to break down the loop.
Indeed, typical kernels size is Hk × Wk × Ci, where Hk
and Wk are in the order of ten, while the number of input
channels (Ci) can reach the hundreds. For FPGA and ASIC
approaches, the reuse strategy can be way more aggressive
thanks to ad hoc designs as explained in the following. Ker-
nels are usually shared, reducing considerably the number of
DNN parameters, and consequently the required bandwidth.
Nonetheless, the number of output channels can make the
synapses unfeasible to be stored in an L1 cache. Indeed,
the weight volume expressed as Hk ×Wk × Ni × Co, where
Co is the number of OFMs, can easily exceed the lower level
of the memory hierarchy. Also, in this case, it is suggested

to use a tiling to break the loop over the output feature map,
resizing the total capacity in Hk ×Wk ×Ci×TCo sets, where
the TCo is the tile size. In the rare case of not shared weights,
as discussed for FC layers, not even the L2 cache could fit
them, making reuse impossible.

4) POOLING LAYERS
Unlike the previous layers, pooling has no weights, and the
number of OFM is equal to IFM, thus the opportunities to
perform data reuse are fewer. The sliding windows, over
which the pooling is performed, generally do not overlap,
consequently, the bandwidth for input neurons is higher than
the convolutional approach. Even with the introduction of the
IFM tiling, performance would improve marginally.

Taking into account the three types of layers described
above, it is clear that the required bandwidth is profoundly
different from each other. Figure 51, for example, shows the
bandwidth needed for the execution of AlexNet on a device
able to perform 100 Gops/s with 100% efficiency, i.e. no
stall and data dependencies, with no memory constraints.
Despite the bitwidth for both activations and weights is just
16 bits, the bandwidth for some layers, especially FC and
max pooling, where data reuse is practically impossible,
is unattainable from any commercially available memory.
This once again highlights how difficult it is to execute ML
algorithms efficiently, in particular on devices with rather
modest hardware, as may be the case with IoT nodes, which
are mainly CPU-based. The architecture of these nodes must
guarantee flexibility and speed of execution for a wide range
of algorithms, therefore it cannot be optimized for the DL.
Researchers over the years have tried to improve the libraries
and kernels of basic operations carried out on their processors
to maximize the management of storage elements such as
the Intel MKL-DNN [255] and ARM CMSIS-NN [256]. The
former library works on the data formatmappingmultidimen-
sional arrays into linear memory address spaces. Moreover,
it enables lower numerical precision primitives, accelerat-
ing the execution of multiple operations, i.e., increasing the
number of operations per second, and enhancing the perfor-
mance of the cache at bandwidth parity. The latter intends
to reduce memory overhead and maximize NN execution on
Cortex-M processors for low-power applications oriented to
IoT devices. Another example is represented by Garofalo
et al. [257], who proposed PULP-NN, a library designed for
a parallel cluster of tightly-coupled RISC-V processors. Its
set of software kernels targets the inference of quantized NN,
being capable of exploiting sub-byte bitwidth data.

What just said for CPUs is also valid for GPUs, with the big
difference that their capability to parallelize large workloads
makes these devices ideal for DNN applications, although
expensive from the power point of view. NVIDIA developed
the CUDA Deep Neural Network library (cuDNN) [100],
a special library that also includes the possibility to use a fixed
point format at 16 and 32 bits, moreover, transforms con-
volution operations into multiplications between matrices,
which are extensively optimized. This property is reflected in

225162 VOLUME 8, 2020

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

FIGURE 51. Example of required bandwidth per layer executing Alexnet on a device able to perform 100 Gops/s
with 100% efficiency.

a reduction in the demand for RAMand a consequent increase
in the number of supported operations. However, for large
DNN models, it is essential to tune the memory usage to fit
them into the DRAM. vDNN [258] virtualizes the memory of
the CPU and GPU so that it can be simultaneously used for
training in a hybrid fashion. Kim et al. [259] extended the
concept of vDNN to a multi-GPU environment employing
PCIe-bus. Furthermore, thanks to a prefetching algorithm,
they can increase the mini-batch size of 60%.

Conversely to GPUs, FPGA and ASIC accelerators have
a limited amount of memory. In CNP [260] for exam-
ple, in order to accommodate a large number of DSPs on
a Virtex4 SX35 FPGA platform, the authors designed an
interface with an external memory capable of performing
8 read/write operations. However, their flexibility and the
possibility to design their memory hierarchy tailored to the
specific problem can lead to a lower energy envelope. The
sizing of on-chip memory buffers is not trivial and depends
on many factors such as layer size, layer type, frequency
of buffer usage. Wei et al. [261] have proposed an FPGA-
based layer conscious framework to allocate on-chip buffers
efficiently. Such a paradigm combined with buffer sharing
saves resources and enhances their usage. Since DRAM has
an access cost about 130× higher than SRAM, in some cases,
it has been thought to directly remove this storage device as
in the case of Park and Sung [262]. Exploiting fixed-point
data format and the capability of NN to work even in case of
reduced precision [203], Park et al. were able to fit the entire

DNN model into the on-chip memory, reducing the power
consumption drastically. Following the same approach Du
et al. have proposed ShiDianNao [129], an ASIC designed to
be integrated into a commercial image chip typical of smart-
phones. Being in close contact with the sensor, the data it
processes is taken directly from the local SRAM, minimizing
the power needed. ShiDianNao is the last accelerator of the
series started with DianNao [24], a small-footprint memory-
wall aware accelerator for large NN models, and continued
with DaDianNao [134]. The latter instead proposes a multi-
chip ML architecture with 64 cores in supercomputer style
able to achieve a speedup of about 450x over a typical GPU.
While the above architectures distribute the on-chip memory
among the PEs, i.e., near computation, there have also been
efforts to do the opposite, namely to bring the computation
into the storage elements. This is the case of the logic-in-
memory (LIM), where easy computational tasks are executed
directly inside the memory like in [263]–[266].

V. DEEP LEARNING SECURITY
Despite the great success and popularity of deep learn-
ing in recent years, recent researches showed that
DNNs have intrinsic weaknesses that can threaten the
security [267], [268] [269]. Starting from the work of
Goodfellow et al. [270], many researches have been con-
ducted, with the purpose of identifying weaknesses (Adver-
sarial Attacks) and their countermeasures (Adversarial

VOLUME 8, 2020 225163

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

Defenses) [271], [272]. Moreover, machine learning models
can be stolen [273] or inverted [274].

A. ADVERSARIAL ATTACKS
The basic idea behind an adversarial attack is to make a
machine learning model classify a malicious sample wrongly.
In case of image classification, the adversarial attack intro-
duces a noise in the input image to create the adversarial
example, which is classified wrongly by the DNN. Adversar-
ial attacks can be categorized according to different attributes,
e.g., the choice of the class, the kind of the perturbation
and the knowledge of the network under attack [275], [276].
We summarize these properties in Figure 52.

The goal of an adversarial attack is to be at the same
time imperceptible and robust [277]. A successful adversarial
example should not have obvious variations perceived from
an human eye, compared to the original image. Moreover,
an attack is robust if the gap between the probabilities of the
adversarial class and the correct class is so large that, after a
transformation (e.g., noise filtering, compression or resizing),
the misclassification still holds. These kind of attacks have
been evaluated also on CapsNets [278] and SNNs [279].
Moreover, if applied on a different domain [280], the imper-
ceptibility of the adversarial examples can be improved.

Several types of adversarial attacks have been proposed.
Poisoning attacks [281], [282] [283] contaminate the train-

ing data in such a way that the decision boundaries of the
classifier are pushed to incorrect zones, thus reducing its
classification accuracy on clean inputs. More specifically,
backdoor attacks [284] train a network in a way that, when
exposed to a specific noise pattern that plays the role of a
trigger, it is fooled. Triggered by an adversarial noise pattern,
the NeuroAttack [285] introduces a backdoor Trojan to fool
DNNs and SNNs with bit-flips.

Gradient-based attacks like FGSM [270] and its vari-
ants [286], [287] [288], [289], [290] are white-box adver-
sarial attacks that perturb the inputs based on the gradient
of the output probabilities with respect to the inputs. They
only introduce perturbations at the inference stage, without
modifying the training data.

The Carlini & Wagner attack [291] aims at minimizing at
the same time (i) the distance between the original image
and the adversarial image and (ii) the distance between the
maximum output activation and the confidence of the target
class.

Decision-based attacks [292], [293], [294], [295] are
black-box adversarial attacks which estimate the decision
boundary and aim at crossing it to obtain a misclassification.
The quality of such attacks is measured in terms of number
of queries, i.e., the inference passes with different inputs.

Universal perturbations [296] aim at identifying a noise
pattern, specific for a given dataset, which, when added to
the input, significantly reduces the test accuracy of any deep
learning model.

B. ADVERSARIAL DEFENSES
Several defense methods have been studied and proposed.
They aim at increasing the generalization of DNNs, while
they perform better against different types of attacks. How-
ever, one of the main drawbacks of applying the defenses
on DNNs is that the classification accuracy on clean images
decreases.

Data protection defenses [297], [298] analyze the impact
of the input in order to identify the noise, thus effectively
working against poisoning attacks.

Standard DNN compression techniques has been adapted
to successfully defend against adversarial attacks. Fine-
Pruning [299] removes the redundant connections in DNNs
which do not significantly contribute for the accuracy of the
clean data in order to remove the effect of the backdoor.
A quantization-based defense [300] reduces the success rate
of the attack by quantizing the input pixel intensities.

Adversarial training [289] is the de-facto standard defense
method against adversarial attacks. Since the adversarial
examples are added to the training set, the classifier is able
to learn these perturbations. As a drawback, the adversar-
ial training adds a prohibitive overhead in the training pro-
cess. Further variants of such defense [301], [302], [303]
aim at reducing its computational cost and training time
overhead.

Different pre-processing techniques can elude the effec-
tiveness of adversarial attacks. Simple pre-processing fil-
ters [304] completely alter the functionality of the attack.
Randomized smoothing [305] produces a Gaussian noise
at the input to mitigate the effect of the adversarial per-
turbations on the inputs. It has been demonstrated to be
effective also on large perturbations on large and complex
datasets.

Detectors [306] add a sub-networkmodel to detect whether
an input is an adversarial example or not. This algorithm
can be successfully executed in specialized hardware and
integrated with DNN accelerators [307].

VI. BENCHMARKING
Since Deep Learning is a critical topic in the research com-
munity, over the years, big companies have made available
a massive series of tools to help the development of new
models. These frameworks, in addition to the most recent and
updated datasets, are crucial for both software and accelerator
development. The possibility to explore new models and
evaluate them in terms of workload, the trade-off between
complexity and accuracy, access to memory, numerical rep-
resentation (floating-point vs fixed-point) is a fundamental
step in the hardware design phase. All these steps are of great
importance to understand what the performance of the accel-
erator will be. In this section, we present themain frameworks
for the DL and the datasets used to determine the performance
of the algorithms. Finally, parameters and metrics for the
comparison of hardware platforms are discussed.

225164 VOLUME 8, 2020

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

FIGURE 52. Taxonomy of Adversarial Attacks.

A. FRAMEWORKS
Frameworks are working environments that provide the
developers with all the basics and support to build new ready-
to-use models, as depicted in Table 6. Having such tools, able
to compose a DNN using high-level programming language
like Python and then test the performance of the algorithm,
speeds up the research work enormously. Moreover, profiling
the code execution and understanding where the critical load
is located, it is possible to define which parts will have to be
translated into hardware and, consequently, what needs to be
accelerated.

In the case of CPUs and GPUs instead, libraries and frame-
works are essential to parallelize and distribute the effort
among the cores.

To be noted that many frameworks transform DNNmodels
into optimal graphs. This is only an effective method for
visualizing the operations to be performed sequentially.

1) TENSORFLOW [98]
Google’s Tensorflow is one of the most popular DL frame-
work. It supports many different languages such as JavaScript
and Java, C++, Go, C#, Julia, even though the most con-
venient client remains Python. It is characterized by a static
computation graph, which means that it first defines the
graph, and then processes it. Since the model is static, it is not
possible to make changes in the structure at run time, but it is
necessary to do the training of a new structure. The efficiency
of its primitives compensates this lack of flexibility. It is
optimized for Tensor Processing Unit (TPU) architectures.

2) PyTorch [97]
Created by Facebook, it is the principal competitor of Tensor-
flow. Unlike the previous one, PyTorch takes advantage of a
dynamically updated graph. This means that it is possible to
make changes to the DNN architecture on the fly. Generally
speaking, PyTorch is often used in projects in which new
training paradigms are exploited. In fact, the dynamic graph

property is exploited during the backpropagation task, where
the normal graph execution needs to be altered. Moreover,
it supports different data parallelism (suitable for hardware
solution exploration) and distributed learning models.

3) CAFFE [99]
This DL-based framework supports C, C++, Python, and
MATLAB. It is mainly used to model CNNs. In its repository
called Caffe Model Zoo, it is possible to access a wide range
of pre-trained models ready-to-use. Thus, whenever there is a
problem with image processing, Caffe could be the solution.
Since its libraries are mainly written in C++, its strength lies
in the speed of execution. However, unlike other frameworks,
Caffe does not allow a fine-granularity network layer alter-
ation by the user, which makes it inflexible. Moreover, for
recurrent model applications such as the Natural Lenguage
Processing, the available resources are poor.

4) MXNet [308]
This work environment supports a wide range of languages
including C++, Python, R, Go, JavaScript and Julia. The
strength of this framework lies in its ability to parallelize
execution both on multiple GPUs and on multiple machines,
as in the case of Amazon servers.

5) CHAINER [309]
It is the first framework to exploit the dynamic computation
graph, allowing for varying length input, a handy feature in
problems of natural language processing. Chainer is built
on Numpy and Cupy libraries and is completely written in
Python. Since it is faster than other Python-based frame-
works, today it is the leading tool for GPU performance in
data centres.

6) MICROSOFT COGNITIVE TOOLKIT [310]
This framework, also known as CNTK, supports Python,
C++ and command-line interface. Unlike Caffe, when a new

VOLUME 8, 2020 225165

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

layer model is needed, it can be built thanks to the fine
granularity of the base blocks, without the need for low-
level code. Concerning the operation over multiple machines,
it presents higher performance compared to Theano and Ten-
sorflow. However, as a result of a lack of support related to
ARM architectures, the applications over mobile devices are
limited.

7) PaddlePaddle [311]
This is an industrial-oriented framework equipped with basic
libraries and tools for end-to-end product development.
It mainly supports CNNs and recurrent neural networks for
highly optimized computation and memory recycling. More-
over, it can efficiently scale over heterogeneous architectures
to speed up the training process.

8) ONNX [312]
This is not a framework but a representation format for deep
learning models. Microsoft and Facebook collaborated to
create such a format in order to make the models portable
from a framework to another. In some cases, it is convenient
to perform the training on a platform and the inference on
another. Moreover, ONNX can also be a valuable resource for
developers, researchers and the open-source world, in fact,
any pre-trained model can be shared with the community,
and every user can choose the most suitable framework. It is
supported by TensorFlow, PyTorch, Caffe2, Chainer, MXNet,
Keras, Microsoft Cognitive Toolkit, PaddlePaddle, and many
others.

9) KERAS [313]
Keras is an Application Programming Interface (API) for
ML and DL. It can be used in many of the shells presented
above. It is a high-level code abstraction for implementing
NNs exploiting the lower level primitives of the correspond-
ing framework. Working at a higher level, it is suitable for
fast prototyping and handling wide amounts of data streams
thanks to Python generators and serialization/deserialization
APIs.

B. DATASETS
As the frameworks are used to build new DLmodels, datasets
are fundamental to test their performance concerning the
designed task. It is essential to underline that there are count-
less datasets for each specific task (image classification,
object detection, etc.). However, datasets of the same task are
hardly comparable to each other, the difficulty of each could
vary in orders of magnitude as depicted in Table 7. Consid-
ering, for example, MNIST and CIFAR100, both datasets for
the image classification, the first is a collection of handwritten
digits in grayscale, while the second ranks objects in 100 dif-
ferent classes. Typically, different datasets reflect different
DL models. The more complicated the dataset, the greater
the model size in terms of weights and consequently in the
number of operations (MAC). The metrics used to evaluate
the performance of DL models on datasets are mainly two:

accuracy in Top-1 and Top-5 mode, and weights size. Top-
5 means that if in the 5 classes with the highest score there
is the correct one, then it is counted as correct. Top-1 instead
needs the highest score class to be the correct one.

1) MNIST [29]
This dataset is composed of 70,000 images divided into
10 classes representing handwritten digits. 60,000 are for
training, while the remaining are the test set. Each image is
28× 28 pixel size in grayscale.

2) ImageNet [39]
This dataset is composed of 1.3M training images,
100,000 for test and a final 50,000 for validation. All the
images are divided into 1000 classes organized according
to the WordNet. This latter allows managing synonyms and
ambiguities. Each image has a size of 256 × 256 pixels in
color. ImageNet is the core of a famous challenge where
DNNs and CNNs try to score the best Top-1 and Top-
5 accuracy.

3) CIFAR [314]
Under the name of CIFAR two different datasets fall, namely
CIFAR-10 and CIFAR-100. Both are composed of 60,000
32 × 32 pixels coloured images, but while the former ranks
them in 10 classes, the latter uses a finer classification
in 100 classes. Both datasets have 50,000 images for training
and the remaining for test purposes.

4) COCO [315]
This dataset aims to advance the object recognition state-of-
the-art by putting together also segmentation and captioning.
It is composed of 328,000 images of everyday scenes for a
total of 91 stuff categories and 80 object classes.

5) OPEN IMAGES V6 [316]
This dataset contains 9M images equipped with labels,
objects bounding boxes, segmentation, narratives and rela-
tionship views. Each image contains 8.3 objects on average.
With 16M bounding boxes over 600 categories, it is the
largest object localization dataset ever realized. Moreover,
it is able to provide 19,957 classes with an annotation at the
image-level.

6) CORe50 [317]
This is the first collection of images designed for continual
object recognition, i.e., learning new classes online. It is
composed of 11 sessions of 300 RGB-D images that can be
classified by objects (50) or by categories (10). The objects
are held and moved by the operator who is recording a 15 sec-
onds video at 20 fps (300 frames in total) from a subjective
point of view.

7) ObjectNet [318]
ObjectNet is a dataset composed only of a test set
of 50.000 images. The aim is to test object recognition

225166 VOLUME 8, 2020

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

TABLE 6. Framework summary.

applications in a real-world scenario in which images present
background, rotation and often the viewpoint are random.
ObjectNet showed that applications performing at the top
in their respective datasets present a lack of generalization
with a 40-45% drop in the performance. Fine tuning-robust,
this dataset represents one of the best challenges for the
generalization of object recognition tasks.

C. NEURAL NETWORKS MODEL METRICS
The attributes of DL models can be evaluated, considering a
few important metrics.
• Accuracy. The accuracy (Top-5 or Top-1) of a model
with respect to a specific Dataset is an important met-
ric. Besides the dataset, the training properties must be
reported, e.g., the number of epochs, learning rate, data
augmentation.

• Model Architecture. The shape of the DL model is
the foundation for understanding how it operates. The
number and type of layers, the size of feature maps and
the number of channels, the number of filters and their
size are all fundamental properties to understand how an
algorithm elaborates the incoming raw data.

• Workload. The size of the input feature map and the
number of kernels define the total amount of operations
(MACs) to be performed. The MAC count is one of the
basic metrics to evaluate a DNN, and it also defines the
throughput and the energy effort of the target hardware
platform. To be noted that as explained in Section III-H,
only effective MACs should be counted.

• Memory requirement. The amount of weights (non-
null) determines the storage impact of themodel. A large
number of weights could represent a limit for the target
hardware platform and for the power envelope as well.

• Training time. Typically, the higher the complexity
of the model, the more accurate it is. On the other
hand, complexity results in difficulties in training the

model. In fact, the more the weights and the number
of layers, the more epochs will be needed. This metric
can be expressed as number of training epochs or GPU
hours related to a specific dataset to obtain a certain
accuracy.

• Adversarial Robustness. As explained in Section V,
DNNs are vulnerable to adversarial attacks, which is one
of the hottest research topics in the development of new
deep learning models. Therefore, it is of fundamental
importance to provide the model with defense algo-
rithms and perform an exhaustive and correct evaluation
of adversarial attacks.

D. HARDWARE ACCELERATOR METRICS
The fundamental metrics to evaluate the hardware platforms
are:
• Power. The power consumption of the device deter-
mines the final application for which it can be exploited.
In addition, an important metric is energy efficiency
defined as pJ for MAC. Note that the power consumed
must also include that spent on readings from the off-
chip memory, as explained in Section IV.

• Throughput. Throughput and latency depend directly
on the working frequency of the device and the memory
bandwidth. Such metrics are crucial to define how often
the hardware platform can perform a complete infer-
ence or backpropagation of a model. The throughput
is often defined as billions of operations per second
(Gop/s) or as billions of MAC per second (GMAC/s)
where 1GMAC/s ' 2Gop/s.

• Area. From the area of the device, cost and integration
capacity in larger systems are derived. On the other
hand, the area depends on the technological node and
the amount of memory. Memory, as in the case of power,
plays a critical role also for the area. This represents
another reason to optimize its use.

VOLUME 8, 2020 225167

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

TABLE 7. Dataset summary.

In addition to the main metrics listed above, there are others
that could be defined as application-dependent. For example,
the flexibility with which an accelerator can be adapted for
more complex models, parallelizing its architecture, or how
a device can scale with respect to the required computing
accuracy, having a tuning bitwidth. Although metrics are
easily definable, comparisons between different hardware
platforms are not always straightforward. There are many
factors on which possible comparisons depend, moreover the
benchmarks used to evaluate performance are not always
impartial. It is, therefore, necessary to assess all the side-
factors on a case-by-case basis.

VII. CHALLENGES AND THE ROAD AHEAD
As discussed in Section I, AI andDL are adopted in numerous
and various fields, and the number of their applications is
growing over time. The number of investments that have been
made in AI startups over the years is a clear demonstration of
this growth. In 2010, investments amounted to $1.3B, while
in 2018, they reached $40.4B [319]. The average annual
growth rate was 48%, and this trend does not seem to stop.
Many technical reports [319] [320] indicate that, in the years
to come, AI will be a driving force to the economy.

The development and diffusion of AI applications are
closely related to technological advancements, i.e., the chips.
There is a flow that runs from the application, that is
expressed as an algorithm. The algorithm is deployed on a
chip, which consists of some devices realized in a technology,
e.g., CMOS technology (see Figure 53). The growth of AI
applications in number and complexity has required more
andmore performance from the hardware (application-driven
development). Before 2012, the chip compute doubled about
every two years. After 2012, the year of DL boom, AI chips
started to double the compute every 3.4 months [319]. On the
other hand, the development of new technologies and hard-
ware improvements allowed to develop more complex and
therefore accurate applications (technology-driven develop-
ment). The two directions of development continue to feed

FIGURE 53. Development flows that run from the application to the
technology and vice-versa.

each other in a virtuous circle. It is estimated that, in 2025,
the AI chip market will reach a value of $29B, while in 2017,
it was only $2B [320].

To maintain such a high growth rate, the industrial and
academic world will face new challenges in the coming years,
which we summarize in the following, together with the
possible solutions, research trends and future directions.

1) VON NEUMAN BOTTLENECK
One of the biggest challenges the developers are facing cur-
rently is the Von Neuman bottleneck, i.e., the bandwidth that
modern memories can provide is not sufficient for the huge
amount of data that AI chips need to process. To get around
the problem, it is possible to modify the algorithms to reduce
the number of data items to be used (e.g., model compression,
pruning, or quantization).

To solve the problem, it is necessary to act at the memories
level. One possible solution is the increase of the mem-
ory bandwidth, and this is the purpose of High Bandwidth

225168 VOLUME 8, 2020

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

FIGURE 54. High Bandwidth Memory (HBM) scheme.

FIGURE 55. Comparison between the structures of a Von Neuman
Architecture (left) and an In Memory Computing (IMC) architecture (right).

Memories (HBMs) (see Figure 54). HBM is a stacked
DRAM integrated with the processing elements through a
silicon interposer. A single HBM2 block has a bandwidth
of 256 GB/s, lower than the 616 GB/s bandwidth of a more
traditional Graphics Double Data Rate 6 (GDDR6) memory.
However, a stack with four HBM blocks reaches a 1 TB/s
bandwidth. HBM2memories are currently used in the Nvidia
V100 and P100 GPUs.

Another possibility is in-memory computing (IMC), which
consists of moving the logic inside the memory. IMC is
particularly suitable for the DNNs operations since DNNs
algorithms are deterministic, and it is possible to know when
and where data items will be required in advance. IMC
wants to enhance DNN acceleration by reducing the latency
and power needed to access the memory hierarchy in tra-
ditional Von Neuman architectures. Moreover, it increases
the parallelization by working with all the memory cells
simultaneously. Researchers are currently studying the appli-
cation of IMC to DNNs algorithms and obtaining promising
results [190], [263], [321], [322], and Mythic startup pro-
duces IMC accelerators for AI with a 40 nm process.

2) CMOS TECHNOLOGY LIMITATIONS
From the ’60s onwards, CMOS technology has been scal-
ing following Moore’s Law, according to which the number
of transistors on a chip doubles every 24 months. How-
ever, this pace of scaling is beginning to stop and it will
not be sustainable in the future for technological and eco-
nomic reasons [323]. Researchers are currently exploring
new physical possibilities and a lot of effort is placed in
the emerging memories, such as Phase Change Memories
(PCMs) [324], [325], Spin-Torque-Transfer Magnetoresis-
tive RAM (STT-MRAM) [326], [327], or Resistive RAM

(ReRAM) [328], [327]. Beyond emerging memories, several
new technologies are being studied, such as Tunnel FETs,
organic FETs, molecular transistors, and spintronic devices.
Despite the possible gains deriving frommoving to a beyond-
CMOS technology, replacing CMOS technology with emerg-
ing ones will not be an immediate procedure since it is
considered very reliable and easy to manufacture. Moreover,
foundries and production lines have been calibrated to this
technology and cannot be dismantled until production has
paid for the initial investment.

3) AI TOOLCHAINS
Besides the special-purpose ASICs and the programmable
CPUs/GPUs, flexible hyper-scale AI accelerators are gain-
ing importance, e.g., Google TPUs or Cerebras Wafer Scale
Engine. As seen in Section VI-A, there are several high-level
frameworks, mainly python-based, for the description of DLs
algorithms. However, there is not yet a unified method to
program AI accelerators from a unified high-level language.
So far there are the compiler toolchains for CPUs and GPUs,
and there is the synthesis toolchain for the FPGAs. The
development of a toolchain for AI accelerators programming
will be a huge step forward for their diffusion.

4) GENERAL AI
Even though DL models can perform various tasks at a
better-than-human level, e.g., object detection or language
processing, AI is to be considered still at an early develop-
ment stage. Indeed, scientists are very far from the so-called
Artificial General Intelligence (AGI), e.g., an algorithm able
to perform multiple tasks and of taking decisions. Even if
an AGI algorithm existed, at the moment, probably, hard-
ware systems could not provide enough computational power
for its deployment. For a long future, it will be necessary
to combine different algorithms to perform complex tasks.
For this reason, it will be important to develop hardware
platforms able to support multiple algorithms, easily pro-
grammable or reconfigurable.

5) AI AT THE EDGE
It has been listed in the 2020 Top Technological Trends [329]
by the IEEE Computing Society. Thanks to the diffusion
of 5G connectivity and IoT sensors, ML algorithms will
spread into the edge devices. If compared to AI cloud plat-
forms, the edge devices have completely different require-
ments. During the development of AI edge devices, the focus
must be placed on low power and low latency. For this pur-
pose, many roads can be taken. At the application level, it is
necessary to develop models co-optimized with the hardware
for a more efficient resource handling. At the hardware level,
new possibilities are being explored beyond the traditional
low-power techniques, e.g., moving the computation in the
analog part of the circuit to save energy [330]–[332].

Presently, most of the AI edge devices perform the infer-
ence only. The collected data must be sent to the cloud for
model training (see Figure 56 top). In the future, it will be

VOLUME 8, 2020 225169

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

TABLE 8. Comparison among state-of-the-art surveys.

important to move the learning to the edge device for several
reasons. The learning in the sensors guarantees real-time
lifelong learning, i.e., the device can immediately learn from
every sample received and adapt the model consequently. The
connection to the cloud is no more needed continuously and
higher data privacy can be guaranteed since it is no more
necessary to communicate the data but only the models (see
Figure 56 bottom).

VIII. DISTINCTION FROM OTHER SURVEYS
Over the years, many works have been proposed to give
an overview of the research carried out and the recent
state-of-the-art. However, Deep Learning is currently a hot
topic, so research is progressing fast with continuous dis-
coveries and improvements. The same applies to hard-
ware architectures. Although the fundamental blocks are
fixed, the paradigms with which they can be combined and
exploited are many and varied. Therefore, it is essential to
have surveys that periodically collect the newest material
and the recent advancements to keep researchers up to date.
This is the idea behind this work, which wants to inform
hardware designers about the latest architectures and tech-
niques employed in the DL field.

This paper is intended as complementary to the surveys
already available in the literature. The authors aim to focus on
the hardware architectures for DL that have become available
in the last five years, with a cross-cut on the different plat-
forms. Schuman et al. [333] have collected and summarized

FIGURE 56. Comparison between training performed in the cloud (top)
and on edge devices (bottom).

the previous 35 years of discoveries related to neuromorphic
computing, with various examples of hardware for neural

225170 VOLUME 8, 2020

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

networks. However, the paper does not offer much discussion
on the collected material, remaining very compact. On the
other hand, Chen et al. [334] offer a much broader view,
but the examples are limited, and topics such as SNN and
adversarial attacks are not covered. Deng et al. [335] propose
a very complete and extensive work that deals thoroughly
with the compression of data taking into account the sparsity
and quantization. The work is very comprehensive; never-
theless, it remains very biased toward the compression and
lacks of considerations on the SNN. Our work stems from
the survey proposed by Sze et al. [92], however, updating
it with the numerous advances of the last three years and
completing it with comprehensive sections on SNNs and
adversarial attacks. Table 8 compares a list of state-of-the-art
surveys, showing the key aspects that characterize each work.

IX. CONCLUSION
The focus on Deep Learning (DL) has grown exponentially
in recent years, as well as the performance of the algo-
rithms and the number of applications that involve it. How-
ever, with the increasing complexity of algorithms, the need
for hardware devices capable of satisfying the requirements
has also increased. The DL has always stood out for its
high workload and for being computation-hungry. Moreover,
today’s trend is to move towards mobile and possibly wear-
able devices that are part of the IoT whose architectures
are heterogeneous, in which general-purpose processors are
coupled with dedicated accelerators. The IoT introduces even
tighter power constraints considering that many of its nodes
are battery-powered or rely on energy harvest systems.

Therefore, it is essential to take into consideration the
critical aspects of the hardware already in the design phase.
In this regard, there are a large number of techniques to design
hardware architectures with high energy-efficiency and high
performance without sacrificing accuracy.

This work surveys most of the known techniques to
produce energy-efficient dataflows, handling especially the
aspects related to memory. The memory hierarchy is deeply
analyzed to understand to which levels it is convenient to
intervene and, in the ad-hoc architectures, how it must be
modelled in order to reduce to the minimum the power con-
sumption. For example, starting from the memory that is the
most power-greedy element, it is possible to define a dataflow
with a related memory hierarchy that maximizes the data
reuse, avoiding continuous access to memory.

The article mainly refers to three models: Deep neural Net-
works (DNNs), convolutional neural Networks (CNNs) and
Spiking Neural Networks (SNNs). While the first two cases
are important for the performance and accuracy they have
managed to achieve, often beyond the human one, the latter
is interesting for the low-power profile and paradigm they
represent, considered bymany as the third generation of NNs.

In addition to the techniques for developing accelerator
architectures, other factors need to be considered like the
cybersecurity. In the DL world, security attacks are often
represented by noise injection into the input sample to the NN

to ensure its misclassification.Many different types of attacks
exist, according to the knowledge of the network under attack,
the type of perturbation and the target class.

Finally, this work presents which frameworks to use to
create or modify models and any datasets to test them on.
Benchmarking is a key step in establishing the properties
of the networks, but also the hardware on which they are
developed. The most critical metrics to define their goodness
and comparison with other platforms are examined.

REFERENCES
[1] T. Hamada, K. Benkrid, K. Nitadori, and M. Taiji, ‘‘A comparative

study on ASIC, FPGAs, GPUs and general purpose processors in the
O(N 2) gravitational n-body simulation,’’ inProc. NASA/ESAConf. Adapt.
Hardw. Syst. (AHS), Jul. 2009, pp. 447–452.

[2] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,’’ in
Proc. IEEE Int. Conf. Comput. Vis. (ICCV). Washington, DC, USA: IEEE
Computer Society, Dec. 2015, pp. 1026–1034.

[3] D. Zhang and S.-E. Liu, ‘‘Top-down saliency object localization based on
deep-learned features,’’ in Proc. 11th Int. Congr. Image Signal Process.,
Biomed. Eng. Informat. (CISP-BMEI), Oct. 2018, pp. 1–9.

[4] T. Treebupachatsakul and S. Poomrittigul, ‘‘Bacteria classification using
image processing and deep learning,’’ in Proc. 34th Int. Tech. Conf.
Circuits/Syst., Comput. Commun. (ITC-CSCC), Jun. 2019, pp. 1–3.

[5] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and
D. Terzopoulos, ‘‘Image segmentation using deep learning: A
survey,’’ CoRR, vol. abs/2001.05566, 2020. [Online]. Available:
https://arxiv.org/abs/2001.05566

[6] M. Aibin, ‘‘Deep learning for cloud resources allocation: Long-short
term memory in EONs,’’ in Proc. 21st Int. Conf. Transparent Opt. Netw.
(ICTON), Jul. 2019, pp. 1–4.

[7] H. C. Kaskavalci and S. Goren, ‘‘A deep learning based distributed smart
surveillance architecture using edge and cloud computing,’’ in Proc. Int.
Conf. Deep Learn. Mach. Learn. Emerg. Appl. (Deep-ML), Aug. 2019,
pp. 1–6.

[8] R. Zanc, T. Cioara, and I. Anghel, ‘‘Forecasting financial markets using
deep learning,’’ in Proc. IEEE 15th Int. Conf. Intell. Comput. Commun.
Process. (ICCP), Sep. 2019, pp. 459–466.

[9] J. J.-C. Ying, P.-Y. Huang, C.-K. Chang, and D.-L. Yang, ‘‘A preliminary
study on deep learning for predicting social insurance payment behavior,’’
in Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2017, pp. 1866–1875.

[10] V.-S. Ha, D.-N. Lu, G. S. Choi, H.-N. Nguyen, and B. Yoon, ‘‘Improving
credit risk prediction in online peer-to-peer (P2P) lending using feature
selection with deep learning,’’ in Proc. 21st Int. Conf. Adv. Commun.
Technol. (ICACT), Feb. 2019, pp. 511–515.

[11] A. K. Arslan, S. Yasar, and C. Colak, ‘‘An intelligent system for
the classification of lung cancer based on deep learning strategy,’’
in Proc. Int. Artif. Intell. Data Process. Symp. (IDAP), Sep. 2019,
pp. 1–4.

[12] H. Mohsen, E.-S. El-Dahshan, E.-S. El-Horbarty, and A.-B. M. Salem,
‘‘Classification using deep learning neural networks for brain tumors,’’
Future Comput. Informat. J., vol. 3, pp. 68–71, Jun. 2017.

[13] C. Barata and J. S. Marques, ‘‘Deep learning for skin cancer diagnosis
with hierarchical architectures,’’ in Proc. IEEE 16th Int. Symp. Biomed.
Imag. (ISBI), Apr. 2019, pp. 841–845.

[14] S. Grigorescu, B. Trasnea, T. Cocias, andG.Macesanu, ‘‘A survey of deep
learning techniques for autonomous driving,’’ J. Field Robot., vol. 37,
no. 3, pp. 362–386, Apr. 2020.

[15] T.-H.-S. Li, P.-H. Kuo, C.-Y. Chang, H.-P. Hsu, Y.-C. Chen, and
C.-H. Chang, ‘‘Deep belief Network–Based learning algorithm
for humanoid robot in a pitching game,’’ IEEE Access, vol. 7,
pp. 165659–165670, 2019.

[16] C. Wang, D. Freer, J. Liu, and G.-Z. Yang, ‘‘Vision-based automatic
control of a 5-Fingered assistive robotic manipulator for activities of
daily living,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Nov. 2019, pp. 627–633.

[17] J. Guan, W. Zhou, S. Kang, Y. Sun, and Z. Liu, ‘‘Robot formation control
based on Internet of Things technology platform,’’ IEEE Access, vol. 8,
pp. 96767–96776, 2020.

VOLUME 8, 2020 225171

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

[18] D. Palossi, A. Loquercio, F. Conti, E. Flamand, D. Scaramuzza,
and L. Benini, ‘‘Ultra low power deep-learning-powered autonomous
nano drones,’’ CoRR, vol. abs/1805.01831, 2018. [Online]. Available:
http://arxiv.org/abs/1805.01831

[19] N. Tsang, C. Cao, S. Wu, Z. Yan, A. Yousefi, A. Fred-Ojala, and I. Sidhu,
‘‘Autonomous household energy management using deep reinforcement
learning,’’ in Proc. IEEE Int. Conf. Eng., Technol. Innov. (ICE/ITMC),
Jun. 2019, pp. 1–7.

[20] C. Heghedus, A. Chakravorty, and C. Rong, ‘‘Energy load forecasting
using deep learning,’’ in Proc. IEEE Int. Conf. Energy Internet (ICEI),
May 2018, pp. 146–151.

[21] M. Shafique, T. Theocharides, C.-S. Bouganis, M. A. Hanif, F. Khalid,
R. Hafiz, and S. Rehman, ‘‘An overview of next-generation architectures
for machine learning: Roadmap, opportunities and challenges in the IoT
era,’’ inProc. Design, Automat. Test Eur. Conf. Exhib. (DATE), Mar. 2018,
pp. 827–832.

[22] A. Marchisio, M. A. Hanif, F. Khalid, G. Plastiras, C. Kyrkou,
T. Theocharides, and M. Shafique, ‘‘Deep learning for edge computing:
Current trends, cross-layer optimizations, and open research challenges,’’
in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2019,
pp. 553–559.

[23] M. Capra, R. Peloso, G. Masera, M. R. Roch, and M. Martina, ‘‘Edge
computing: A survey on the hardware requirements in the Internet of
Things world,’’ Future Internet, vol. 11, no. 4, p. 100, Apr. 2019.

[24] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
‘‘Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,’’ in Proc. Int. Conf. Archit. Support Program. Lang.
Operating Syst. (ASPLOS), vol. 49, Feb. 2014, pp. 269–284.

[25] S. Freeman and H. Hamilton, Biological Science. Upper Saddle River,
NJ, USA: Prentice-Hall, 2005.

[26] W. Mcculloch and W. Pitts, ‘‘A logical calculus of ideas immanent in
nervous activity,’’ Bull. Math. Biophys., vol. 5, pp. 127–147, Dec. 1943.

[27] F. Rosenblatt, ‘‘The perceptron: A perceiving and recognizing automa-
ton (project PARA),’’ Cornell Aeronaut. Lab., Buffalo, NY, USA,
Tech. Rep. 85-460-1, 1957.

[28] Y. Bengio, ‘‘Learning deep architectures for AI,’’ Found. Trends Mach.
Learn., vol. 2, no. 1, pp. 1–127, 2009.

[29] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[30] D. H. Hubel and T. N. Wiesel, ‘‘Receptive fields of single neurons in the
cat’s striate cortex,’’ J. Physiol., vol. 148, no. 3, pp. 574–591, 1959.

[31] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep
network training by reducing internal covariate shift,’’ in Proc.
32nd Int. Conf. Mach. Learn., in Proceedings of Machine Learning
Research, vol. 37, F. Bach and D. Blei, Eds. Lille, France, Jul. 2015,
pp. 448–456.

[32] N. Qian, ‘‘On the momentum term in gradient descent learning algo-
rithms,’’ Neural Netw., vol. 12, no. 1, pp. 145–151, Jan. 1999.

[33] Y. Nesterov, ‘‘A method for unconstrained convex minimization problem
with the rate of convergence o(1/k2),’’ Doklady AN USSR, vol. 269,
pp. 543–547, 1983.

[34] J. Duchi, E. Hazan, and Y. Singer, ‘‘Adaptive subgradient methods
for online learning and stochastic optimization,’’ J. Mach. Learn. Res.,
vol. 12, pp. 2121–2159, Feb. 2011.

[35] M. D. Zeiler, ‘‘ADADELTA: An adaptive learning rate
method,’’ CoRR, vol. abs/1212.5701, 2012. [Online]. Available:
http://arxiv.org/abs/1212.5701

[36] D. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’ in
Proc. Int. Conf. Learn. Represent., Dec. 2014, pp. 1–15.

[37] A. Y. Ng, ‘‘Feature selection, L1 vs. L2 regularization, and rota-
tional invariance,’’ in Proc. 21st Int. Conf. Mach. Learn. (ICML).
New York, NY, USA: Association for Computing Machinery, 2004,
p. 78.

[38] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[39] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[40] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. 25th Int. Conf. Neural
Inf. Process. Syst. (NIPS), vol. 1. RedHook, NY,USA: CurranAssociates,
2012, pp. 1097–1105.

[41] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, ‘‘ImageNet large scale visual recognition challenge,’’ Int. J.
Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[42] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ in Proc. 3rd Int. Conf. Learn. Represent.
(ICLR), San Diego, CA, USA, Y. Bengio and Y. LeCun, Eds., May 2015,
pp. 1–14. [Online]. Available: http://arxiv.org/abs/1409.1556

[43] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[44] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[45] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, ‘‘Aggregated residual
transformations for deep neural networks,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5987–5995.

[46] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 2261–2269.

[47] S. Sabour, N. Frosst, and G. E. Hinton, ‘‘Dynamic routing between
capsules,’’ in Proc. 31st Int. Conf. Neural Inf. Process. Syst. (NIPS).
Red Hook, NY, USA: Curran Associates, 2017, pp. 3859–3869.

[48] J. Hu, L. Shen, and G. Sun, ‘‘Squeeze-and-excitation networks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7132–7141.

[49] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, ‘‘Learning transferable
architectures for scalable image recognition,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. Salt Lake City, UT, USA: IEEE Computer
Society, Jun. 2018, pp. 8697–8710.

[50] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking
the inception architecture for computer vision,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR). Las Vegas, NV, USA: IEEE
Computer Society, Jun. 2016, pp. 2818–2826.

[51] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, ‘‘Inception-v4,
inception-resnet and the impact of residual connections on learning,’’ in
Proc. 31st AAAI Conf. Artif. Intell., San Francisco, CA, USA, S. P. Singh
and S. Markovitch, Eds., Feb. 2017, pp. 4278–4284.

[52] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, Z. Zhang, H. Lin, Y. Sun, T. He,
J. Mueller, R. Manmatha, M. Li, and A. J. Smola, ‘‘ResNeSt: Split-
attention networks,’’ CoRR, vol. abs/2004.08955, 2020. [Online]. Avail-
able: https://arxiv.org/abs/2004.08955

[53] T. Ridnik, H. Lawen, A. Noy, and I. Friedman, ‘‘TResNet: High perfor-
mance GPU-dedicated architecture,’’ CoRR, vol. abs/2003.13630, 2020.
[Online]. Available: https://arxiv.org/abs/2003.13630

[54] G. E. Hinton, A. Krizhevsky, and S. D. Wang, ‘‘Transforming auto-
encoders,’’ in Proc. 21th Int. Conf. Artif. Neural Netw. (ICANN). Berlin,
Germany: Springer-Verlag, 2011, pp. 44–51.

[55] G. E. Hinton, S. Sabour, and N. Frosst, ‘‘Matrix capsules with EM
routing,’’ in Proc. 6th Int. Conf. Learn. Represent. (ICLR), Vancouver,
BC, Canada, Apr./May 2018, pp. 1–15.

[56] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L. Li, L. Fei-Fei,
A. L. Yuille, J. Huang, and K. Murphy, ‘‘Progressive neural architec-
ture search,’’ in Proc. 15th Eur. Conf. Comput. Vis. (ECCV), in Lecture
Notes in Computer Science, vol. 11205, V. Ferrari, M. Hebert, C. Smin-
chisescu, and Y. Weiss, Eds. Munich, Germany: Springer, Sep. 2018,
pp. 19–35.

[57] M. Tan and Q. V. Le, ‘‘EfficientNet: Rethinking model scaling for
convolutional neural networks,’’ in Proc. 36th Int. Conf. Mach. Learn.
(ICML), in Proceedings of Machine Learning Research, K. Chaudhuri
and R. Salakhutdinov, Eds., Long Beach, CA, USA, vol. 97, Jun. 2019,
pp. 6105–6114.

[58] W. Maass, ‘‘Networks of spiking neurons: The third generation of
neural network models,’’ Neural Netw., vol. 10, no. 9, pp. 1659–1671,
Dec. 1997.

[59] N. K. Kasabov, Time-Space, Spiking Neural Networks and Brain-Inspired
Artificial Intelligence. Berlin, Germany: Springer-Verlag, 2019.

[60] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo,
I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner,
W. P. Risk, R. Manohar, and D. S. Modha, ‘‘A million spiking-neuron
integrated circuit with a scalable communication network and interface,’’
Science, vol. 345, no. 6197, pp. 668–673, Aug. 2014.

[61] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, ‘‘The SpiNNaker
project,’’ Proc. IEEE, vol. 102, no. 5, pp. 652–665, May 2014.

225172 VOLUME 8, 2020

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

[62] S. Schmitt, ‘‘Neuromorphic hardware in the loop: Training a deep spiking
network on the BrainScaleS wafer-scale system,’’ in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), May 2017, pp. 2227–s2234.

[63] M. Davies, ‘‘Loihi: A neuromorphic manycore processor with on-chip
learning,’’ IEEE Micro, vol. 38, no. 1, pp. 82–99, Jan. 2018.

[64] Building a Silicon Brain. Accessed: Apr. 23, 2020. [Online]. Available:
https://www.the-scientist.com/features/building-a-silicon-brain-65738

[65] P. Lichtsteiner, C. Posch, and T. Delbruck, ‘‘A 128 × 128 120db 30mw
asynchronous vision sensor that responds to relative intensity change,’’
in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
Feb. 2006, pp. 2060–2069.

[66] D. Beeman, ‘‘Hodgkin-huxley model,’’ in Encyclopedia of Computa-
tional Neuroscience, D. Jaeger and R. Jung, Eds. New York, NY, USA:
Springer, 2013, pp. 1–13.

[67] E. Izhikevich, ‘‘Simple model of spiking neurons,’’ IEEE Trans. Neural
Netw., vol. 14, no. 6, pp. 1569–1572, Nov. 2003.

[68] Z. Wang, L. Guo, and M. Adjouadi, ‘‘A generalized leaky integrate-and-
fire neuron model with fast implementation method,’’ Int. J. Neural Syst.,
vol. 24, no. 05, Aug. 2014, Art. no. 1440004.

[69] F. Ponulak and A. Kasiński, ‘‘Introduction to spiking neural networks:
Information processing, learning and applications,’’ Acta Neurobiologiae
Experimentalis, vol. 71, no. 4, pp. 409–433, 2011.

[70] B. Ruf andM. Schmitt, ‘‘Hebbian learning in networks of spiking neurons
using temporal coding,’’ in Biological and Artificial Computation: From
Neuroscience to Technology, J. Mira, R. Moreno-Díaz, and J. Cabestany,
Eds. Berlin, Germany: Springer, 1997, pp. 380–389.

[71] G. Bi and M.-M. Poo, ‘‘Synaptic modifications in cultured hippocampal
neurons: Dependence on spike timing, synaptic strength, and postsynaptic
cell type,’’ J. Neurosci., Off. J. Soc. Neurosci., vol. 18, pp. 10464–10472,
Jan. 1999.

[72] G. Srinivasan, P. Panda, and K. Roy, ‘‘STDP-based unsupervised fea-
ture learning using Convolution-over-time in spiking neural networks
for energy-efficient neuromorphic computing,’’ ACM J. Emerg. Technol.
Comput. Syst., vol. 14, no. 4, pp. 1–12, Dec. 2018.

[73] S. Fusi, M. Annunziato, D. Badoni, A. Salamon, and D. J. Amit, ‘‘Spike-
driven synaptic plasticity: Theory, simulation, VLSI implementation,’’
Neural Comput., vol. 12, no. 10, pp. 2227–2258, Oct. 2000.

[74] R. V. W. Putra and M. Shafique, ‘‘Fspinn: An optimization frame-
work for memory- and energy-efficient spiking neural networks,’’ IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 11,
pp. 3601–3613, Nov. 2020.

[75] B. Rückauer, N. Känzig, S. Liu, T. Delbrück, and Y. Sandamirskaya,
‘‘Closing the accuracy gap in an event-based visual recognition
task,’’ CoRR, vol. abs/1906.08859, 2019. [Online]. Available:
http://arxiv.org/abs/1906.08859

[76] S. Bohté, J. Kok, and H. L. Poutré, ‘‘SpikeProp: Backpropagation for
networks of spiking neurons,’’ in Proc. ESANN, 2000, pp. 17–37.

[77] R. Gütig andH. Sompolinsky, ‘‘The tempotron: A neuron that learns spike
timing–based decisions,’’ Nature Neurosci., vol. 9, no. 3, pp. 420–428,
2006.

[78] R. V. Florian, ‘‘The chronotron: A neuron that learns to fire tempo-
rally precise spike patterns,’’ PLoS ONE, vol. 7, no. 8, Aug. 2012,
Art. no. e40233.

[79] F. Ponulak, ‘‘Resume-new supervised learning method for spiking neural
networks,’’ Tech. Rep., 2005.

[80] A. Mohemmed, S. Schliebs, S. Matsuda, and N. Kasabov, ‘‘Span: Spike
pattern association neuron for learning spatio-temporal spike patterns,’’
Int. J. Neural Syst., vol. 22, no. 4, Aug. 2012, Art. no. 1250012.

[81] S. M. Bohte, J. N. Kok, and H. La Poutré, ‘‘Error-backpropagation
in temporally encoded networks of spiking neurons,’’ Neurocomputing,
vol. 48, nos. 1–4, pp. 17–37, Oct. 2002.

[82] J. H. Lee, T. Delbruck, and M. Pfeiffer, ‘‘Training deep spiking neural
networks using backpropagation,’’ Frontiers Neurosci., vol. 10, p. 508,
Nov. 2016.

[83] S. B. Shrestha and G. Orchard, ‘‘Slayer: Spike layer error reassignment
in time,’’ in Proc. NIPS, 2018, pp. 1412–1421.

[84] E. O. Neftci, H. Mostafa, and F. Zenke, ‘‘Surrogate gradient learning in
spiking neural networks: Bringing the power of gradient-based optimiza-
tion to spiking neural networks,’’ IEEE Signal Process. Mag., vol. 36,
no. 6, pp. 51–63, Nov. 2019.

[85] J. C. Thiele, O. Bichler, and A. Dupret, ‘‘SpikeGrad: An ANN-equivalent
computation model for implementing backpropagation with spikes,’’ in
Proc. Int. Conf. Learn. Represent., 2020, pp. 1–10.

[86] J. Kaiser, H. Mostafa, and E. Neftci, ‘‘Synaptic plasticity dynamics
for deep continuous local learning,’’ 2018, arXiv:1811.10766. [Online].
Available: https://arxiv.org/abs/1811.10766

[87] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, ‘‘Con-
version of continuous-valued deep networks to efficient event-driven
networks for image classification,’’ Frontiers Neurosci., vol. 11, p. 682,
Dec. 2017.

[88] R. Massa, A. Marchisio, M. Martina, and M. Shafique, ‘‘An efficient
spiking neural network for recognizing gestures with a DVS camera on
the loihi neuromorphic processor,’’ in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), Jul. 2020, pp. 1–10.

[89] N. Rathi, G. Srinivasan, P. Panda, and K. Roy, ‘‘Enabling deep spiking
neural networks with hybrid conversion and spike timing dependent
backpropagation,’’ in Proc. Int. Conf. Learn. Represent., 2020, pp. 1–14.

[90] M. Pfeiffer and T. Pfeil, ‘‘Deep learning with spiking neurons: Opportu-
nities and challenges,’’ Frontiers Neurosci., vol. 12, p. 774, Oct. 2018.

[91] D. AL-DABASS, P. Vindlacheruvu, and D. J. Evans, ‘‘Parallelism in
neural nets,’’ Parallel Algorithms Appl., vol. 11, nos. 3–4, pp. 169–185,
Jan. 1997.

[92] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, ‘‘Efficient processing
of deep neural networks: A tutorial and survey,’’ Proc. IEEE, vol. 105,
no. 12, pp. 2295–2329, Dec. 2017.

[93] Intel AVX-512 Instructions. Accessed: Nov. 27, 2020. [Online]. Available:
https://software.intel.com/content/www/us/en/develop/articles/intel-
avx-512-instructions.html

[94] BFLOAT16—Hardware Numerics Definition, Intel, Santa Clara, CA,
USA, 2018.

[95] S. L. Gogar. (2017). BigDL—Scale-Out Deep Learning on Apache
Spark∗ Cluster. [Online]. Available: https://software.intel.com/content/
www/us/en/develop/articles/bigdl-scale-out-deep-learning-on-apache-
spark-cluster.html

[96] NVIDIA Tesla V100 GPU Architecture, NVIDIA, Santa Clara, CA, USA,
2017.

[97] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, ‘‘Automatic differentiation in
PyTorch,’’ in Proc. NIPS Workshop Autodiff, 2017, pp. 1–4.

[98] M. Abadi. (2015). TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems. [Online]. Available: https://www.tensorflow.org/

[99] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B. Girshick,
S. Guadarrama, and T. Darrell, ‘‘Caffe: Convolutional architecture for
fast feature embedding,’’ in Proc. ACM Int. Conf. Multimedia (MM),
K. A. Hua, Y. Rui, R. Steinmetz, A. Hanjalic, A. Natsev, and W. Zhu,
Eds., Orlando, FL, USA, Nov.2014, pp. 675–678.

[100] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B.
Catanzaro, and E. Shelhamer, ‘‘CuDNN: Efficient primitives for
deep learning,’’ CoRR, vol. abs/1410.0759, 2014. [Online]. Available:
http://arxiv.org/abs/1410.0759

[101] NVIDIA CUDA X. Accessed: Nov. 26, 2020. [Online]. Available:
https://developer.nvidia.com/gpu-accelerated-libraries

[102] NVIDIA A100 Tensor Core GPUArchitecture, NVIDIA, Santa Clara, CA,
USA, 2020.

[103] K. Chellapilla, S. Puri, and P. Simard, ‘‘High Performance Convolu-
tional Neural Networks for Document Processing,’’ in Proc. 10th Int.
Workshop Frontiers Handwriting Recognit., G. Lorette, Ed. La Baule,
France: Université de Rennes 1, Oct. 2006, pp. 1–7. [Online]. Available:
http://www.suvisoft.com.

[104] A. Vasudevan, A. Anderson, and D. Gregg, ‘‘Parallel multi channel
convolution using general matrix multiplication,’’ in Proc. IEEE 28th
Int. Conf. Appl.-Specific Syst., Archit. Processors (ASAP), Jul. 2017,
pp. 19–24.

[105] V. Strassen, ‘‘Gaussian elimination is not optimal,’’Numer.Math., vol. 13,
no. 4, pp. 354–356, 1969.

[106] J. Cong and B. Xiao, ‘‘Minimizing computation in convolutional neural
networks,’’ in Proc. 24th Int. Conf. Artif. Neural Netw. (ICANN), in
Lecture Notes in Computer Science, vol. 8681, S. Wermter, C. Weber,
W. Duch, T. Honkela, P. D. Koprinkova-Hristova, S. Magg, G. Palm,
and A. E. P. Villa, Eds. Hamburg, Germany: Springer, Sep. 2014,
pp. 281–290.

[107] M. Mathieu, M. Henaff, and Y. LeCun, ‘‘Fast training of convolutional
networks through FFTs,’’ in Proc. 2nd Int. Conf. Learn. Represent.
(ICLR), Y. Bengio and Y. LeCun, Eds., Banff, AB, Canada, Apr. 2014,
pp. 1–9.

[108] S. Winograd, Arithmetic Complexity of Computations (CBMS-NSF
Regional Conference Series in Applied Mathematics). Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 1980,
vol. 33.

[109] A. Lavin and S. Gray, ‘‘Fast algorithms for convolutional neural net-
works,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 4013–4021.

VOLUME 8, 2020 225173

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

[110] Y. Liu, Y. Wang, R. Yu, M. Li, V. Sharma, and Y. Wang, ‘‘Optimizing
CNN model inference on CPUs,’’ in Proc. USENIX Conf. Usenix Annu.
Tech. Conf. (USENIX ATC). Berkeley, CA, USA: USENIX Association,
2019, pp. 1025–1040.

[111] A. Rodriguez, E. Segal, E. Meiri, E. Fomenko, Y. Kim, H. Shen, and
B. Ziv, ‘‘Lower numerical precision deep learning inference
and training,’’ Intel, Santa Clara, CA, USA, White Paper,
Jan. 2018.

[112] M. Horowitz. Energy Table for 45 nm Process. Stanford
VLSI Wiki. Accessed: Nov. 26, 2020. [Online]. Available:
https://sites.google.com/site/seecproject

[113] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen,
and Y. Chen, ‘‘Cambricon-x: An accelerator for sparse neural networks,’’
in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
Oct. 2016, pp. 1–12.

[114] Y.-H. Chen, J. Emer, and V. Sze, ‘‘Using dataflow to optimize energy
efficiency of deep neural network accelerators,’’ IEEE Micro, vol. 37,
no. 3, pp. 12–21, Jun. 2017.

[115] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello, ‘‘A 240 G-
ops/s mobile coprocessor for deep neural networks,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. Workshops, Jun. 2014, pp. 696–701.

[116] V. Sriram, D. Cox, K. H. Tsoi, and W. Luk, ‘‘Towards an embedded
biologically-inspiredmachine vision processor,’’ inProc. Int. Conf. Field-
Program. Technol., Dec. 2010, pp. 273–278.

[117] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I. Durdanovic,
E. Cosatto, and H. P. Graf, ‘‘A massively parallel coprocessor for
convolutional neural networks,’’ in Proc. 20th IEEE Int. Conf. Appl.-
Specific Syst., Archit. Processors, Jul. 2009, pp. 53–60.

[118] X. Yang, M. Gao, J. Pu, A. Nayak, Q. Liu, S. Bell, J. Setter, K. Cao,
H. Ha, C. Kozyrakis, and M. Horowitz, ‘‘DNN dataflow choice is
overrated,’’ CoRR, vol. abs/1809.04070, 2018. [Online]. Available:
http://arxiv.org/abs/1809.04070

[119] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, ‘‘A dynam-
ically configurable coprocessor for convolutional neural networks,’’ in
Proc. 37th Annu. Int. Symp. Comput. Archit. (ISCA). NewYork, NY,USA:
Association for Computing Machinery, 2010, pp. 247–257.

[120] S. Park, K. Bong, D. Shin, J. Lee, S. Choi, andH.-J. Yoo, ‘‘A1.93TOPS/W
scalable deep learning/inference processor with tetra-parallel MIMD
architecture for big-data applications,’’ in IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, Feb. 2015, pp. 1–3.

[121] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu,
S. Song, Y. Wang, and H. Yang, ‘‘Going deeper with embedded fpga plat-
form for convolutional neural network,’’ in Proc. ACM/SIGDA Int. Symp.
Field-Program. Gate Arrays (FPGA). New York, NY, USA: Association
for Computing Machinery, 2016, pp. 26–35.

[122] N. P. Jouppi, ‘‘In-datacenter performance analysis of a tensor process-
ing unit,’’ SIGARCH Comput. Archit. News, vol. 45, no. 2, pp. 1–12,
Jun. 2017.

[123] A. Samajdar, Y. Zhu, P. N. Whatmough, M. Mattina, and T. Krishna,
‘‘Scale-sim: Systolic CNN accelerator simulator,’’ CoRR,
vol. abs/1811.02883, 2019. [Online]. Available: http://arxiv.
org/abs/1811.02883

[124] M. A. Hanif, R. V. W. Putra, M. Tanvir, R. Hafiz, S. Rehman, and
M. Shafique, ‘‘MPNA: A massively-parallel neural array
accelerator with dataflow optimization for convolutional neural
networks,’’ CoRR, vol. abs/1810.12910, 2018. [Online]. Available:
http://arxiv.org/abs/1810.12910

[125] C. Luo, Y. Wang, W. Cao, P. H. W. Leong, and L. Wang, ‘‘RNA: An accu-
rate residual network accelerator for quantized and reconstructed deep
neural networks,’’ in Proc. 28th Int. Conf. Field Program. Log. Appl.
(FPL), 2018, pp. 60–603.

[126] A. Marchisio, M. A. Hanif, and M. Shafique, ‘‘CapsAcc: An effi-
cient hardware accelerator for CapsuleNets with data reuse,’’ in
Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE), Mar. 2019,
pp. 964–967.

[127] A. Marchisio and M. Shafique, ‘‘CapStore: Energy-efficient design
and management of the on-chip memory for capsulenet inference
accelerators,’’ CoRR, vol. abs/1902.01151, 2019. [Online]. Available:
http://arxiv.org/abs/1902.01151

[128] A. Marchisio, V. Mrazek, M. A. Hanif, and M. Shafique, ‘‘DESCNet:
Developing efficient scratchpad memories for capsule network hard-
ware,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., early
access, Oct. 13, 2020, doi: 10.1109/TCAD.2020.3030610.

[129] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, ‘‘ShiDianNao: Shifting vision processing closer to the
sensor,’’ in Proc. ACM/IEEE 42nd Annu. Int. Symp. Comput. Archit.
(ISCA), Jun. 2015, pp. 92–104.

[130] L. Cavigelli and L. Benini, ‘‘Origami: A 803-GOp/s/W convolutional
network accelerator,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 27,
no. 11, pp. 2461–2475, Nov. 2017.

[131] M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal, ‘‘Memory-
centric accelerator design for convolutional neural networks,’’ in
Proc. IEEE 31st Int. Conf. Comput. Design (ICCD), Oct. 2013,
pp. 13–19.

[132] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, ‘‘Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,’’ IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[133] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, ‘‘Optimizing
FPGA-based accelerator design for deep convolutional neural networks,’’
in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays (FPGA).
New York, NY, USA: Association for Computing Machinery, 2015,
pp. 161–170.

[134] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, and O. Temam, ‘‘DaDianNao: A machine-learning supercom-
puter,’’ in Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchitecture,
Dec. 2014, pp. 609–622.

[135] S. Yin, P. Ouyang, S. Tang, F. Tu, X. Li, L. Liu, and S. Wei,
‘‘A 1.06-to-5.09 TOPS/W reconfigurable hybrid-neural-network proces-
sor for deep learning applications,’’ in Proc. Symp. VLSI Circuits, 2017,
pp. C26–C27.

[136] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel,
A. Sapek, G.Weisz, L.Woods, S. Lanka, S. K. Reinhardt, A.M. Caulfield,
E. S. Chung, and D. Burger, ‘‘A configurable cloud-scale DNN processor
for real-time AI,’’ in Proc. ACM/IEEE 45th Annu. Int. Symp. Comput.
Archit. (ISCA), Jun. 2018, pp. 1–14.

[137] H. Kwon, A. Samajdar, and T. Krishna, ‘‘MAERI: Enabling flexible
dataflow mapping over dnn accelerators via reconfigurable intercon-
nects,’’ inProc. 23rd Int. Conf. Archit. Support Program. Lang. Oper. Syst.
(ASPLOS). New York, NY, USA: Association for Computing Machinery,
2018, pp. 461–475.

[138] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das,
B. Kaul, and T. Krishna, ‘‘SIGMA: A sparse and irregular GEMM
accelerator with flexible interconnects for DNN training,’’ in Proc.
IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2020,
pp. 58–70.

[139] H. Liao, J. Tu, J. Xia, and X. Zhou, ‘‘DaVinci: A scalable architecture for
neural network computing,’’ in Proc. IEEE Hot Chips 31 Symp. (HCS),
Aug. 2019, pp. 1–44.

[140] L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong, ‘‘Polyhedral-
based data reuse optimization for configurable computing,’’ in Proc.
ACM/SIGDA Int. Symp. Field Program. Gate Arrays (FPGA). New
York, NY, USA: Association for Computing Machinery, 2013,
pp. 29–38.

[141] X. Yang, J. Pu, B. B. Rister, N. Bhagdikar, S. Richardson, S. Kvatinsky,
J. Ragan-Kelley, A. Pedram, and M. Horowitz, ‘‘A systematic approach
to blocking convolutional neural networks,’’ CoRR, vol. abs/1606.04209,
2016. [Online]. Available: http://arxiv.org/abs/1606.04209

[142] J. Li, G. Yan, W. Lu, S. Jiang, S. Gong, J. Wu, and X. Li, ‘‘SmartShuttle:
Optimizing off-chip memory accesses for deep learning accelerators,’’
in Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE), Mar. 2018,
pp. 343–348.

[143] L. Ke, X. He, and X. Zhang, ‘‘NNest: Early-stage design space explo-
ration tool for neural network inference accelerators,’’ in Proc. Int. Symp.
Low Power Electron. Design (ISLPED). New York, NY, USA: Associa-
tion for Computing Machinery, 2018.

[144] R. V. W. Putra, M. A. Hanif, and M. Shafique, ‘‘ROMANet: Fine-grained
reuse-driven data organization and off-chip memory access management
for deep neural network accelerators,’’ CoRR, vol. abs/1902.10222, 2019.
[Online]. Available: http://arxiv.org/abs/1902.10222

[145] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and
T. Krishna, ‘‘Understanding reuse, performance, and hardware cost
of DNN dataflow: A data-centric approach,’’ in Proc. 52nd Annu.
IEEE/ACM Int. Symp. Microarchitecture (MICRO). NewYork, NY, USA:
Association for Computing Machinery, 2019, pp. 754–768.

[146] Z. Zhao, H. Kwon, S. Kuhar,W. Sheng, Z.Mao, and T. Krishna, ‘‘MRNA:
Enabling efficient mapping space exploration for a reconfiguration neu-
ral accelerator,’’ in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw.
(ISPASS), Mar. 2019, pp. 282–292.

[147] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, ‘‘Timeloop:
A systematic approach to DNN accelerator evaluation,’’ in Proc. IEEE
Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Mar. 2019, pp. 304–315.

225174 VOLUME 8, 2020

http://dx.doi.org/10.1109/TCAD.2020.3030610

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

[148] R. Venkatesan, Y. S. Shao, M. Wang, J. Clemons, S. Dai, M. Fojtik,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina, Y. Zhang,
B. Zimmer, W. J. Dally, J. Emer, S. W. Keckler, and B. Khailany,
‘‘MAGNet: A modular accelerator generator for neural networks,’’ in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2019,
pp. 1–8.

[149] A. Colucci, A. Marchisio, B. Bussolino, V. Mrazek, M. Martina,
G. Masera, and M. Shafique, ‘‘A fast design space exploration framework
for the deep learning accelerators: Work-in-progress,’’ in Proc. IEEE Int.
Conf. Hardw.-Softw. Codesign Syst. Synth. (CODES+ISSS), Sep. 2020,
pp. 34–36.

[150] H. Ahmad, T. Arif, M. A. Hanif, R. Hafiz, andM. Shafique, ‘‘SuperSlash:
A unified design space exploration and model compression methodology
for design of deep learning accelerators with reduced off-chip mem-
ory access,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 39, no. 11, pp. 4191–4204, Nov. 2020.

[151] H. Cai, L. Zhu, and S. Han, ‘‘ProxylessNAS: Direct neural architecture
search on target task and hardware,’’ in Proc. Int. Conf. Learn. Represent.,
2019, pp. 1–13.

[152] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, ‘‘MnasNet: Platform-aware neural architecture search
for mobile,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 2815–2823.

[153] S. Zeng, H. Sun, Y. Xing, X. Ning, Y. Shan, X. Chen, Y. Wang, and
H. Yang, ‘‘Black box search space profiling for accelerator-aware neural
architecture search,’’ in Proc. 25th Asia South Pacific Design Autom.
Conf. (ASP-DAC), Jan. 2020, pp. 518–523.

[154] A. Marchisio, A. Massa, V. Mrazek, B. Bussolino, M. Martina, and
M. Shafique, ‘‘NASCaps: A framework for neural architecture search
to optimize the accuracy and hardware efficiency of convolutional cap-
sule networks,’’ CoRR, vol. abs/2008.08476, 2020. [Online]. Available:
https://arxiv.org/abs/2008.08476

[155] Q. Lu, W. Jiang, X. Xu, Y. Shi, and J. Hu, ‘‘On neural architecture search
for resource-constrained hardware platforms,’’ 2019, arXiv:1911.00105.
[Online]. Available: https://arxiv.org/abs/1911.00105

[156] P. Achararit, M. A. Hanif, R. V. W. Putra, M. Shafique, and
Y. Hara-Azumi, ‘‘APNAS: Accuracy-and-Performance-Aware neural
architecture search for neural hardware accelerators,’’ IEEE Access,
vol. 8, pp. 165319–165334, 2020.

[157] W. Jiang, X. Zhang, E. H.-M. Sha, L. Yang, Q. Zhuge, Y. Shi, and J. Hu,
‘‘Accuracy vs. efficiency: Achieving both through FPGA-implementation
aware neural architecture search,’’ in Proc. 56th Annu. Design Automat.
Conf. (DAC). New York, NY, USA: Association for Computing Machin-
ery, 2019, pp. 1–6.

[158] W. Jiang, L. Yang, S. Dasgupta, J. Hu, and Y. Shi, ‘‘Standing
on the shoulders of giants: Hardware and neural architecture co-
search with hot start,’’ 2020, arXiv:2007.09087. [Online]. Available:
https://arxiv.org/abs/2007.09087

[159] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, ‘‘Efficient neural
architecture search via parameter sharing,’’ in Proc. ICML, 2018, pp. 1–
11.

[160] B. Zoph, D. Yuret, J. May, and K. Knight, ‘‘Transfer learning for low-
resource neural machine translation,’’ in Proc. Conf. Empirical Methods
Natural Lang. Process., 2016, pp. 1568–1575.

[161] D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B. Priyantha,
J. Liu, and D. Marculescu, ‘‘Single-path NAS: Designing hardware-
efficient ConvNets in less than 4 hours,’’ in Proc. ECML/PKDD, 2019,
pp. 481–497.

[162] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,
Y. Jia, and K. Keutzer, ‘‘FBNet: Hardware-aware efficient Con-
vNet design via differentiable neural architecture search,’’ Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 10726–10734.

[163] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and J. Sun, ‘‘Single
path one-shot neural architecture search with uniform sampling,’’ 2019,
arXiv:1904.00420. [Online]. Available: http://arxiv.org/abs/1904.00420

[164] L. L. Zhang, Y. Yang, Y. Jiang, W. Zhu, and Y. Liu, ‘‘Fast hardware-
aware neural architecture search,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. Workshops (CVPRW), Jun. 2020, pp. 2959–2967.

[165] L. Li and A. Talwalkar, ‘‘Random search and reproducibility for neural
architecture search,’’ in Proc. UAI, 2019, pp. 367–377.

[166] M. Horowitz, ‘‘1.1 Computing’s energy problem (and what we can do
about it),’’ in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers
(ISSCC), Feb. 2014, pp. 10–14.

[167] M. Courbariaux, Y. Bengio, and J.-P. David, ‘‘Binaryconnect: Training
deep neural networks with binary weights during propagations,’’ in Proc.
NIPS, 2015, pp. 3123–3131.

[168] F. Li and B. Liu, ‘‘Ternary weight networks,’’CoRR, vol. abs/1605.04711,
2016. [Online]. Available: http://arxiv.org/abs/1605.04711

[169] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard,
H. Adam, and D. Kalenichenko, ‘‘Quantization and training of
neural networks for efficient Integer-Arithmetic-Only inference,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 2704–2713.

[170] V. Vanhoucke, A. Senior, and M. Z. Mao, ‘‘Improving the speed of neural
networks on CPUs,’’ in Proc. Deep Learn. Unsupervised Feature Learn.
Workshop NIPS, 2011, pp. 1–8.

[171] I. Hubara, M. Courbariaux, and D. Soudry, ‘‘Quantized neural networks:
Training neural networks with low precision weights and activations,’’
J. Mach. Learn. Res., vol. 18, pp. 1–30, Jan. 2018.

[172] Y. Guo, ‘‘A survey on methods and theories of quantized
neural networks,’’ CoRR, vol. abs/1808.04752, 2018. [Online].
Available: http://arxiv.org/abs/1808.04752

[173] P. Gysel, J. Pimentel, M. Motamedi, and S. Ghiasi, ‘‘Ristretto: A frame-
work for empirical study of resource-efficient inference in convolutional
neural networks,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 11,
pp. 5784–5789, Nov. 2018.

[174] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally,
and K. Keutzer, ‘‘Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <1MB model size,’’ CoRR, 2016. [Online]. Available:
http://arxiv.org/abs/1602.07360

[175] C. Sakr and N. Shanbhag, ‘‘Per-tensor fixed-point quantization
of the back-propagation algorithm,’’ in Proc. ICLR, 2019,
pp. 1–26.

[176] A. Marchisio, B. Bussolino, A. Colucci, M. Martina, G. Masera, and
M. Shafique, ‘‘Q-capsnets: A specialized framework for quantizing cap-
sule networks,’’ in Proc. 57th Annu. Design Automat. Conf., Jul. 2020,
pp. 1–6.

[177] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, ‘‘HAQ: Hardware-
aware automated quantization with mixed precision,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 8604–8612.

[178] Y. Umuroglu, L. Rasnayake, and M. Själander, ‘‘BISMO: A scalable
bit-serial matrix multiplication overlay for reconfigurable computing,’’
in Proc. 28th Int. Conf. Field Program. Log. Appl. (FPL), Aug. 2018,
pp. 307–3077.

[179] P. Judd, J. Albericio, and A. Moshovos, ‘‘Stripes: Bit-serial deep neu-
ral network computing,’’ IEEE Comput. Archit. Lett., vol. 16, no. 1,
pp. 80–83, Aug. 2017.

[180] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, ‘‘UNPU:
An energy-efficient deep neural network accelerator with fully vari-
able weight bit precision,’’ IEEE J. Solid-State Circuits, vol. 54, no. 1,
pp. 173–185, Jan. 2019.

[181] S. Sharify, A. D. Lascorz, K. Siu, P. Judd, and A. Moshovos, ‘‘Loom:
Exploiting weight and activation precisions to accelerate convolutional
neural networks,’’ in Proc. 55th ACM/ESDA/IEEEDesign Automat. Conf.
(DAC), Jun. 2018, pp. 1–6.

[182] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and
H. Esmaeilzadeh, ‘‘Bit fusion: Bit-level dynamically composable archi-
tecture for accelerating deep neural network,’’ in Proc. ACM/IEEE 45th
Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2018, pp. 764–775.

[183] S. Ryu, H. Kim, W. Yi, and J. Kim, ‘‘BitBlade: Area and energy-efficient
precision-scalable neural network accelerator with bitwise summation,’’
in Proc. 56th ACM/IEEE Design Automat. Conf. (DAC), Jun. 2019,
pp. 1–6.

[184] NVIDIA Turing GPU Architecture. Graphics Reinvented, Nvidia, Santa
Clara, CA, USA, 2018.

[185] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, ‘‘XNOR-Net:
ImageNet classification using binary convolutional neural networks,’’ in
Computer Vision, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds.
Cham, Switzerland: Springer, 2016, pp. 525–542.

[186] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou, ‘‘DoReFa-
Net: Training low bitwidth convolutional neural networks
with low bitwidth gradients,’’ CoRR, vol. abs/1606.06160, 2016.
[Online]. Available: http://arxiv.org/abs/1606.06160

[187] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
‘‘Binarized neural networks,’’ in Advances in Neural Information Pro-
cessing Systems, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,
and R. Garnett, Eds. Red Hook, NY, USA: Curran Associates, 2016,
pp. 4107–4115.

VOLUME 8, 2020 225175

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

[188] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, ‘‘YodaNN: An ultra-
low power convolutional neural network accelerator based on binary
weights,’’ in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI),
Jul. 2016, pp. 236–241.

[189] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, ‘‘Hyperdrive: A multi-
chip systolically scalable binary-weight CNN inference engine,’’ IEEE
J. Emerg. Sel. Topics Circuits Syst., vol. 9, no. 2, pp. 309–322,
Jun. 2019.

[190] K. Ando, K. Ueyoshi, K. Orimo, H. Yonekawa, S. Sato, H. Nakahara, S.
Takamaeda-Yamazaki, M. Ikebe, T. Asai, T. Kuroda, and M. Motomura,
‘‘BRein memory: A single-chip binary/ternary reconfigurable in-memory
deep neural network accelerator achieving 1.4 TOPS at 0.6 w,’’ IEEE
J. Solid-State Circuits, vol. 53, no. 4, pp. 983–994, Apr. 2018.

[191] F. Conti, P. D. Schiavone, and L. Benini, ‘‘XNOR neural engine:
A hardware accelerator IP for 21.6-fJ/op binary neural network infer-
ence,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37,
no. 11, pp. 2940–2951, Nov. 2018.

[192] A. Al Bahou, G. Karunaratne, R. Andri, L. Cavigelli, and L. Benini,
‘‘XNORBIN: A 95 TOp/s/W hardware accelerator for binary convolu-
tional neural networks,’’ in Proc. IEEE Symp. Low-Power High-Speed
Chips (COOL CHIPS), Apr. 2018, pp. 1–3.

[193] D. Miyashita, E. H. Lee, and B. Murmann, ‘‘Convolutional
neural networks using logarithmic data representation,’’
CoRR, vol. abs/1603.01025, 2016. [Online]. Available:
http://arxiv.org/abs/1603.01025

[194] E. H. Lee, D. Miyashita, E. Chai, B. Murmann, and S. S. Wong,
‘‘LogNet: Energy-efficient neural networks using logarithmic computa-
tion,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Mar. 2017, pp. 5900–5904.

[195] T. Ueki, I. Keisuke, T. Matsubara, and T. Kurokawa, ‘‘AQSS: Accel-
erator of quantization neural networks with stochastic approach,’’ in
Proc. 6th Int. Symp. Comput. Netw. Workshops (CANDARW), Nov. 2018,
pp. 138–144.

[196] S. Vogel, M. Liang, A. Guntoro, W. Stechele, and G. Ascheid, ‘‘Efficient
hardware acceleration of CNNs using logarithmic data representation
with arbitrary log-base,’’ in Proc. Int. Conf. Comput.-Aided Design,
Nov. 2018, pp. 1–8.

[197] Y. Gong, L. Liu, M. Yang, and L. D. Bourdev, ‘‘Compressing deep convo-
lutional networks using vector quantization,’’ CoRR, vol. abs/1412.6115,
2014. [Online]. Available: http://arxiv.org/abs/1412.6115

[198] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, ‘‘Model compression and
acceleration for deep neural networks: The principles, progress, and
challenges,’’ IEEE Signal Process. Mag., vol. 35, no. 1, pp. 126–136,
Jan. 2018.

[199] Y. LeCun, J. S. Denker, and S. A. Solla, ‘‘Optimal brain damage,’’ in
Advances in Neural Information Processing Systems, D. S. Touretzky, Ed.
San Mateo, CA, USA: Morgan Kaufmann, 1990, pp. 598–605.

[200] S. Han, J. Pool, J. Tran, and W. J. Dally, ‘‘Learning both weights and
connections for efficient neural networks,’’ inProc. 28th Int. Conf. Neural
Inf. Process. Syst. (NIPS), vol. 1. Cambridge,MA,USA:MIT Press, 2015,
pp. 1135–1143.

[201] S. Srinivas and R. V. Babu, ‘‘Data-free parameter pruning for deep neural
networks,’’ in Proc. Brit. Mach. Vis. Conf. (BMVC), X. Xie, M. W. Jones,
and G. K. L. Tam, Eds., Swansea, U.K., Sep. 2015, pp. 31.1–31.12.

[202] Y. He, X. Zhang, and J. Sun, ‘‘Channel pruning for accelerating very
deep neural networks,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 1398–1406.

[203] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Compressing deep
neural network with pruning, trained quantization and Huffman coding,’’
in Proc. 4th Int. Conf. Learn. Represent. (ICLR), Y. Bengio and Y. LeCun,
Eds., San Juan, Puerto Rico, May 2016, pp.1–14.

[204] A.Marchisio,M. A. Hanif,M.Martina, andM. Shafique, ‘‘PruNet: Class-
blind pruning method for deep neural networks,’’ in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), Jul. 2018, pp. 1–8.

[205] T.-J. Yang, Y.-H. Chen, and V. Sze, ‘‘Designing energy-efficient convolu-
tional neural networks using energy-aware pruning,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 6071–6079.

[206] H. Yang, Y. Zhu, and J. Liu, ‘‘ECC: Platform-independent energy-
constrained deep neural network compression via a bilinear regres-
sion model,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 11206–11215.

[207] F. Tung and G. Mori, ‘‘CLIP-Q: Deep network compression learning by
in-parallel pruning-quantization,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 7873–7882.

[208] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, ‘‘AMC: AutoML for
model compression and acceleration on mobile devices,’’ in Computer
Vision, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds. Cham:
Cham, Switzerland: Springer, 2018, pp. 815–832.

[209] H. Cai, J. Lin, Y. Lin, Z. Liu, K. Wang, T. Wang, L. Zhu, and S. Han,
‘‘AutoML for architecting efficient and specialized neural networks,’’
IEEE Micro, vol. 40, no. 1, pp. 75–82, Jan. 2020.

[210] T. Wang, K. Wang, H. Cai, J. Lin, Z. Liu, H. Wang, Y. Lin, and
S. Han, ‘‘APQ: Joint search for network architecture, pruning and quanti-
zation policy,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 2075–2084.

[211] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neural
networks for mobile vision applications,’’ CoRR, vol. abs/1704.04861,
2017. [Online]. Available: http://arxiv.org/abs/1704.04861

[212] F. Chollet, ‘‘Xception: Deep learning with depthwise separable convo-
lutions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 1800–1807.

[213] V. Lebedev, Y. Ganin, M. Rakhuba, I. V. Oseledets, and V. S. Lem-
pitsky, ‘‘Speeding-up convolutional neural networks using fine-tuned
CP-decomposition,’’ in Proc. 3rd Int. Conf. Learn. Represent. (ICLR),
Y. Bengio andY. LeCun, Eds., San Diego, CA, USA,May 2015, pp. 1–11.

[214] Y. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, ‘‘Compression
of deep convolutional neural networks for fast and low power mobile
applications,’’ in Proc. 4th Int. Conf. Learn. Represent. (ICLR), Y. Bengio
and Y. LeCun, Eds., San Juan, Puerto Rico, May 2016, pp. 1–16.

[215] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil, ‘‘Model compression,’’
in Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
(KDD). New York, NY, USA: Association for Computing Machinery,
2006, pp. 535–541.

[216] L. Ba and R. Caruana, ‘‘Do deep nets really need to be deep?’’ in Proc.
Adv. Neural Inf. Process. Syst., vol. 3, Jan. 2014, pp. 2654–2662.

[217] G. E. Hinton, O. Vinyals, and J. Dean, ‘‘Distill-
ing the knowledge in a neural network,’’ CoRR, vol.
abs/1503.02531, 2015. [Online]. Available: http://arxiv.
org/abs/1503.02531

[218] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and
Y. Bengio, ‘‘FitNets: Hints for thin deep nets,’’ in Proc. 3rd Int. Conf.
Learn. Represent. (ICLR), Y. Bengio and Y. LeCun, Eds., San Diego, CA,
USA, May 2015, pp. 1–13.

[219] J. Yim, D. Joo, J. Bae, and J. Kim, ‘‘A gift from knowledge distilla-
tion: Fast optimization, network minimization and transfer learning,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 7130–7138.

[220] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu, ‘‘Deep mutual learn-
ing,’’ inProc. IEEE/CVFConf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4320–4328.

[221] R. W. Vuduc and J. W. Demmel, ‘‘Automatic performance tuning of
sparse matrix kernels,’’ Ph.D. dissertation, Graduate Division, Comput.
Sci., Univ. California, Berkeley, Berkeley, CA, USA, 2003.

[222] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, ‘‘Cnvlutin: Ineffectual-Neuron-Free deep neural network
computing,’’ in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit.
(ISCA), Jun. 2016, pp. 1–13.

[223] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B.
Khailany, J. Emer, S. W. Keckler, and W. J. Dally, ‘‘SCNN: An accel-
erator for compressed-sparse convolutional neural networks,’’ in Proc.
ACM/IEEE 44th Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2017,
pp. 27–40.

[224] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, ‘‘EIE: Efficient inference engine on compressed deep
neural network,’’ in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput.
Archit. (ISCA). Seoul, South Korea: IEEE Computer Society, Jun. 2016,
pp. 243–254.

[225] A. Aimar, H. Mostafa, E. Calabrese, A. Rios-Navarro, R. Tapiador-
Morales, I.-A. Lungu, M. B. Milde, F. Corradi, A. Linares-Barranco,
S.-C. Liu, and T. Delbruck, ‘‘NullHop: A flexible convolutional neural
network accelerator based on sparse representations of feature maps,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 3, pp. 644–656,
Mar. 2019.

[226] J. Li, S. Jiang, S. Gong, J. Wu, J. Yan, G. Yan, and X. Li,
‘‘SqueezeFlow: A sparse CNN accelerator exploiting concise convo-
lution rules,’’ IEEE Trans. Comput., vol. 68, no. 11, pp. 1663–1677,
Nov. 2019.

[227] D. Kim, J. Ahn, and S. Yoo, ‘‘ZeNA: Zero-aware neural net-
work accelerator,’’ IEEE Des. Test., vol. 35, no. 1, pp. 39–46,
Feb. 2018.

225176 VOLUME 8, 2020

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

[228] Y. Huan, Y. Qin, Y. You, L. Zheng, and Z. Zou, ‘‘A low-power
accelerator for deep neural networks with enlarged near-zero
sparsity,’’ CoRR, vol. abs/1705.08009, 2017. [Online]. Available:
http://arxiv.org/abs/1705.08009

[229] M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni, and J. Henkel,
‘‘Invited–cross-layer approximate computing: From logic to architec-
tures,’’ in Proc. 53rd Annu. Design Automat. Conf. (DAC), 2016, pp. 1–6.

[230] S. Mittal, ‘‘A survey of techniques for approximate computing,’’ ACM
Comput. Surv., vol. 48, no. 4, pp. 1–33 Mar. 2016.

[231] V. Kumar and R. Kant, ‘‘Approximate computing for machine learn-
ing,’’ in Proc. 2nd Int. Conf. Commun., Comput. Netw., C. R.
Krishna, M. Dutta, and R. Kumar, Eds. Singapore: Springer, 2019,
pp. 607–613.

[232] V. Mrazek, S. S. Sarwar, L. Sekanina, Z. Vasicek, and K. Roy, ‘‘Design of
power-efficient approximate multipliers for approximate artificial neural
networks,’’ in Proc. 35th Int. Conf. Comput.-Aided Design (ICCAD).
New York, NY, USA: Association for Computing Machinery, 2016,
pp. 1–7.

[233] M. A. Hanif, R. Hafiz, and M. Shafique, ‘‘Error resilience analysis for
systematically employing approximate computing in convolutional neural
networks,’’ in Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE),
Mar. 2018, pp. 913–916.

[234] A. Marchisio, V. Mrazek, M. A. Hanif, and M. Shafique, ‘‘ReD-CaNe:
A systematic methodology for resilience analysis and design of capsule
networks under approximations,’’ in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), Mar. 2020, pp. 1205–1210.

[235] M. A. Hanif, F. Khalid, and M. Shafique, ‘‘CANN: Curable
approximations for high-performance deep neural network
accelerators,’’ in Proc. 56th Annu. Design Automat. Conf. (DAC).
New York, NY, USA: Association for Computing Machinery, 2019,
pp. 1–6.

[236] X. He, L. Ke, W. Lu, G. Yan, and X. Zhang, ‘‘Axtrain: Hardware-
oriented neural network training for approximate inference,’’ in Proc.
Int. Symp. Low Power Electron. Design (ISLPED). New York, NY, USA:
Association for Computing Machinery, 2018, pp. 1–6.

[237] V. Mrazek, Z. Vasicek, L. Sekanina, M. A. Hanif, and M. Shafique,
‘‘ALWANN:Automatic layer-wise approximation of deep neural network
accelerators without retraining,’’ in Proc. IEEE/ACM Int. Conf. Comput.-
Aided Design (ICCAD), Nov. 2019, pp. 1–8.

[238] M. Riaz, R. Hafiz, S. A. Khaliq, M. Faisal, H. T. Iqbal, M. Ali, and
M. Shafique, ‘‘CAxCNN: Towards the use of canonic sign digit based
approximation for hardware-friendly convolutional neural networks,’’
IEEE Access, vol. 8, pp. 127014–127021, 2020.

[239] Z. Deng, C. Xu, Q. Cai, P. Faraboschi, and H. Packard, ‘‘Reduced-
precision memory value approximation for deep learning,’’ Tech. Rep.,
2015.

[240] S. Koppula, L. Orosa, A. G. Yağlıkçi, R. Azizi, T. Shahroodi,
K. Kanellopoulos, and O. Mutlu, ‘‘EDEN: Enabling energy-efficient,
high-performance deep neural network inference using approximate
dram,’’ in Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO). New York, NY, USA: Association for Computing Machinery,
2019, pp. 166–181.

[241] C.-Y. Chen, J. Choi, K. Gopalakrishnan, V. Srinivasan, and S. Venkatara-
mani, ‘‘Exploiting approximate computing for deep learning accelera-
tion,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2018,
pp. 821–826.

[242] M. A. Hanif, A. Marchisio, T. Arif, R. Hafiz, S. Rehman, and
M. Shafique, ‘‘X-DNNs: Systematic cross-layer approximations for
energy-efficient deep neural networks,’’ J. Low Power Electron., vol. 14,
no. 4, pp. 520–534, Dec. 2018.

[243] Alibaba Cloud. Accessed: Nov. 26, 2020. [Online]. Available:
https://alibabacloud.com

[244] AMAZON. Accessed: Nov. 26, 2020. [Online]. Available:
https://aws.amazon.com

[245] IBM. Accessed: Nov. 26, 2020. [Online]. Available:
https://www.ibm.com/cloud

[246] Google Cloud. Accessed: Nov. 26, 2020. [Online]. Available:
https://cloud.google.com

[247] Colab Research. Accessed: Nov. 26, 2020. [Online]. Available:
https://colab.research.google.com

[248] Microsoft Azure. Accessed: Nov. 26, 2020. [Online]. Available:
https://azure.microsoft.com

[249] B. Rajendran, A. Sebastian, M. Schmuker, N. Srinivasa, and
E. Eleftheriou, ‘‘Low-power neuromorphic hardware for signal
processing applications: A review of architectural and system-level
design approaches,’’ IEEE Signal Process. Mag., vol. 36, no. 6,
pp. 97–110, Nov. 2019.

[250] C. Liu, G. Bellec, B. Vogginger, D. Kappel, J. Partzsch, F. Neumärker,
S. Höppner, W. Maass, S. B. Furber, R. Legenstein, and C. G. Mayr,
‘‘Memory-efficient deep learning on a SpiNNaker 2 prototype,’’Frontiers
Neurosci., vol. 12, p. 840, Nov. 2018.

[251] R. V. Wicaksana Putra, M. Abdullah Hanif, and M. Shafique, ‘‘DRMap:
A generic DRAM data mapping policy for energy-efficient processing of
convolutional neural networks,’’ in Proc. 57th ACM/IEEE Des. Autom.
Conf. (DAC), Jul. 2020, pp. 1–6.

[252] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee,
S. Richardson, C. Kozyrakis, and M. Horowitz, ‘‘Understanding sources
of inefficiency in general-purpose chips,’’ in Proc. 37th Annu. Int. Symp.
Comput. Archit. (ISCA), 2010, pp. 37–47.

[253] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, ‘‘Once-for-all:
Train one network and specialize it for efficient deployment,’’
in Proc. 8th Int. Conf. Learn. Represent. (ICLR), Addis Ababa,
Ethiopia: OpenReview.net, Apr. 2020. [Online]. Available:
https://openreview.net/forum?id=HylxE1HKwS

[254] E. Hoffer, T. Ben-Nun, I. Hubara, N. Giladi, T. Hoefler, and
D. Soudry, ‘‘Augment your batch: Better training with larger
batches,’’ CoRR, vol. abs/1901.09335, 2019. [Online]. Available:
http://arxiv.org/abs/1901.09335

[255] Y. Liu, Y. Wang, R. Yu, M. Li, V. Sharma, and Y. Wang, ‘‘Optimizing
CNNmodel inference on cpus,’’ in Proc. Annu. Tech. Conf., Renton, WA,
USA, Jul. 2019, D. Malkhi and D. Tsafrir, Eds. Berkeley, CA, USA:
USENIX Association, 2019, pp. 1025–1040.

[256] L. Lai, N. Suda, and V. Chandra, ‘‘CMSIS-NN: Efficient neural network
kernels for arm cortex-m cpus,’’ CoRR, vol. abs/1801.06601, pp. 1–10,
Jan. 2018. [Online]. Available: http://arxiv.org/abs/1801.06601

[257] A. Garofalo, M. Rusci, F. Conti, D. Rossi, and L. Benini, ‘‘PULP-
NN: Accelerating quantized neural networks on parallel ultra-low-power
RISC-V processors,’’ Phil. Trans. Roy. Soc. A, Math., Phys. Eng. Sci.,
vol. 378, no. 2164, Dec. 2019, Art. no. 20190155.

[258] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keck-
ler, ‘‘VDNN: Virtualized deep neural networks for scalable, memory-
efficient neural network design,’’ in Proc. 49th Annu. IEEE/ACM Int.
Symp. Microarchitecture (MICRO), Oct. 2016, pp. 1–13.

[259] Y. Kim, J. Lee, J.-S. Kim, H. Jei, and H. Roh, ‘‘Efficient multi-GPU
memory management for deep learning acceleration,’’ in Proc. IEEE 3rd
Int. Workshops Found. Appl. Self Syst., Sep. 2018, pp. 37–43.

[260] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, ‘‘CNP: An FPGA-based
processor for convolutional networks,’’ in Proc. Int. Conf. Field Program.
Logic Appl., Aug. 2009, pp. 32–37.

[261] X. Wei, Y. Liang, and J. Cong, ‘‘Overcoming data transfer bottlenecks
in FPGA-based DNN accelerators via layer conscious memory manage-
ment,’’ in Proc. 56th Annu. Des. Autom. Conf., Jun. 2019, pp. 1–6.

[262] J. Park and W. Sung, ‘‘FPGA based implementation of deep
neural networks using on-chip memory only,’’ in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP), Mar. 2016,
pp. 1011–1015.

[263] W. Khwa, J. Chen, J. Li, X. Si, E. Yang, X. Sun, R. Liu, P. Chen,
Q. Li, S. Yu, and M. Chang, ‘‘A 65nm 4kb algorithm-dependent
computing-in-memory sram unit-macro with 2.3ns and 55.8tops/w fully
parallel product-sum operation for binary dnn edge processors,’’ in IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2018,
pp. 496–498.

[264] T. Yoo, H. Kim, Q. Chen, T. T. Kim, and B. Kim, ‘‘A logic compatible 4t
dual embedded dram array for in-memory computation of deep neural
networks,’’ in 2019 IEEE/ACM Int. Symp. Low Power Electron. Des.
(ISLPED), Jul. 2019, pp. 1–6.

[265] S. Angizi, Z. He, D. Reis, X. S. Hu, W. Tsai, S. J. Lin, and D. Fan,
‘‘Accelerating deep neural networks in Processing-in-Memory platforms:
Analog or digital approach?’’ in Proc. IEEE Comput. Soc. Annu. Symp.
VLSI (ISVLSI), Jul. 2019, pp. 197–202.

[266] S. Yin, Z. Jiang, M. Kim, T. Gupta, M. Seok, and J.-S. Seo, ‘‘Vesti:
Energy-efficient in-memory computing accelerator for deep neural net-
works,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 1,
pp. 48–61, Jan. 2020.

[267] M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar, ‘‘The secu-
rity of machine learning,’’ Mach. Learn., vol. 81, no. 2, pp. 121–148,
2010.

[268] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. J. Goodfellow, and R. Fergus, ‘‘Intriguing properties of neural
networks,’’ in Proc. ICLR, 2014, pp. 1–10.

VOLUME 8, 2020 225177

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

[269] M. Shafique, M. Naseer, T. Theocharides, C. Kyrkou, O.Mutlu, L. Orosa,
and J. Choi, ‘‘Robust machine learning systems: Challenges,current
trends, perspectives, and the road ahead,’’ IEEEDesign Test, vol. 37, no. 2,
pp. 30–57, Feb. 2020.

[270] I. Goodfellow, J. Shlens, and C. Szegedy, ‘‘Explaining and harnessing
adversarial examples,’’ in Proc. ICLR, 2015, pp. 1–11.

[271] F. Khalid, M. A. Hanif, S. Rehman, and M. Shafique, ‘‘Security for
machine learning-based systems: Attacks and challenges during train-
ing and inference,’’ in Proc. Int. Conf. Frontiers Inf. Technol. (FIT),
Dec. 2018, pp. 327–332.

[272] J. J. Zhang, K. Liu, F. Khalid, M. A. Hanif, S. Rehman, T. Theocharides,
A. Artussi, M. Shafique, and S. Garg, ‘‘Building robust machine learning
systems: Current progress, research challenges, and opportunities,’’ in
Proc. 56th Annu. Design Autom. Conf. 2019, New York, NY, USA, 2019,
pp. 1–4.

[273] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, ‘‘Stealing
machine learning models via prediction apis,’’ in Proc. 25th USENIX
Conf. Secur. Symp., New York, NY, USA, 2016, pp. 601–618.

[274] C. Song, T. Ristenpart, and V. Shmatikov, ‘‘Machine learning models that
remember too much,’’ in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., New York, NY, USA, 2017, pp. 587–601.

[275] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, ‘‘Practical black-box attacks against machine learning,’’ in
Proc. ACMAsia Conf. Comput. Commun. Secur., Apr. 2017, pp. 506–519.

[276] X. Yuan, P. He, Q. Zhu, and X. Li, ‘‘Adversarial examples: Attacks and
defenses for deep learning,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 30, no. 9, pp. 2805–2824, Sep. 2019.

[277] B. Luo, Y. Liu, L. Wei, and Q. Xu, ‘‘Towards imperceptible and robust
adversarial example attacks against neural networks,’’ in Proc. AAAI,
2018, pp. 1–8.

[278] A. Marchisio, G. Nanfa, F. Khalid, M. A. Hanif, M. Martina, and
M. Shafique, ‘‘Capsattacks: Robust and imperceptible adversarial attacks
on capsule networks,’’ CoRR, vol. abs/1901.09878, pp. 1–10, Jan. 2019.
[Online]. Available: http://arxiv.org/abs/1901.09878

[279] A. Marchisio, G. Nanfa, F. Khalid, M. A. Hanif, M. Martina, and
M. Shafique, ‘‘Is spiking secure? A comparative study on the security
vulnerabilities of spiking and deep neural networks,’’ in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), 2020, pp. 1–8.

[280] Z. Yahya, M. Hassan, S. Younis, andM. Shafique, ‘‘Probabilistic analysis
of targeted attacks using transform-domain adversarial examples,’’ IEEE
Access, vol. 8, pp. 33855–33869, 2020.

[281] B. Biggio, I. Pillai, S. Rota Bulò, D. Ariu, M. Pelillo, and F. Roli, ‘‘Is data
clustering in adversarial settings secure?’’ in Proc. ACM Workshop Artif.
Intell. Secur., New York, NY, USA, 2013, pp. 87–98.

[282] L. Mu noz-González, B. Biggio, A. Demontis, A. Paudice,
V. Wongrassamee, E. C. Lupu, and F. Roli, ‘‘Towards poisoning of
deep learning algorithms with back-gradient optimization,’’ in Proc. 10th
ACM Workshop Artif. Intell. Secur., 2017, pp. 27–38.

[283] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras,
and T. Goldstein, ‘‘Poison frogs! Targeted clean-label poisoning attacks
on neural networks,’’ in Proc. 32nd Int. Conf. Neural Inf. Process. Syst.,
Red Hook, NY, USA, 2018, pp. 6106–6116.

[284] X. Chen, C. Liu, B. Li, K. Lu, andD. Song, ‘‘Targeted backdoor attacks on
deep learning systems using data poisoning,’’CoRR, vol. abs/1712.05526,
pp. 1–5, May 2017. [Online]. Available: http://arxiv.org/abs/1712.05526

[285] V. Venceslai, A. Marchisio, I. Alouani, M. Martina, and M. Shafique,
‘‘NeuroAttack: Undermining spiking neural networks security through
externally triggered bit-flips,’’ in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), Jul. 2020, pp. 1–8.

[286] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndic, P. Laskov,
G. Giacinto, and F. Roli, ‘‘Evasion attacks against machine learn-
ing at test time,’’ 2017, arXiv:1708.06131. [Online]. Available:
http://arxiv.org/abs/1708.06131

[287] A. Kurakin, I. J. Goodfellow, and S. Bengio, ‘‘Adversarial examples in
the physical world,’’ CoRR, vol. abs/1607.02533, pp. 1–5, Dec. 2016.
[Online]. Available: http://arxiv.org/abs/1607.02533

[288] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, ‘‘Boosting
adversarial attacks with momentum,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., Dec. 2018, pp. 9185–9193.

[289] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, ‘‘Towards
deep learning models resistant to adversarial attacks,’’ in Proc. 6th
Int. Conf. Learn. Represent., Vancouver, BC, Canada, Apr./May 2018,
pp. 1–5.

[290] F. Khalid, M. A. Hanif, S. Rehman, R. Ahmed, andM. Shafique, ‘‘TrISec:
Training data-unaware imperceptible security attacks on deep neural
networks,’’ in Proc. IEEE 25th Int. Symp. Line Test. Robust Syst. Des.
(IOLTS), Jul. 2019, pp. 188–193.

[291] N. Carlini and D. Wagner, ‘‘Towards evaluating the robustness of neu-
ral networks,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2017,
pp. 39–57.

[292] W. Brendel, J. Rauber, and M. Bethge, ‘‘Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models,’’
in 6th Int. Conf. Learn. Represent. Vancouver, BC, Canada, Apr. 2018,
pp. 1–12.

[293] T. Brunner, F. Diehl, M. T. Le, and A. Knoll, ‘‘Guessing smart: Biased
sampling for efficient black-box adversarial attacks,’’ in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 4957–4965.

[294] J. Chen and M. I. Jordan, ‘‘Boundary attack++: Query-efficient decision-
based adversarial attack,’’ CoRR, vol. abs/1904.02144, p. 7, Apr. 2019.
[Online]. Available: http://arxiv.org/abs/1904.02144

[295] F. Khalid, H. Ali, M. A. Hanif, S. Rehman, R. Ahmed, and M. Shafique,
‘‘Red-attack: Resource efficient decision based attack for machine learn-
ing,’’CoRR, vol. abs/1901.10258, pp. 1–4, Jan. 2019. [Online]. Available:
http://arxiv.org/abs/1901.10258

[296] S.-M.Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, ‘‘Universal
adversarial perturbations,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 86–94.

[297] A. Chakarov, A. V. Nori, S. K. Rajamani, S. Sen, and D. Vijaykeerthy,
‘‘Debugging machine learning tasks,’’CoRR, vol. abs/1603.07292, pp. 1–
29, Mar. 2016. [Online]. Available: http://arxiv.org/abs/1603.07292

[298] N. Baracaldo, B. Chen, H. Ludwig, and J. A. Safavi, ‘‘Mitigating poi-
soning attacks on machine learning models: A data provenance based
approach,’’ in Proc. 10th ACM Workshop Artif. Intell. Secur., New York,
NY, USA, 2017, pp. 103–110.

[299] K. Liu, B. Dolan-Gavitt, and S. Garg, ‘‘Fine-pruning: Defending against
backdooring attacks on deep neural networks,’’ in Proc. 21st Int. Symp.,
Heraklion, Crete, Greece, Sep. , ser. Lecture Notes in Computer Sci-
ence, M. Bailey, T. Holz, M. Stamatogiannakis, and S. Ioannidis, Eds.,
vol. 11050. Springer, 2018, pp. 273–294.

[300] F. Khalid, H. Ali, H. Tariq, M. A. Hanif, S. Rehman, R. Ahmed, and
M. Shafique, ‘‘QuSecNets: Quantization-based defense mechanism for
securing deep neural network against adversarial attacks,’’ in Proc. IEEE
25th Int. Symp. On-Line Test. Robust Syst. Design (IOLTS), Jul. 2019,
pp. 182–187.

[301] D. Zhang, T. Zhang, Y. Lu, Z. Zhu, and B. Dong, ‘‘You only propagate
once: Accelerating adversarial training via maximal principle,’’ in Proc.
NeurIPS, 2019, pp. 227–238.

[302] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. P. Dickerson, C. Studer,
L. S. Davis, G. Taylor, and T. Goldstein, ‘‘Adversarial training for free,’’
in Proc. NeurIPS, 2019, pp. 3358–3369.

[303] E. Wong, L. Rice, and J. Z. Kolter, ‘‘Fast is better than free: Revisiting
adversarial training,’’ in Proc. ICLR, 2020, pp. 1–5.

[304] F. Khalid, M. A. Hanif, S. Rehman, J. Qadir, andM. Shafique, ‘‘FAdeML:
Understanding the impact of pre-processing noise filtering on adversarial
machine learning,’’ in Proc. Des., Autom. Test Eur. Conf. Exhib. (DATE),
Mar. 2019, pp. 902–907.

[305] J. Cohen, E. Rosenfeld, and Z. Kolter, ‘‘Certified adversarial robustness
via randomized smoothing,’’ in Proc. 36th Int. Conf. Mach. Learn.,
K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. Long Beach, CA, USA:
PMLR, Jun. 2019, pp. 1310–1320.

[306] D. Meng and H. Chen, ‘‘Magnet: A two-pronged defense against adver-
sarial examples,’’ in Proc. 2017 ACM SIGSAC Conf. Comput. Commun.
Secur., New York, NY, USA, 2017, pp. 135–147.

[307] X. Wang, R. Hou, B. Zhao, F. Yuan, J. Zhang, D. Meng, and
X. Qian, ‘‘Dnnguard: An elastic heterogeneous dnn accelerator archi-
tecture against adversarial attacks,’’ in Proc. Int. Conf. Architectural
Support Program. Lang. Oper. Syst., New York, NY, USA, 2020,
pp. 19–34.

[308] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang, ‘‘Mxnet: A flexible and effi-
cient machine learning library for heterogeneous distributed systems,’’
CoRR, vol. abs/1512.01274, pp. 1–45, Dec. 2015. [Online]. Available:
http://arxiv.org/abs/1512.01274

[309] S. Tokui, R. Okuta, T. Akiba, Y. Niitani, T. Ogawa, S. Saito,
S. Suzuki, K. Uenishi, B. Vogel, and H. Yamazaki Vincent, ‘‘Chainer:
A deep learning framework for accelerating the research cycle,’’ in Proc.
25th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2019,
pp. 2002–2011.

[310] F. Seide and A. Agarwal, ‘‘Cntk: Microsoft’s open-source deep-learning
toolkit,’’ in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, New York, NY, USA, 2016, p. 2135.

225178 VOLUME 8, 2020

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

[311] Y. Ma, D. Yu, T. Wu, and H. Wang, ‘‘Paddlepaddle: An open-source deep
learning platform from industrial practice,’’ Frontiers Data Domputing,
vol. 1, no. 1, p. 105, 2019.

[312] J. Bai. (2019). Onnx: Open Neural Network Exchange. [Online]. Avail-
able: https://github.com/onnx/onnx

[313] F. Chollet. (2015). keras. [Online]. Available: https://github.
com/fchollet/keras

[314] A. Krizhevsky, ‘‘Learning multiple layers of features from tiny images,’’
Dept. Comput. Sci., University of Toronto, Toronto, CA, USA, Tech.
Rep., 2009.

[315] T. Lin,M.Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, ‘‘Microsoft COCO: Common objects in context,’’ in
Proc. 13th Eur. Conf., vol. 8693, D. J. Fleet, T. Pajdla, B. Schiele, and
T. Tuytelaars, Eds. Zurich, Switzerland: Springer, 2014, pp. 740–755.

[316] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset,
S. Kamali, S. Popov,M.Malloci, A. Kolesnikov, T. Duerig, and V. Ferrari,
‘‘The open images dataset v4,’’ Int. J. Comput. Vis., vol. 128, no. 7,
pp. 1956–1981, Mar. 2020.

[317] V. Lomonaco and D.Maltoni, ‘‘Core50: A new dataset and benchmark for
continuous object recognition,’’ in Proc. 1st Annu. Conf. Robot Learn.,
S. Levine, V. Vanhoucke, and K. Goldberg, Eds., vol. 78. New York, NY,
USA: PMLR, Nov. 2017, pp. 17–26.

[318] A. Barbu, D. Mayo, J. Alverio, W. Luo, C. Wang, D. Gutfreund,
J. Tenenbaum, and B. Katz, ‘‘Objectnet: A large-scale bias-controlled
dataset for pushing the limits of object recognition models,’’ in Proc.
NeurIPS, 2019, pp. 9453–9463.

[319] R. Perrault, Y. Shoham, E. Brynjolfsson, J. Clark, J. Etchemendy,
B. Grosz, T. Lyons, J. Manyika, S. Mishra, and J. C. Niebles, ‘‘The
ai index 2019 annual report,’’ AI Index Steering Committee, Human-
Centered AI Inst., Stanford Univ., Stanford, CA, USA, Tech. Rep.,
Dec. 2019.

[320] A. Jadhav and P. Kakade, ‘‘Deep learning chip market by chip type
(gpu, asic, fpga, cpu, and others), technology (system-on-chip, system-
in-package, multi-chip module, and others), and industry vertical (media
& advertising, bfsi, it & telecom, retail, healthcare, automotive & trans-
portation, and others) - global opportunity analysis and industry fore-
cast, pp. 2018–2025,’’ Allied Market Research, Pune, Maharashtra, Tech.
Rep., Jul. 2018.

[321] Z. Jiang, S. Yin, M. Seok, and J.-S. Seo, ‘‘XNOR-SRAM: In-memory
computing SRAM macro for Binary/Ternary deep neural networks,’’ in
Proc. IEEE Symp. VLSI Technol., Jun. 2018, pp. 173–174.

[322] S. Okumura, M. Yabuuchi, K. Hijioka, and K. Nose, ‘‘A ternary based
bit scalable, 8.80 TOPS/W CNN accelerator with many-core Processing-
in-memory architecture with 896K synapses/mm2,’’ in Proc. Symp. VLSI
Technol., Jun. 2019, pp. 1–5.

[323] T. N. Theis and H. P. Wong, ‘‘The end of Moore’s law: A new beginning
for information technology,’’Comput. Sci. Eng., vol. 19, no. 2, pp. 41–50,
2017.

[324] V. Joshi, M. Le Gallo, S. Haefeli, I. Boybat, S. R. Nandakumar,
C. Piveteau, M. Dazzi, B. Rajendran, A. Sebastian, and E. Eleftheriou,
‘‘Accurate deep neural network inference using computational phase-
change memory,’’ Nature Commun., vol. 11, no. 1, p. 2473, May 2020.

[325] S. R. Nandakumar, I. Boybat, V. Joshi, C. Piveteau, M. Le Gallo,
B. Rajendran, A. Sebastian, and E. Eleftheriou, ‘‘Phase-change memory
models for deep learning training and inference,’’ in Proc. 26th IEEE Int.
Conf. Electron., Circuits Syst. (ICECS), Nov. 2019, pp. 727–730.

[326] H. Yan, H. R. Cherian, E. C. Ahn, X. Qian, and L. Duan, ‘‘ICELIA: A full-
stack framework for STT-MRAM-Based deep learning acceleration,’’
IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 2, pp. 408–422, Feb. 2020.

[327] S. Chattopadhyay, K. Brahma, A. Ray, and M. Sharad, ‘‘STT-MRAM for
low power access for read-intensive parallel deep-learning architectures,’’
in Proc. IEEE Int. Symp. Nanoelectron. Inf. Syst., 2017, pp. 61–65.

[328] L. Song, X. Qian, H. Li, and Y. Chen, ‘‘PipeLayer: A pipelined
ReRAM-based accelerator for deep learning,’’ in Proc. IEEE
Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2017,
pp. 541–552.

[329] A. Mutiara, ‘‘IEEE computer society’s top 12 technology trends for
2020,’’ IEEE Comput. Soc., Washington, DC, USA, Tech. Rep.,
Dec. 2019.

[330] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian,
J. P. Strachan, M. Hu, R. S. Williams, and V. Srikumar, ‘‘ISAAC:
A convolutional neural network accelerator with in-situ analog arithmetic
in crossbars,’’ in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit.
(ISCA), Jun. 2016, pp. 14–26.

[331] Y. Kim, H. Kim, D. Ahn, and J.-J. Kim, Input-Splitting of Large Neural
Networks for Power-Efficient Accelerator With Resistive Crossbar Mem-
ory Array. New York, NY, USA: Association for Computing Machinery,
2018.

[332] D. Bankman, L. Yang, B. Moons, M. Verhelst, and B. Murmann, ‘‘An
always-on 3.8µj/86% cifar-10 mixed-signal binary cnn processor with all
memory on chip in 28nm cmos,’’ in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, 2018, pp. 222–224.

[333] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,
G. S. Rose, and J. S. Plank, ‘‘A survey of neuromorphic computing
and neural networks in hardware,’’ CoRR, vol. abs/1705.06963, pp. 1–4,
Dec. 2017. [Online]. Available: http://arxiv.org/abs/1705.06963

[334] Y. Chen, Y. Xie, L. Song, F. Chen, and T. Tang, ‘‘A survey of acceler-
ator architectures for deep neural networks,’’ Engineering, vol. 6, no. 3,
pp. 264–274, Mar. 2020.

[335] B. L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, ‘‘Model compression and
hardware acceleration for neural networks: A comprehensive survey,’’
Proc. IEEE, vol. 108, no. 4, pp. 485–532, Apr. 2020.

[336] A. A. Ratnaparkhi, E. Pilli, and R. C. Joshi, ‘‘Survey of scaling platforms
for deep neural networks,’’ in Proc. Int. Conf. Emerg. Trends Commun.
Technol. (ETCT), Nov. 2016, pp. 1–6.

[337] C. Zhang and W. Xu, ‘‘Neural networks: Efficient implementations and
applications,’’ in Proc. IEEE 12th Int. Conf. (ASICON), Oct. 2017,
pp. 1029–1032.

[338] M.Kotlar, D. Bojic,M. Punt, andV.Milutinovic, ‘‘A survey of deep neural
networks: Deployment location and underlying hardware,’’ in Proc. 14th
Symp. Neural Netw. Appl. (NEUREL), Nov. 2018, pp. 1–6.

[339] A.-A. Erofei, C.-F. Druta, and C. Daniel Caleanu, ‘‘Embedded solutions
for deep neural networks implementation,’’ in Proc. IEEE 12th Int. Symp.
Appl. Comput. Intell. Informat. (SACI), May 2018, pp. 000425–000430.

[340] A. Sebastian, I. Boybat, M. Dazzi, I. Giannopoulos, V. Jonnalagadda,
V. Joshi, G. Karunaratne, B. Kersting, R. Khaddam-Aljameh,
S. R. Nandakumar, A. Petropoulos, C. Piveteau, T. Antonakopoulos,
B. Rajendran, M. L. Gallo, and E. Eleftheriou, ‘‘Computational memory-
based inference and training of deep neural networks,’’ in Proc. Symp.
VLSI Technol., Jun. 2019, pp. 168–169.

[341] C. Ababei and M. G. Moghaddam, ‘‘A survey of prediction and classifi-
cation techniques in multicore processor systems,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 30, no. 5, pp. 1184–1200, May 2019.

[342] S. Sun, Z. Cao, H. Zhu, and J. Zhao, ‘‘A survey of optimization methods
from a machine learning perspective,’’ IEEE Trans. Cybern., vol. 50,
no. 8, pp. 3668–3681, Aug. 2019.

[343] M. Alam, M. D. Samad, L. Vidyaratne, A. Glandon, and K. M.
Iftekharuddin, ‘‘Survey on deep neural networks in speech and vision
systems,’’ CoRR, vol. abs/1908.07656, 2019. [Online]. Available:
http://arxiv.org/abs/1908.07656

[344] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, ‘‘A survey of the
recent architectures of deep convolutional neural networks,’’ Artif. Intell.
Rev., vol. 53, no. 8, pp. 5455–5516, Apr. 2020.

[345] H. Yingge, I. Ali, and K.-Y. Lee, ‘‘Deep neural networks on chip—A
survey,’’ in Proc. IEEE Int. Conf. Big Data Smart Comput., Feb. 2020,
pp. 589–592.

[346] Z. Li, W. Yang, S. Peng, and F. Liu, ‘‘A survey of convolutional
neural networks: Analysis, applications, and prospects,’’
CoRR, vol. abs/2004.02806, 2020. [Online]. Available:
https://arxiv.org/abs/2004.02806

MAURIZIO CAPRA (Graduate Student Mem-
ber, IEEE) received the bachelor’s degree in elec-
tronic engineering and the master’s degree in elec-
tronic engineering, with career in electronic sys-
tems, from the Politecnico di Torino, Turin, Italy,
in October 2015 and April 2018, respectively,
where he is currently pursuing the Ph.D. degree in
electronics and communication engineering, under
the supervision of Prof. M. Martina. His research
interests include newly dedicated architectures for

machine learning with emphasis on on-chip learning based on a vertical
approach: starting from the algorithm (top) going to the physical implemen-
tation (bottom). He is a part of the board of the IEEE Student Branch at the
Politecnico di Torino.

VOLUME 8, 2020 225179

M. Capra et al.: Hardware and Software Optimizations for Accelerating DNNs

BEATRICE BUSSOLINO (Graduate Student
Member, IEEE) received the B.Sc. and M.Sc.
degrees in electronic engineering from the Politec-
nico di Torino, Turin, Italy, in October 2017 and
October 2019, respectively, where she is currently
pursuing the Ph.D. degree in electrical, electronics,
and communications engineering, under the super-
vision of Prof. M. Martina. Her current research
interests include machine learning and deep neural
networks (DNNs) in particular. The focus of her

research activity is the development of on-chip architectures for the edge
deployment of DNNs. In 2020, she received the Richard Newton Young
Fellow Award and won the DAC Young Fellow Poster Presentation Award.

ALBERTO MARCHISIO (Graduate Student
Member, IEEE) received the B.Sc. degree in
electronic engineering and the M.Sc. degree in
electronic engineering (electronic systems) from
the Politecnico di Torino, Turin, Italy, in Octo-
ber 2015 and April 2018. He is currently pursuing
the Ph.D. degree with the Computer Architec-
ture and Robust Energy-Efficient Technologies
(CARE-Tech.) Laboratory, Institute of Computer
Engineering, Technische Universität Wien (TU

Wien), Vienna, Austria, under the supervision of Dr. M. Shafique. His main
research interests include hardware and software optimizations for machine
learning, brain-inspired computing, VLSI architecture design, emerging
computing technologies, robust design, and approximate computing for
energy efficiency. He received the honorable mention at the Italian National
Finals of Maths Olympic Games in 2012, and the Richard Newton Young
Fellow Award in 2019.

GUIDO MASERA (Senior Member, IEEE)
received the Dr.-Ing. (summa cum laude) and
Ph.D. degrees in electronic engineering from the
Politecnico di Torino, Italy, in 1986 and 1992,
respectively. He is currently a Professor with
the Electronic Department, Politecnico di Torino,
since 1992. His research interests include several
aspects in the design of digital integrated circuits
and systems, with a special emphasis on high-
performance architectures for communications,

forward error correction, image and video coding, cryptography, and hard-
ware accelerators for machine learning. He has more than 200 publications
in the fields of VLSI design and communications. He is an Associate Editor
of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS and
Electronics (MDPI) and a former Associate Editor of the IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS and the IET Circuits, Devices,
and Systems.

MAURIZIO MARTINA (Senior Member, IEEE)
received the M.S. and Ph.D. degrees in electri-
cal engineering from the Politecnico di Torino,
Italy, in 2000 and 2004, respectively. He is cur-
rently an Associate Professor from the VLSI-
Lab Group, Politecnico di Torino. His research
interests include VLSI design and implementa-
tion of architectures for digital signal processing,
video coding, communications, artificial intelli-
gence, machine learning, and event-based process-

ing. He edited one book and published three book chapters on VLSI archi-
tectures and digital circuits for video coding, wireless communications, and
error correcting codes. He has more than 100 scientific publications and
is author of two patents. He is currently an Associate Editor of the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS. He had been
part of the Organizing and a Technical Committee of several international
conferences, including BioCAS 2017, ICECS 2019, and AICAS 2020. He is
also the Counselor of the IEEE Student Branch at the Politecnico di Torino
and a Professional Member of IEEE HKN.

MUHAMMAD SHAFIQUE (Senior Member,
IEEE) received the Ph.D. degree in computer sci-
ence from the Karlsruhe Institute of Technology
(KIT), Germany, in 2011.

Afterwards, he established and led a highly rec-
ognized research group, KIT, for several years as
well as conducted impactful Research and Devel-
opment activities in Pakistan. In October 2016, he
joined the Institute of Computer Engineering, Fac-
ulty of Informatics, Technische Universität Wien

(TU Wien), Vienna, Austria, as a Full Professor of Computer Architecture
and Robust, Energy-Efficient Technologies. Since September 2020, he has
been with the Division of Engineering, New York University, Abu Dhabi
(NYUAD), United Arab Emirates. He is currently a Global Network Faculty
with the NYU Tandon School of Engineering, USA. His research interests
include brain-inspired computing, AI & machine learning hardware and
system-level design, energy-efficient systems, robust computing, hardware
security, emerging technologies, FPGAs, MPSoCs, and embedded systems.
His research has a special focus on cross-layer analysis, modeling, design,
and optimization of computing and memory systems. The researched tech-
nologies and tools are deployed in application use cases from the Internet-of-
Things (IoT), smart cyber-physical systems (CPS), and ICT for development
(ICT4D) domains.

Dr. Shafique has given several Keynotes, Invited Talks, and Tutorials,
as well as organized many special sessions at premier venues. He has
served as the PC Chair, the General Chair, the Track Chair, and the PC
member for several prestigious IEEE/ACM conferences. He holds one U.S.
patent has (co-) authored six Books, more than ten Book Chapters, and
more than 250 articles in premier journals and conferences. He received
the 2015 ACM/SIGDA Outstanding New Faculty Award, the AI 2000 Chip
Technology Most Influential Scholar Award in 2020, six gold medals, and
several best paper awards and nominations at prestigious conferences.

225180 VOLUME 8, 2020

