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ABSTRACT Reasonable automatic guided vehicle path planning can shorten the transportation time of
materials and improve the production efficiency of the intelligent assembly workshop. Ant colony algorithm
is a widely used path planning method, however, it suffers from the shortcomings that being easy to fall
into local optimum and low search efficiency. To overcome these shortcomings, first, this paper proposes
a step optimization method to improve the search efficiency of the ant colony algorithm, and a path
simplification method to avoid getting blindly tortuous paths; Second, to overcome the problem that the
ant colony algorithm is easy to fall into the local optimum, this paper proposes an adaptive pheromone
volatilization coefficient strategy, which uses different pheromone volatilization coefficients at different
stages of the search path; third, for the path conflict problem of multiple automatic guided vehicles, this
paper proposes a load balancing strategy to avoid it, which is based on the consideration that, path conflicts
are caused by excessive concentration of multiple automatic guided vehicles paths. Extensive simulation
results demonstrate the feasibility and efficiency of the proposed methods.

INDEX TERMS Ant colony algorithm, intelligent assembly, multiple automatic guided vehicles, path
planning.

I. INTRODUCTION
With the steady progress of the Made in China 2025 and the
Industry 4.0 plans, advanced technologies such as digital fac-
tories, Industrial Internet of Things, and artificial intelligence
have developed rapidly. Automatic guided vehicle (AGV),
as the main means of transportation, shows a high level of
intelligence and automation in workshop logistics, which
greatly improves the flexibility of transporting materials and
improves the work efficiency of the intelligent assembly
workshop. The AGV has the advantages of stable transporta-
tion and accurate dispatch [1]. The tasks in the intelligent
assemblyworkshop include transporting rawmaterials to pro-
cessing machine tools, transporting semi-finished products
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and finished products to warehouses. Planning the optimal
path from the starting position to the target position for the
AGV that accepts the task is the key to improving the work
efficiency and economic benefits of the intelligent assembly
workshop [2], [3].

Huo et al. [4] conduct research on AGV transporting con-
tainers at the terminal, who use a linear mixed integer model
to plan the path for the AGV transport container, and take
the overall task completion time as the system evaluation
index to realize the safe and stable operation of the AGV.
Kim et al. [5] construct the obstacle force field based on the
predicted trajectory of the moving obstacle, and propose
an improved one-dimensional virtual force field (1D-VFF)
method. The conventional 1D-VFF obstacle force field is
replaced by the predicted obstacle force field, which enhance
the obstacle avoidance performance of the AGV. In the actual
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working environment, multiple AGVs are required to perform
tasks together to make the workshop more efficient. Zhao
et al. [6] compare the paths of different AGVs to determine
conflict nodes and AGV priorities, so that multiple AGVs
can operate in conflict-free coordination on the same map.
In addition, during the actual operation, there will be motion
delay problems caused by network instability, pedestrian
interference, and so on. When the AGV that is performing
a task has path conflicts with other AGVs, the time spent
on the path becomes uncertain. In response to this problem,
Li et al. [7] propose a dynamic adjustment based on the AGV
conflict probability to reduce the catch-up conflicts.

There are many algorithms for solving the AGV path
planning problem, include Dijkstra algorithm [8], A∗ algo-
rithm [9], artificial potential field method [10], ant colony
optimization (ACO) algorithm [11] and so on. The above sev-
eral algorithms have their own advantages and disadvantages
in planning the path.

The ACO algorithm is a heuristic optimization method
based on positive feedback mechanism, in which the
pheromone concentration on the path has a heuristic effect
on searching for the next node [12]. In the initial stage
when the ACO algorithm is used to search the path from
the starting node to the target node, the pheromone is evenly
distributed on the map, the search process is blind and many
nodes are traversed, so the search efficiency is low [13]. With
the increase of the number of iterations, the probability of
subsequent ants choosing the optimal path increases as the
concentration of pheromone on the optimal path increases,
thereby the ACO algorithm obtain the optimal path through
positive feedback based on pheromone. This paper uses the
minimum number of iterations after convergence to indicate
the convergence speed of the algorithm. The smaller the
minimum number of iterations after convergence, the faster
the convergence speed of the algorithm [14].

Based on the research of the above algorithms, this paper
uses the grid method to build the model, and use the ACO
algorithm to search for the shortest path. However, the ACO
algorithm has shortcomings such as low search efficiency and
easy to fall into the local optimum, so this paper improves the
original ACO algorithm.

The contribution of this paper can be summarized as fol-
lows:

First, amethod is proposed to improve the search efficiency
by the ACO algorithm with adaptive search step length to
search the path. But the planned path is a blindly tortuous
path, so this paper proposes a method of simplifying the path
to avoid planning a blindly tortuous path.

Second, the ACO algorithm of adaptive pheromone
volatilization coefficient whose pheromone volatilization
coefficient decreases as the number of iterations increases is
used to plan the shortest path to avoid falling into the local
optimum.

Third, when multiple AGVs perform tasks together,
in view of the inefficiency of the multi-AGV scheduling
system caused by path conflicts of multiple AGVs, this paper

proposes a method based on load balancing to avoid path
conflicts of multiple AGVs.

The rest of the paper is organized as follows: Section 2
presents related research on path planning. The section 3 intro-
duces the ACO algorithm and the mathematical model.
In section 4, this paper improves the search step length of
the original ACO algorithm and the simulation of improved
algorithm. Followed by section 5 improves the pheromone
volatilization coefficient of the original ACO algorithm and
the simulation of improved algorithm. Section 6 presents a
multi-AGVs path planning method based on load balanc-
ing. Section 7 draws the conclusion and its future research
direction.

II. RELATED WORKS
In recent years, tremendous research efforts have been made
for improving the path planning efficiency. Xiaolin et al. [15]
use the evaluation function of the A∗ algorithm to improve
the heuristic information of theACO algorithm and accelerate
the convergence speed of the search process. Gao et al. [16]
redefine the heuristic distance, which not only considers the
heuristic distance from the neighbor node of the ant to the
target node, but also considers the distance from the ant’s
current node to the target node. This strategy improves the
probability of ants searching for the target node and improves
the efficiency of path planning. Du et al. [17] use hybrid
genetic particle swarm optimization algorithm (GA-PSO) to
plan the path, and propose a particle iteration mechanism
based on time priority, which makes the algorithm directional
search path and accelerates the convergence speed of the
algorithm. Chen et al. [18] employ an improved pheromone
updating strategy which combines the global asynchronous
feature and ‘‘Elitist Strategy’’, this method emphasizes the
influence of the best ant (the individual with the current
shortest solution) by ‘‘Elitist Strategy’’. Therefore, the iter-
ation number of ACO algorithm invokes by chaos-based
particle swarm optimization can be reduced reasonably so as
to decrease the search time effectively.

In the original ACO algorithm, the ants in the search
process may fall into the local optimum, there are numerous
researches on the ACO algorithm and other algorithms about
how to jump out of the local optimum. Hub et al. [13] propose
the maximum and minimum ant strategy, the pheromone
concentration on the map is limited between the maximum
pheromone concentration and the minimum pheromone con-
centration. Wang et al. [19] propose a new dual-operator
and dual-population ant colony optimization (DODPACO)
algorithm, the load operators are adopted to limit the accu-
mulation of the pheromone on the path in the early search
path, and adjust the pheromone concentration on the path to
avoid falling into the local optimum. Gao et al. [16] propose
a path merging strategy, which connects different paths from
different ants to jump out of the local optimum and obtain
the global optimal path. Wang et al. [20] introduce a reward
and punishment mechanism when updating pheromone, and
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the improved ACO algorithm is more efficient in searching
paths.

For the multi-AGVs path planning, the coupled approach
regards the group of robots as a single entity, such that all
paths are planned simultaneously in a joint or composite
configuration space, and therefore could guarantee complete-
ness, but these solutions do not scale well with large robot
teams and they usually cannot be solved in real-time [21]. Das
and Jena [22] employ an improved version of particle swarm
optimization (IPSO) with evolutionary operators (EOPs) to
calculate an optimal collision-free trajectory path for each
robot in a known and complex environment. During the path
generation process, each robot calculates its next local opti-
mal coordinates in a stepwise manner to avoid path conflicts
of multiple AGVs. Fransen et al. [23] conduct research on
large-scale multi-AGVs systems, and update the weights of
road segment length according to thewaiting time of theAGV
when the paths of multiple AGVs conflict. Zhong et al. [24]
embed the Dijkstra algorithm into the genetic algorithm to
search for the shortest path, and uses the time window to
detect the path conflicts of multiple vehicles, and finally
obtain the shortest conflict-free paths of multiple AGVs. The
decoupled approach first computes separate paths for the
individual robots and then employs different strategies to
resolve possible conflicts. These solutions are usually fast
enough for real-time applications, but they cannot guarantee
completeness and the robots might easily get stuck in com-
mon deadlock situations. Zhao et al. [6] use the A∗ algorithm
to plan the path of each AGV in the workshop, by comparing
the paths of different AGVs, the waiting method is adopted
to solve the catch-up conflicts and the method of re-planning
the paths is used to resolve the opposite conflicts. Guo and
Zhu [25] use the Dijkstra algorithm to plan paths for multiple
AGVs in sequence, and control the speed before the AGV
reaches the conflicting node to reduce the negotiation time
and resolve the conflict.

III. THE ESTABLISHMENT OF MATHEMATICAL MODEL
OF ACO ALGORITHM
Ants leave pheromone on the path they walked during their
foraging. Pheromone volatilizes over time. The concentration
of pheromone remaining on the path determines the path
the ant will take [26]. The more ants that travel on a cer-
tain path, the greater the pheromone concentration on the
path [18], [27]. The following ants have a high probability
to choose the path with high pheromone concentration, and
the optimal path becomes clear [28].

The pheromone concentration between adjacent nodes and
the expected heuristic information between adjacent nodes
calculated by the heuristic function are used to search path,
and the transition probability function pkij(t) can be described
as follows [29]:

pkij(t) =


[τ ij(t)]∝ηij(t)β∑

j∈allowedk

[τij(t)]α[ηij(t)]β
, j ∈ allowedk

0, other situaions

 (1)

FIGURE 1. The process in which ants leave pheromone on the path they
have traveled, and finally find the optimal path.

where τij(t) represents the pheromone concentration released
by ants on the road segment between node i and node j on
the map, ηij(t) represents the heuristic information of the
path segment between node i and node j on the map, and α
represents the inspiration factor of pheromone, β represents
the expected heuristic factor, which reflects the strength of
the priori and deterministic factors in the process of finding
the optimal path, and k represents the set of nodes that are
allowed to be visited by ants [30]. The heuristic function ηij(t)
can be calculated as:

ηij =
1
dij

(2)

where dij represents the distance from node i to node j on the
map.

When the ant reaches the target node from the start-
ing node, the pheromone concentration on the path is
updated [31], the pheromone concentration τij(t + 1) on the
road segment between node i and node j after the ant reach
the target node can be described by the following equations:

τij (t + 1) = (1− ρ) τij (t)+1τij(t) (3)

1τij (t) =
∑m

k=1
1τ kij(t) (4)

1τ kij (t) =


Q
Lk
, The ant k passes the node (i, j)

0, Others
(5)

where τij(t) represents the pheromone concentration on the
road segment between node i and node j before the algo-
rithm updates the pheromone concentration. ρ represents the
pheromone volatilization coefficient, and the value range is
ρ ∈ (0, 1), 1τij(t) represents the sum of the increased
pheromone concentration of all ants passing through the road
segment between node i and node j before the algorithm
updates the pheromone concentration, and1τ kij (t) represents
that before the algorithm update the pheromone concentra-
tion, the increased pheromone concentration on the road seg-
ment between node i and node j by ant k . Q represents the sum
of pheromone released on the map when the ant reaches the
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target node, m represents the number of ants, and Lk presents
the length of the path that the ant travels after reaching the
target node.

IV. THE PROPOSED ACO ALGORITHM WITH ADAPTIVE
SEARCH STEP LENGTH AND SIMULATION ANALYSIS
A. THE WORKFLOW OF ACO ALGORITHM WITH ADAPTIVE
SEARCH STEP LENGTH
When the original ACO algorithm is used to search the opti-
mal path, the search efficiency is low and time -consuming,
this paper proposes an ACO algorithm with adaptive search
step length. In the ACO algorithm with adaptive search step
length, this paper chooses whether to use the 2 times search
step length to search path, which improves the search effi-
ciency of the algorithm.

Algorithm 1 Strategy to Adaptive Search Step Length
1 Input: The path being planned
2 Output: The path being planned after adopting adaptive

search step length method
3 length← size (path)
4 q0(x0, y0)← path (length-1)
5 q1(x1, y1)← path (length)
6 1x ← x1 − x0
7 1y← y1 − y0
8 x2← x1 +1x
9 y2← y1 +1y
10 if (x2 > 0&&x2 ≤ MM)&&(y2 > 0

&&y2 ≤ MM ) then
11 if G (x2, y2) == 0
12 if Tau (q1, q2) ≥ Tau (q0, q1)
13 path← [path, q2]
14 end if
15 end if
16 end if
end Algorithm 1

As shown in Algorithm 1, according to the last two nodes
of the path, through the linear principle, the node q2(x2, y2) is
obtained when the path is searched with twice the search step
length (line 3-9). If the location of node q2 is within the map
range, the algorithm executes the next step, where the size of
the map is MM × MM (line 10). If the position of node q2
on the map is not an obstacle, the algorithm executes the next
step. if the pheromone concentration between node q1 and
node q2 is not less than the pheromone concentration between
q0 and q1, then node q2 is added to the path (line 11-12).

However, the path obtained by the ACO algorithm with
adaptive search step length is a blindly tortuous path. There-
fore, in each iteration, after each ant reaches the target node,
the method of simplifying path can avoid getting blindly
tortuous paths, at the same time this paper uses this method
to reduce the length of the path searched by each ant in each
iteration. As shown in Fig. 3, there are three kinds of curved

paths in the path of the AGV that need to be simplified, and
different methods are used to simplify different turning paths.

When the pheromone concentration on the path is updated,
this paper can know from Eq. (3), Eq. (4), and Eq. (5) that
the smaller the path length, the more the pheromone con-
centration on the path increases, which further accelerates
the convergence of the algorithm. Therefore, the strategy to
adaptive search step length and the method to simplify the
path of each ant in each iteration can improve the search
efficiency of the original ACO algorithm [32].

Algorithm 2 Method to Simplify the Path of Each Ant in
Each Iteration
1 Input: The path of each ant in each iteration
2 Output: The path of each ant in each iteration after

simplifying path
3 count ← size (path)
4 for i← 1tocc-2
5 q11(x11, y11)← path (i)
6 q22(x22, y22)← path (i+ 1)
7 q33(x33, y33)← path (i+ 2)
8 Calculate the slope based on the coordinates, and

then calculate the angle
9 if the angle is 90 degrees by Fig.2(a) then
10 path (i+ 1)←0
11 end if
12 if the angle is 45 degrees by Fig.2(b) then
13 path (i+ 1)←0;
14 end if
15 if the angle is 90 degrees by Fig.2(c) then
16 path(i+ 1)←sub2ind(size(G),

(x11 + x33)/2,(y11 + y33)/2)
17 end if
18 Delete the nodes numbered 0 in the path
19 end for
end Algorithm 2

As shown in Algorithm 2, in the path obtained by each
ant in each iteration, three consecutive nodes are extracted
in sequence, and the slope of the straight line is calculated by
the coordinates of the nodes, and the turning angle is further
calculated (line 3-8). According to different turning angles,
different path simplification strategies are adopted as shown
in Fig. 3(a), Fig. 3(b), and Fig. 3(c) (line 9-17). The size of the
simulation map isMM×MM , for example, whenMM = 20,
there are 400 nodes on the map, and each node is numbered,
and each number corresponds to the coordinates of a node.
Sub2ind is a function of MATLAB, which is used to convert
the subscript of an element in the array to the corresponding
index value of the element in the array. G is a matrix, used
to represent a map. size (G) represents an array storing the
number of rows and columns of the matrix. Sub2ind(size(G),
(x11 + x33)/2,(y11 + y33)/2) refers to the number of the node
with coordinate ((x11 + x33)/2,(y11 + y33)/2) on the map
(line 16). After all path nodes are traversed, inappropri-
ate path nodes in the path are deleted, that is, the nodes
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FIGURE 2. Flow chart of the strategy to adaptive search step length.

FIGURE 3. The path of the AGV when turning. (a) Simplified the path
when the turning angle is 90◦. (b) Simplified the path when the turning
angle is 45◦. (d) Simplified the path when the turning angle is 90◦.

numbered 0 in the path are deleted, so as to obtain the
simplified path (line 9-18).

The specific implementation steps are as follows:
The first step is to set the initial values of the parameters.
The second step is to select the next node q1 visited by the

ant according to the transition probability function pkij(t).
The third step is to record the node q1, and update the path

length.

FIGURE 4. Flow chart of the method to simplify the path of each ant in
each iteration.

The fourth step is to update the path being planned with
a strategy to adaptive search step length and update the path
length.

The fifth step is to repeatedly update the pathwith amethod
to simplify the path of each ant in each iteration. If the path
length does not change, the next step is executed.

The sixth step is to repeat the second to the fifth step until
all the ants have planned the path.

The seventh step is to update the pheromone on the path
after all the ants have reached the target node.

The eighth step is to repeat the second to seventh step until
the number of algorithm iterations is met.

B. SIMULATION OF ACO ALGORITHM WITH ADAPTIVE
SEARCH STEP LENGTH
This paper uses the gridmethod to establish theAGVworking
environment map, and set the task starting node (3,18) and
the target node (17,3). The size of the map is 20 × 20,
the obstacles are randomly distributed with a probability of
30%, there are no obstacles at the location of the starting
node and the location of the target node. The number of
iterations of the algorithm is 140, There are 50 ants in each
iteration. After 140 iterations of the algorithm, the algorithm
stops searching the path and outputs the simulation results.
Pheromone volatilization coefficient is 0.4, the inspiration
factor of pheromone is 1, and the expected heuristic factor
is 7, and use the original ACO algorithm, the ACO algorithm
with simplified path, and the ACO algorithm with adaptive
search step length and simplified path to plan the AGV path
as shown in Fig.5.
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In 15 simulations, the locations of obstacles on each sim-
ulation map is different from the locations of obstacles on
other simulationmaps. The original ACO algorithm, the ACO
algorithm with simplified path, and the ACO algorithm with
adaptive search step length and simplified path are used
to conduct simulations and analyze the simulation results.
As shown in Table 1, in the simulation, this paper takes the
minimum number of iterations after the convergence of the
algorithm as the evaluation index to verify that the ACO
algorithm with adaptive search step length and simplified
path can effectively improve the search efficiency.

TABLE 1. Simulation of the ACO algorithm with adaptive search step
length.

As shown in Table 1, compared with the original ACO
algorithm, the ACO algorithm with adaptive search step
length and simplified path reduces the minimum number of
iterations after convergence by 15 times, and the average
minimum number of iterations after convergence is reduced
by 43.97%. Compared with the ACO algorithm with sim-
plified path, the ACO algorithm with adaptive search step
length and simplified path reduces the minimum number of
iterations after convergence by 12 times, and the average
minimum number of iterations after convergences is reduced
by 14.61%. There are 3 times that the minimum number of
iterations after the convergence of the ACO algorithm with
adaptive search step length and simplified nodes is larger than
that of the ACO algorithm with simplified path.

In the initial stage of the search path using the ACO algo-
rithm with adaptive search step length and simplified path,
the pheromone distribution is relatively balanced. In most
cases, the condition that 2 times the search step length is
used to search the path is satisfied. The path planned by
the ACO algorithm with adaptive search step length and

FIGURE 5. Simulation results of ACO algorithm with adaptive search step
length and simplified path. (a) The path of the original ACO algorithm.
(b) The path of the original ACO algorithm with simplified path. (c) The
path of the original ACO algorithm with adaptive search step length and
simplified path. (d) The convergence curve of the ACO algorithm with
adaptive search step length and simplified path.

simplified path is a blindly tortuous path, and the minimum
number of iterations after the convergence of the ACO algo-
rithm with adaptive search step length and simplified path
is larger than that of the ACO algorithm with simplified
path, which occurred 3 times out of 15 trials. In general,
the ACO algorithm with adaptive search step length and
simplified path improve the search efficiency compared with
the original ACO algorithm, and the ACO algorithm with
adaptive search step length and simplified path also improve
the search efficiency compared with the ACO algorithm with
simplified path.

Because obstacles are randomly distributed on the simula-
tion map with a probability of 30%, and in 15 simulations,
the map used in each simulation is different, the conclusion
of the simulations is universal that the ACO algorithm with
adaptive search step length and simplified path can effectively
improve the search efficiency.

V. THE PROPOSED ACO ALGORITHM WITH ADAPTIVE
PHEROMONE VOLATILIZATION COEFFICIENT AND
SIMULATION ANALYSIS
A. THE WORKFLOW OF THE ACO ALGORITHM WITH
ADAPTIVE PHEROMONE VOLATILIAZATION COEFFICIENT
In the process of the ACO algorithm with improved
pheromone volatilization coefficient being used to search for
the shortest path, if the pheromone volatilization coefficient
takes a larger value, the pheromone has less guiding effect
on the ants, which increases the randomness when the ACO
algorithm is used to search for the path and prevents the
ACO algorithm from falling into the local optimum [33];
if the pheromone volatilization coefficient takes a smaller
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value, the guiding effect of the pheromone on the ants
increases, which is not conducive to the global divergence
search path, and the algorithm is easy to fall into local opti-
mum. The appropriate pheromone volatilization coefficient is
very important to search the shortest path by the ACO algo-
rithm [34]. Therefore, this paper proposes an ACO algorithm
with adaptive pheromone volatilization coefficient to search
for the shortest path. The pheromone volatilization coefficient
can be calculated as:

ρ = (ρmax − ρmin)

[
2Kt
K
−

(
Kt
K

)2
]

(6)

where K represents the total number of search iterations, Kt
represents that the number of iterations is t , ρmax represents
the largest pheromone volatilization coefficient, ρmax = 0.9,
ρmin represents the smallest pheromone volatilization coeffi-
cient, ρmin = 0.1.

The variation trend of pheromone volatilization coefficient
is shown in Fig. 6. The pheromone volatilization coeffi-
cient gradually decreases as the number of search iterations
increases.

B. SIMULATION OF THE ACO ALGORITHM WITH
ADAPTIVE PHEROMONE VOLATILIZATION COEFFICIENT
For the simulation of the ACO algorithm with adaptive
pheromone volatilization coefficient, the simulation param-
eters are the same as those in Part B of section 4, but
the pheromone volatilization coefficient of the ACO algo-
rithm with adaptive the pheromone volatilization coefficient
is obtained by Eq. (6), the pheromone volatilization coef-
ficient gradually decreases with increasing iterations. The
pheromone volatilization coefficient of the original ACO
algorithm is 0.4. This paper designs the simulation of the
ACO algorithm with adaptive pheromone volatilization coef-
ficient, which uses the original ACO algorithm and the ACO
algorithm with adaptive pheromone volatilization coefficient
to plan the paths separately, and analyze the simulation
results.

As shown in Table 2, there are 15 sets of simulation results.
Each set of data corresponds to a map. On the same map, the
original ACO algorithm and the improved ACO algorithm
with adaptive pheromone volatilization coefficient are sim-
ulated.

According to the data in Table 2, compared with the
original ACO algorithm, the ACO algorithm with adaptive
pheromone volatilization coefficient reduces the minimum
number of iterations after the convergence of the original
ACO algorithm 15 times out of 15 simulations, and reduces
the minimum number of iterations after convergence by
59.25% on average.

After 15 simulations, the simulations of the improved ACO
algorithm with adaptive pheromone volatilization coefficient
conclude that compared with the original ACO algorithm,
the ACO algorithm with adaptive pheromone volatilization
coefficient improves the search efficiency.

TABLE 2. Simulation of the improved ACO algorithm with adaptive
pheromone volatiliazation coefficient.

FIGURE 6. Pheromone volatilization coefficient decreases as the number
of search iterations increases.

Because obstacles are randomly distributed on the sim-
ulation map with a probability of 30%, and 15 different
simulation maps are used in 15 simulations, the conclusion
of the simulation is universal that the ACO algorithm with
adaptive pheromone volatilization coefficient can effectively
improve the search efficiency.

VI. THE PROPOSED MULTI-AGVS PATH PLANNING
METHOD BASED ON LOAD BALANCING
The section IV and the section V of this paper use the
improved ACO algorithm to plan a single AGV path, the
improved ACO algorithm improves the search efficiency of
the original ACO algorithm. However, a single AGV perform
tasks is far from meeting the requirements of the workshop
to quickly improve work efficiency, so this paper needs mul-
tiple AGVs to perform tasks together. When multiple AGVs
perform tasks together, the paths of multiple AGVs are more
complicated and conflicts will inevitably occur, which will
seriously affect the work efficiency of the workshop. Plan-
ning paths for multiple AGVs not only requires the shortest
total path length, but also avoids path conflicts of multi-
ple AGVs, which increases the difficulty of planning paths
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FIGURE 7. Simulation results of ACO algorithm with adaptive pheromone
volatilization coefficient. (a) The path of the original ACO algorithm.
(b) The path of the ACO algorithm with adaptive pheromone volatilization
coefficient. (c) The convergence curve of the ACO algorithm with adaptive
pheromone volatilization coefficient.

for multiple AGVs, so this paper proposes a multi-AGVs
coordination method based on load balancing to avoid path
conflicts of multiple AGVs. This paper designs a simulation
based on load balancing strategy, which uses an improved
ACO algorithm to plan the paths for multiple AGVs in the
section VI.

A. MULTI-AGVS COORDINATION METHOD BASED ON
LOAD BALANCING
According to the established data association graph, this
paper can obtain the information of the multi-AGVs schedul-
ing system, so as to formulate the specific steps of the load
balancing. Data association diagram as shown in Fig. 8.

This paper proposes a method of load balancing to avoid
path conflicts ofmultipleAGVs. The specific implementation
steps can be described as follows:

Step 1: Establish an electronic map of the multi-AGVs
scheduling system;

Step 2: The idle AGV obtains tasks from the task list
according to the task priority, and clarifies the starting node
and target node of the task of the AGV;

Step 3: On the map, this paper sets up the road segment
record points to record the number of AGV passes of each
segment and the map information near the road segment
record points;

Step 4: This paper establishes the penalty coefficient func-
tion and penalty term function of the road segment to update
the length information of the road segment. The specific
expression is:

FIGURE 8. Data association diagram of load balancing method.

(1) When there is an AGV driving through a certain
road segment within the preset time range, the multi-AGVs
scheduling system obtains the total number of road segments
and the number of impassable road segments within the preset
range through the road segment record points, where the
road segment within the preset range refers to the passable
road segments connected to the road segment i. The penalty
coefficient function is described as Eq. (7):

αi = e
mi
Mi (7)

where αi represents the penalty coefficient of the road seg-
ment i, Mi represents the total number of road segments
within the preset range of the road segment i, and mi rep-
resents the number of impassable road segments within the
preset range of the road segment i.
(2) When a certain road segment is driven by an AGV

within the preset time range, the multi-AGVs scheduling
system records the number of AGV passes in a certain period
of time through the road segment i, and the penalty term
function of the road segment i is calculated in Eq. (8):

Pi = e
ni
N (8)

where Pi represents the penalty term function of the road
segment i, ni represents the number of times the road segment
i passed by the AGV, and N represents the total number of all
road segments passed by the AGV.

(3) The length of the road segment i is calculated in Eq. (9):

Li = αiPi (9)

where Li represents the length of the road segment i after
updating the global road segment length, αi represents the
penalty coefficient of the road segment i, and Pi represents
the penalty term of the road segment i.

Step 5: After updating the global road segment length, the
improved ACO algorithm is used to plan the path of the AGV.
If there is still a path conflict, on the conflict road segment or
conflict node, the AGVwith the higher priority will pass first,
and the AGV with the lower priority will wait or re-plan the
path.

B. VERIFICATION CASE
In the actual intelligent assembly workshop, multiple AGVs
are required to perform multiple tasks. This paper uses the
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FIGURE 9. The conflict paths of two AGVs.

TABLE 3. AGV path and its corresponding time.

grid method to establish a map model, the simulation param-
eters of the simulation are the same as those in Part B of
section 4 and Part B of section 5, but the size of the map is
10 × 10, and there are 100 grids in total. The side length of
each grid is 1meter. The time of the AGV to travel 1meter is
1T, where T is the time unit, and the AGV ignores the time it
takes to turn when performing tasks. As shown in Fig. 9, the
starting node of AGV#1 is A43 and the target node of AGV#1
is A48, the starting node of AGV#2 is A64 and the target node
of AGV#2 is A69. The preset time range in this paper is 2T.

This paper synthesizes the improvement of ACO algo-
rithm in section IV and section V, and uses improved ACO
algorithm to plan the paths for multiple AGVs in sequence.
Multiple AGVs may pass the same node or the same road
segment at the same time, so there are path conflicts of
multiple AGVs. This paper plans the paths for AGV#1 and
AGV#2 in sequence and calculates the time for two AGVs to
pass on each road segment, as shown in Table 3. As shown in
Fig. 10, a path conflict between the two AGVs is indicated by
a timewindow [35]. This paper first plans the path of AGV#1,
in order to avoid the path conflict between the two AGVs,
this paper proposes a load balancing strategy, which is used
to plan the path of AGV#2 to avoid the path conflict caused
by the two AGVs passing through the same node or the same
road segment at the same time period.

The road segments of AGV#1 are A43-A44, A44-A45,
A45-A46, A46-A47, A47-A48, and number the road seg-
ments of AGV#1 as 1, 2, 3, 4, 5, 6.

This paper uses the method of load balancing to update the
global road segment length.

For the road segment 1, within the preset range of road
segment 1 are A33-A43, A52-A43, A53-A43, A54-A43,

FIGURE 10. Time window of path conflicts between the two AGVs.

FIGURE 11. The path of the two AGVs after updating the global road
segment length using the method of load balancing.

FIGURE 12. Time window model of two AGVs without path conflict.

A43-A44, A44-A53, A44-A54, A44-A45. There are no road
segments that conflict with the path of AGV#1 on the map,
that is, there is no impassable road segment within the preset
range. The total number of road segments within the preset
range of road segment 1 is M1 = 8, and the number of
impassable road segments is m1 = 0, the penalty coefficient
of road segment 1 is obtained by Eq. (7), that is∝1= 1.0000.
The time for AGV#1 to enter road segment 1 is 0T, the
preset time range is 2T. In the time range from 0T to 2T, the
number of times that the AGV#1 pass the road segment 1 is

VOLUME 8, 2020 213353



Y. Liu et al.: Research on Multi-AGVs Path Planning and Coordination Mechanism

TABLE 4. The global road segment length.

TABLE 5. Improved AGV path and its corresponding time.

n1 = 1, and the road segments passed by the AGV#1
are A43-A44, A44-A45, then the number of road segments
passed by AGV#1 is N = 2, the value of the penalty function
of road segment 1 is obtained by Eq. (8), that is p1 = 1.6487.
After the load balancing strategy is used to update the length
of the road segment 1, the length of the road segment 1 is
obtained by Eq. (9), that is L1 = 1.6487 meters.
As shown in Table 4, the global road segment length is

updated by the method of load balancing.
After the method of load balancing is used to update the

global road segment length, this paper uses an improved
ACO algorithm to plan the path of AGV#2. It can be seen
from Table 5 that the specific road segments that the AGV#1
and the AGV#2 perform tasks and the corresponding time
information to reach these road segments. This paper marks
the time of the two AGVs to pass each segment in the time
windowmodel, as shown in Fig. 12, the path conflict between
the two AGVs is avoided [36]. This simulation verified that
the load balancing strategy can effectively avoid path con-
flicts of multiple AGVs.

VII. CONCLUSION
This paper uses ACO algorithm to plan the path and improves
the shortcomings of the ACO algorithm. Aiming at the short-
comings of the low search efficiency of ACO algorithm, this
paper proposes a strategy to improve the search step length to
improve search efficiency, and use the method of simplifying
path to avoid getting blindly tortuous paths. Aiming at the
shortcoming of ACO algorithm that it is easy to fall into
local optimum, this paper proposes a method of adaptive
pheromone volatilization coefficient. On the one hand, this
method is used to avoid ACO algorithm from falling into
local optimum, and on the other hand, this method is used to
speed up the convergence speed of the ACO algorithm. This
paper proposes a multi-AGVs path planning method based on
load balancing, which avoids path conflicts of multiple AGVs
and further improves the work efficiency of the assembly
workshop.

This paper only conducts in-depth research on ACO algo-
rithm, so this paper can combine ACO algorithm with other
algorithms to improve the performance of ACO algorithm.
This paper has less research on the resolution methods of
path conflicts of multiple AGVs, so the methods of conflict
resolution can be further studied.
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