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ABSTRACT Machine learning (ML) algorithms have gained prominence in time series prediction problems.
Depending on the nature of the time series data, it can be difficult to build an accurate ML model with the
proper structure and hyperparameters. In this study, we propose a predictive error compensation wavelet
neural network model (PEC-WNN) for improving the prediction accuracy of chaotic and stochastic time
series data. In the proposed model, an additional network is used for the prediction of the main network error
to compensate the overall prediction error. The main network takes as inputs the time series data through
moving frames in multiple-scales. The same structure and hyperparameter sets are applied for quite distinct
four types of problems for verification of the robustness and accuracy of the proposed model. Specifically,
the Mackey-Glass, Box-Jenkins, and Lorenz Attractor benchmark problems, as well as drought forecasting
are used to characterize the performance of the model for chaotic and stochastic data cases. The results show
that the PEC-WNN provides significantly more accurate predictions for all compared benchmark problems
with respect to conventional machine learning and time series prediction methods without changing any
hyperparameter or the structure. In addition, the time and space complexity of the PEC-WNN model is less
than all other compared ML methods, including long short-term memory (LSTM) and convolutional neural
networks (CNNs).

INDEX TERMS Box-Jenkins, discrete wavelet transform, drought forecasting, Lorenz Attractor, Mackey-
Glass, neural networks, predictive error compensated wavelet neural network, Standardized Precipitation
Evapotranspiration Index (SPEI), time series.

I. INTRODUCTION
Time series prediction is an important area that has attracted
the attention of researchers from different fields, such as busi-
ness, economics, finance, science, and engineering [1], [2].

In this study, we propose an efficient ML structure for
time series prediction problems that provide considerably
higher accuracy and low time complexity with respect to
conventional algorithms such as long short-term memory
(LSTM) networks, and convolutional neural networks
(CNNs). Besides, the proposed algorithm has capability to
find accurate solutions for different types of problemswithout
changing the hyperparameter set or the network structure.

The associate editor coordinating the review of this manuscript and
approving it for publication was Huanqing Wang.

Themain aim of time series prediction is to collect and ana-
lyze the past observations of the time series data to develop a
model that describes the behavior of the relevant system [1].
Time series problems found in the literature, such as sunspots,
runoff, electric loads, temperature, gas furnace, drought, and
rainfall, can be interpreted through chaos theory [1]–[4].
The various methods for time series prediction have been
developed by using linear models. A conventional statistic
methods such as Auto-Regressive (AR) and Autoregressive
IntegratedMoving Average (ARIMA) assume linear relation-
ships between past values. The ARIMAmodels are relatively
robust andmore efficient than complexmodels. Development
and implementation of linear methods are relatively simple,
however, they are not able to capture non-linear relationships
in the data [5].
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In recent decades, ML methods, including artificial neural
network (ANN) models have attracted more attention in
the domain of time series forecasting. These models have
been widely used compared to various traditional time series
models. The ANNs models are intended to resolve non-linear
functional dependencies between the time series data in the
past and its future [6]. ANN models can be classified based
on network structure into feed-forward and recurrent neural
networks [7]. The most used feedforward neural networks
in time series predictions are the multilayer perceptrons
(MLPs) [5]. The MLP structure demands a large number
of parameters to solve complex non-linear problems. This
results in a low learning rate and poor generalization [5].
The prediction of time series data to achieve better accuracy
requires the NN models to be adaptive to changes that occur
over time in the data. Several neural networks (NNs) and their
modified models have been applied for non-linear time series
prediction to overcome these drawbacks [8]–[15].

Convolutional neural networks (CNNs) [16] are widely
used for learning nonlinear mapping functions from complex
data. They can be applied to a variety of problems, from
image data, time series to the outputs. The CNNs can learn
and extract the most important features due to special convo-
lutional operations.

Recurrent neural networks (RNNs) possess an internal
memory and makes them capable of incorporating changes
due to internal recurrence [17]. RNNs are computationally
more powerful than feedforward networks. Despite the effi-
ciency of NN, CNN, and RNN models in the prediction
of time series, two main problems can be addressed. The
performance of networks highly depends on the architecture
and hyperparameters of networks. The appropriate design
of CNN, RNN, and NN models becomes more difficult
regarding the nature of time series data. Therefore, the pre-
diction performance is affected by appropriate network
parameters.

In this study, we propose a predictive error compensated
wavelet neural network (PEC-WNN)model consisting of two
NNs. The motivation for using two separated NNs comes
from the following perspectives. Firstly, the forecasting mod-
els are facing with expending uncertainties such as the lack
of information for making more accurate predictions and
the accumulation of errors. A well-known drawback in the
recursive methods is sensitivity to the estimation errors since
their predicted values are used in the model instead of the
target values [18]. In contrary, in the proposed approach the
models are trained independently and hence not prone to
accumulate errors. We show that compensating the predicted
error through a second NN enhances the overall prediction
performance. The PEC-WNN uses time series input data in
multiple-time windows. Sampled time series data in the mov-
ing time window are first transformed into a set of wavelet
coefficients using a discrete wavelet transform (DWT) and
then fed into the NNs. DWT is applied separately to each
window by analyzing signal in time as well as in frequency
domain. The results show that using a multi-dimensional

time window improves the prediction performance without
increasing the algorithm complexity. The PEC-WNN
improves accuracy while at the same time prevents overfitting
by taking the advantage of multi-resolution DWT and NN.

The main contributions of the proposed method can be
summarized as:

1. Improvement of the prediction accuracy for chaotic
and stochastic time series data using multiple neural
networks where the secondary network is trained by
shifted time series prediction error of the primary net-
work so that overfitting can be avoided due to increase
of recurrence related feedback input.

2. The same structure and hyperparameter sets can be
applied for broad range of time series prediction prob-
lems with moving frames in multiple-scales.

3. The DWT yields better accuracy improvement than
directly applying the time series data to the neural
network in predictive error compensation.

In the next section, we explained the proposed PEC-WNN
model for time series prediction. The time series problems:
the Mackey-Glass chaotic time series, the gas furnace data
(series J) of the Box-Jenkins benchmark problem, the Lorenz
Attractor time series data, and drought forecasting problems
are provided in Section III along the corresponding results.
The time and space complexity of the proposed model with
respect to the models found in the literature have been
discussed in section IV Section V presents the concluding
remarks.

II. PREDICTIVE ERROR COMPENSATED WAVELET
NEURAL NETWORK MODEL
The predictive error compensated wavelet neural network
model (PEC-WNN) utilized in this study comprises of two
separate wavelet preprocessed neural networks, as demon-
strated in Fig. 1. The current input is shifted to the previous
value using the unit delay operator z−1 (see Fig. 1.a)). Along
with the four consecutive values, we compute the average
values of the different time intervals obtained by applying
the unit delay operator (Fig. 1.b)), in the same manner as in
(Fig. 1.a)). The input data consist of two different time win-
dows that are preprocessed in accordance with the time frame
using the discrete wavelet transform (DWT). The rationale for
applying DWT is due to its ability to analyze a signal both in
time and frequency domains. Unlike FT that provides insight
just into frequency content, the wavelet analysis can automat-
ically adapt itself to a suitable resolution and overcome the
limitations found in the FT [19], [20].

The DWT is a linear signal processing technique that trans-
forms a signal from the time domain to the "wavelet" domain.
The wavelets characterize a family of functions generated
from one single functionψ(t) by the operation of dilation and
translation. The mother wavelet function localized both in
time and frequency domain is represented by ψ(t), a scaling
function is defined by ϕ(t) and the parameters ji and ki can
be defined as the scale and translation parameters to generate
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FIGURE 1. The Predictive Error Compensated Wavelet Neural Network
model (PEC-WNN): a) Consecutive input values shifted using the unit
delay operator z−1, b) Average values of size five computed applying the
unit delay operator three times, c) Forecasting error calculation and input
preparation for the compensation network.

the families of functions, respectively, as given in (1) and (2).

ψj,k (t) = 2−
j
2ψ(2−jt − k) (1)

ϕj,k (t) = 2−
j
2 ϕ(2−jt − k) (2)

Formerly, we sample the data into a windowWi as in (3):

Wi=

{
None, i< lx
x(i− lx + 1), x(i− lx + 2), . . . x(i), i> lx

(3)

where x(i) is the i-th value of the input, lx is the length of the
signal part using the current window. Based on the selected
scaling functions and multi-resolution analysis, we obtain the
double-scaling equations as given in (4) and (5):

ψ(2−jt) =
√
2

∑
k

hkψ(2−(j−1)t − k) (4)

ϕ(2−jt) =
√
2

∑
k

gkϕ(2−(j−1)t − k) (5)

Applying the DWT to the current window, we compute the
scaling coefficients ci,j,k , and the wavelet coefficients di,j,k
using the following equations:

ci,j,k =
∑
n

hn−2kci,j−1,n (6)

di,j,k =
∑
n

gn−2kci,j−1,n (7)

where the coefficients hn−2k and gn−2k can be performed by
using (4) and (5):

hn−2k = 〈ϕj,k , ϕj−1,k 〉 (8)

gn−2k = 〈ψj,k , ψj−1,k 〉 (9)

Equations (6) and (7) are mathematical expressions of filter-
ing a signal through a high-pass (h[n]) and low-pass (g[n])
filters, which corresponds to convolution with an impulse
response of k-tap filters. Subsequently, the signal reconstruc-
tion can be computed by:

ĉi,j−1,n =
∑
k

hn−2kci,j,k +
∑
k

gn−2kdi,j,k (10)

In this work, as a common wavelet basis function, the sym-
metric Haar wavelet function is used. It beneficially dimin-
ishes the distortion rate during the signal decomposition
and the signal reconstruction. The Haar wavelet function
also reduces the processing and computational time signifi-
cantly [21]. The Mallat’s pyramidal algorithm that provides
high- (hn) and low- (gn) frequencies from a given signal
that are used for the decomposition of the input signal. The
low- and high- frequency components are used together as
input to the forecastingmodel to capture valuable information
during the training process. A block diagram of multilevel
wavelet decomposition is presented in Fig. 2, together with
the coefficients used as input to the first NN.

FIGURE 2. The DWT decomposition of the input signal using Mallat’s
algorithm.

The prediction of n-step-ahead time series data is obtained
by using the main network characterized by three layers:
input, hidden, and output layer. Mathematically, a hidden
layer with activation function g(.) and k hidden neurons can
be represented as given in (11):

g(
n∑
i=1

wji · xi + bj) = yj, j = 1, 2, 3, . . . , k, (11)

where wji = [wj1,wj2, . . . ,wjk ]T characterizes the weight
vector that connects the jth hidden neurons with the inputs,
and bj is the bias value of the jth hidden neuron. The result
of the jth output neuron mathematically can be computed as
represented in (12):

g(
k∑
i=1

βji · yi + bj) = Oj, j = 1, 2, 3, . . . ,N , (12)

210534 VOLUME 8, 2020



B. B. Ustundag, A. Kulaglic: High-Performance Time Series Prediction With PEC-WNNs

where βji = [βj1, βj2, . . . , βjm]T denotes the weight vector
connecting the jth hidden and output neurons, and bj is the
bias value of the jth output neuron.

The total number of output neurons is given by N . The
activation function g(.) approximate the relationship between
the input xi and the output, target ti. Consequently, there are
βi, wi, and bi such that:

n∑
i=1

βjig(wi · xj + bj) = tj, j = 1, 2, 3, . . . , n (13)

The employed network uses Rectified Linear Unit (ReLU)
activation function. The ReLU activation function, compared
to the widely used activation functions (sigmoid and hyper-
bolic tanged), significantly improves the performance of the
feed-forward networks [22]. The ReLU is a linear function
that returns the value provided as input if the value is higher
than zero as given in (14).

f (x) = x+ = max(0, x) (14)

The stochastic gradient descent (SGD) is used for optimiz-
ing, where the learning rate and momentum are 0.05 and
0.75, respectively. The SGD maintains a single learning rate
for all weight updates without varying during the training.
The learning rate is maintained for each network weight,
whereas it is distinctly adopted as learning folds. Secondly,
the PEC-WNN is used to improve forecasting performances
obtained in the first NN. The input data of the second NN is
constructed using the DWT preprocessed prediction errors.
The prediction error at a time (t + 1) is shifted applying the
unit delay operator z−1 (Fig. 1.c)). The output of the second
NN is the prediction of the error at a time (t + 1) using the
prediction errors at time (t), (t − 1), (t − 2) and (t − 3).
Finally, the predictive value from the first NN at a time

(t + 1) and predictive error (t + 1) from the second NN, are
used together to acquire the compensated predictive value at
a time (t+1). The main equations of the proposed model can
be expressed as given below:

xp(t + 1) = f (x(t), x(t − 1), x(t − 2), x(t − 3), x[t,t−4],

x[t−5,t−9], x[t−10,t−14], x[t−15,t−19]) (15)

x[i, j] =

∑j
i xi

(j− i)+ 1
(16)

errorp(t + 1) = f (err(t), err(t − 1), err(t − 2), err(t − 3))

(17)

error(t) = real value(t)− forecasted value(t) (18)

compensated value (t + 1)

= xp(t + 1)− errorp(t + 1) (19)

where xp(t + 1) characterizes predicted value at time (t + 1).
Four consecutive values, (x(t), x(t − 1), x(t − 2), x(t − 3))
and its average values of size five (x[t, t− 4], x[t− 5, t− 9],
x[t − 10, t − 14], x[t − 15, t − 19]) computed using (15),
represent the input of the first NN. The average values of
an interval [i, j] are computed using (16). The input data of

the second NN contains four errors obtained using the pre-
dicted values from the first NN using (17). The compensated
predicted value is computed by subtracting the predictive
value at a time (t + 1) from the predictive error at (t + 1),
which is given in the (19).

III. MATERIALS AND RESULTS
The performances of the proposed model are verified using
the Mackey-Glass, the Box-Jenkins gas furnace (series J),
the Lorenz Attractor time series data, and for the drought
forecasting problem the global SPEI index. The data sets are
applied to the different models such as simple neural network
model (hereafter NN), predictive error compensated neural
network model (PEC-NN), wavelet neural network (WNN),
and predictive error compensated wavelet neural network
(PEC-WNN).

The data sets are scaled by using the minimum/maximum
normalization method given in (20):

x(t)norm = (max2 − min2) · (
x(t)− min1
max1 − min1

)+ min2 (20)

where x(t) represents the real value, min1 and max1 are the
minimum and maximum values of observations. The max2
and the min2 refer to the desired maximum and minimum of
the new scaled values. The mean absolute percentage error
(MAPE), root-mean-square error (RMSE), and directional
accuracy (DA) are used for the comparison of the experi-
mental results. In Tab. 1, the mathematical formulations of
evaluation metrics are shown.

TABLE 1. The mathematical equations of used evaluation metrics.

where Xobs is observed value and Xmodel is modeled value in
time i. The number of data samples is given by n. The di is
given by:

Wi =

{
1 (Xmodel,i − Xmodel,i−1)(Xobs,i − Xobs,i−1) ≥ 0
0 otherwise

(21)

A. THE MACKEY-GLASS CHAOTIC TIME SERIES DATA
The chaotic Mackey-Glass time series data (Fig. 3) has been
typically used as a benchmark problem before considering
the suitability of a specific approach to real-world forecasting
problems [23]. The time series data have been generated from
the following differential equation (22):

dx(t)
dt
=

ax(t − τ )
1+ x10(t − τ )

− bx(t) (22)

where x (unitless) is the series in time t , and τ is the time
delay. The parameters α, β and τ are set as α = 0.2,
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FIGURE 3. The chaotic Mackey-Glass time series data.

β = 0.1, τ = 17. Note that, for τ > 17, the time series
show chaotic behavior [24]. The initial condition x(0) = 1.2
is used to generate the data points by using the fourth-order
Runge-Kutta method with time step 0.1.

The work from [24], uses non-consecutive values with the
constant time interval, T = 6 for prediction of the short-term
outputs. They performed experiments by considering inputs
as x(t − 18), x(t − 12), x(t − 6), x(t) to predict x(t + 6). Out
of 1000 samples, the authors used 500 for training the model
and 500 for testing performance. Similarly, [23] considered
sequential four input variables, x(t−3), x(t−2), x(t−1), x(t)
to estimate single output variable at time x(t + 5). Out
of 300 samples, half of the samples served for training and
the remaining half for testing.

Different than the previous studies, in this work, we con-
struct the data sets which contains the averages of dif-
ferent window sizes together with sequential values. The
first data set contains only four successive values obtained
by (23). In order to observe the effects of the average values
on the forecasting performance in the following data sets,
we include the average values of window size 5 and size 10,
obtained using equations (24) and (25), respectively, which
can be considered as daily data. Hence by using the average
values of size 5, we gain the business week resolution of data.
Moreover, extending it to the four shifted average values,
we obtain the monthly resolution.

In our study the forecasting intervals differ from the next
value (t+1), the fifth (t+5), the sixth (t+6), the forty-second
(t+42) until the eighty-fourth (t+84) value. Equally divided
into training and test sets, 1000 samples are used as in [24].

MG1 : y1 (t + T ) = f (x (t−3), x (t−2), x (t−1), x (t))

(23)

MG2 : y2 (t + T ) = f (x(t), x(t − 1), x(t − 2), x(t − 3),

x[0,4], x[5,9], x[10,14], x[15,19]) (24)

MG3 : y3 (t + T ) = f (x(t), x(t − 1), x(t − 2), x(t − 3),

x[0,9], x[10,19], x[20,29], x[30,39])

(25)

The RMSE results are presented concerning the con-
structed data sets (presented in the above equations) and its
forecasting time interval in Tab. 2. The results show that the
use of averages along with consecutive values significantly
reduces the error. In addition, the average values used in
conjunction with the successive values improve the forecast-
ing performances of the proposed model (PEC-WNN). The
selection of window size has a huge impact, considering the
predicting time interval. Small window size averages show
better results for short-term predictions, while window size
expansion shows better forecast performance for long-term
forecasts. Similarly, in comparison to the MAPE (Tab. 3) we
confirmed that appending the averages to the consecutive
values improve the results and reduce the forecasting errors.
The results for directional accuracy, DA in Tab. 4, shows
descent results for applied models where the PEC-WNN
model precedes.

TABLE 2. The RMSE results of The Mackey-Glass time series data
considering applied equations and forecasting time interval.

TABLE 3. The MAPE (%) results of The Mackey-Glass time series data
considering applied equations and forecasting time interval.

TheMackey-Glass time series problem results showed that
at different forecasting intervals, the PEC-WNN achieves
the lowest RMSE error. The second-best result found in the
literature [25], for short-term forecasting (t+1) is 0.0327. The
same time-interval forecasting done with PEC-WNN obtain
the RMSE of 0.0013, which reduces the RMSE by 95%.
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TABLE 4. The DA (%) results of The Mackey-Glass time series data
considering applied equations and forecasting time interval.

TABLE 5. The RMSE error comparison for the Mackey-Glass time series
data found in the literature for prediction time interval t = {+1,+6,+84}.

Similar results are noticed for (x+6) forecasting term, where
the best result found in the literature is 0.0055 [26]. This result
is obtained by using the dynamic cell structures, and local
linear models (DSC-LMM) proposed in [26]. The PEC-WNN
RMSE for time interval (t + 6) was 0.0027, which is 49%
better in comparison to the results found in the literature. The
long-term forecasting interval (t + 84) using the proposed
model achieves the RMSE of 0.028. On the other hand, for
the same forecasting interval, Cudy et al. [26], reached the
RMSE of 0.03 using the DSC-LMM model.

B. THE BOX-JENKINS TIME SERIES DATA
The Box-Jenkins time series data set is another frequently
used benchmark example in the prediction algorithms [24].
The method refers to the iterative application of a three-stage
modeling approach: 1) model-identification and selection,
2) estimation, and 3) statistical model checking [29]. The
first stage determines the stationarity of the data. The plots
of the dependent time series data are used to decide which
autoregressive or moving average components should be
applied. In the second stage, the estimation of parameters
of the selected model is obtained by using the maximum
likelihood or non-linear least square estimation. In the last
stage, the statistical model checking, we examine whether
the model follows the conditions of a stationary univariate
process. The data used in this study are well known as gas
furnace data (series J) prediction problem. The output of the
Box-Jenkins gas furnace time series data set is given in Fig. 4.

The inputs proposed in the literature, given as in 26 are
applied first. Subsequently, we used successive values of
the methane gas flow (27) to forecast the successive value.

FIGURE 4. The CO2 concentration in the gas in the furnace data set,
the output of the Box-Jenkins time series data.

Weexpanded our investigation by checking how the increased
amount of input data with its average values, affect the
forecasting performances. For that purpose, we applied the
averages of five and ten window sizes with four successive
values of methane gas flow with CO2 concentration in the
gas. Note that, the forecasting value is always the next (t+1)
value of CO2 concentration in the gas, while the input data
set differs.

The input equations for applied experiments are given
below (26 -29):

BJ1 : y1 (t+1) = f (v (t − 3) , y(t)) (26)
BJ2 : y2 (t+1) = f (v (t), v (t−1), v (t−2), v (t−3), y(t))

(27)
BJ3 : y3 (t+1) = f (v(t), v(t − 1), v(t − 2), v(t − 3),

v[0,9], v[10,19], v[20,29], v[30,39], y(t))
(28)

BJ4 : y4 (t+1) = f (v(t), v(t − 1), v(t − 2), v(t − 3),
v[0,4], v[5,9], v[10,19], v[20,29], y(t))

(29)

The results indicate that the proposed PEC-WNN shows
the lowest RMSE (Tab. 6) when the data set with four suc-
cessive and four average values with window size ten is used.
Compared to the MAPE (Tab. 7) and DA results (Tab. 8),
the PEC-WNN shows the lowest MAPE and the highest DA
results. The applied average values of a different timewindow
to the consecutive values improves the results.

TABLE 6. The RMSE results of the Box-Jenkins time series data
considering applied models and equations.

In the literature, the RMSE results for the gas furnace
(series J), or the Box-Jenkins problem changes from 0.273 to
0.843, while the lowest RMSE using the PEC-WNN is 0.059.
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TABLE 7. The MAPE (%) results of the Box-Jenkins time series data
considering applied models and equations.

TABLE 8. The DA(%) results of the Box-Jenkins time series data
considering applied models and equations.

TABLE 9. The RMSE error comparison for Box-Jenkins time series data
found in the literature for prediction time t = {1}.

The PEC-WNN achieves 78% less RMSE compared to the
second-best results found in the literature.

C. THE LORENZ ATTRACTOR
The Lorenz Attractor represents a classical time series mul-
tivariate prediction problem consisting of three ordinary dif-
ferential equations given in (30)-(32).

dx
dt
= σ (y− x) (30)

dy
dt
= x(ρ − z)− y (31)

dz
dt
= xy− βz (32)

The equations are obtained from the Navier-Stokes equa-
tions and used in fluid mechanics. The parameter settings
to exhibit the chaotic behavior are σ = 10, β = 8/3 and
ρ = 28, with initial conditions [x (0) , y (0) , z(0)] =
[0, 1, 1.05] as studied in Lorenz [35]. Different Lorenz maps
with the same general dynamics can be obtained by using dis-
tinctive initial conditions and parameter values. The Lorenz
map is given in the Fig. 5.

The data set contains 10,000 multivariate data samples.
From the plots of each trajectory interdependencies between
the time series can be seen (Fig. 6). Xiu et al. [36] applied a
multivariate data set as inputs to predict the single variable
as the output. We applied similar single and multivariate
inputs to our model. The input equations are given below in
(33)-(35). The output represents the next (t + 1) value of a
single variable.

LA1 : x(t + 1)

= f (x(t), y(t), z(t)) (33)

FIGURE 5. The Lorenz Attractor.

FIGURE 6. The Lorenz Attractor trajectories projection of each time series
for the first 3000 values.

LA2 : x(t + 1)

= f (x(t), y(t), y(t − 1), y(t − 2),

y(t − 3), z(t), z(t − 1), z(t − 2), z(t − 3)) (34)

LA3 : x(t + 1)

= f (x(t), y(t), y(t − 1), y(t − 2), y(t − 3), z(t),

z(t − 1), z(t − 2), z(t − 3), ȳ[0,9], ȳ[10,19], ȳ[20,29],

ȳ[30,39], z̄[0,9], z̄[10,19], z̄[20,29], z̄[30,39]) (35)

The constructed data sets are divided into training and
test sets, where 80% of the data is used for training and
20% for testing performances. The significantly low RMSE
(Tab. 10) is achieved using only the one previous value of
each trajectory for forecasting the next value. Similar to
previous experiments, herein we try to observe the impact
of adding average values of different time-window to the
consecutive values. The growth in the number of variables,
from a single to multivariate, increases the RMSE. On the
other hand, the usage of multivariate average values together
with consecutive multivariate values reduces the RMSE error
in comparison to the successive multivariate input. The low-
est value of MAPE (Tab. 11) is found in the PEC-WNN
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TABLE 10. The RMSE results for Lorenz Attractor data considering
applied models and equations.

TABLE 11. The MAPE(%) results for Lorenz Attractor data considering
applied models and equations.

TABLE 12. The DA(%) results for Lorenz Attractor data considering
applied models and equations.

TABLE 13. The RMSE error comparison for Lorenz Attractor found in the
literature for prediction time t = {1}.

model, with the utilization of consecutive and average values
together. In the end, very highDA (Tab. 12) results are noticed
for the applied input data set.

The best result for the Lorenz Attractor data set using the
multivariate input data is 0.0013 for the PEC-WNN model.
The PEC-WNN result obtained 64% less RMSE compared to
a similar experiment found in the literature, Xiu et. al. [36].
The Lorenz multivariate time series data with the natural
structure used as the input overperform the predicting results
where the single variable sequence is used.

D. THE DROUGHT FORECASTING
In this section, we also demonstrate the performance of the
proposed model when it is applied to the stochastic time
series data. The benchmark problems previously explained,
the Mackey-Glass, the Box-Jenkins gas furnace (series J),
and the Lorenz Attractor represent chaotic problems with
deterministic models. Their output can be determined based
on representing mathematical models when the initial con-
ditions and the model parameters are known. The pro-
posed PEC-WNN model for performance comparison is
also applied to the stochastic problem. The standardized
precipitation-evapotranspiration index (SPEI) drought index
developed by Begueria et. al [38] is selected for that purpose.
Drought identification and forecasting are very important in
limiting their effects. However, accurate drought prediction
remains a scientific issue due to the nature of data. The SPEI
represents an index that quantifies the drought condition over

a given area. The index can be calculated in several time
scales to adopt the characteristic drought response time of
the target natural and economic systems, by determining their
drought resistance [38]. The data set evaluates accumulated
precipitation minus potential evapotranspiration (PET) over
multiple time scales between 1 and 48 months, with global
coverage at a 0.5-degree resolution [39]. The advantages of a
used data set are that (a) it improves the spatial resolution of
the unique global drought data set at a global scale; (b) it is
spatially and temporally comparable to other data sets, given
the probabilistic nature of the SPEI; and, (c) it enables the
identification of various drought types, given the multiscalar
character of the SPEI [39]. The analyzed period is from
January 1901 until December 2015. The 1-month, 4-months,
and 6-months data were used (Fig. 7). The input-output func-
tions for the prediction model are given in the (36) and (37).
The input data sets consist of eight inputs with different
window sizes. The first data set contains one-month and
four-month data (36); the second data set one-month and
six-month data (37). In both cases, we tried to forecast the
next six months’ drought period. In equations, t represents
the SPEI values of one-month data, 4t the SPEI values of
four-month data, and 6t the SPEI values of six-month data.
The used PEC-WNN model contains the same hyperparame-
ters and the number of inputs that are applied to the previous
chaotic time series problems.

SPEI1 : y1 (6t + 1)

= f (x(t), x(t − 1), x(t − 2),

x(t − 3), x(4t), x(4t − 1), x(4t − 2), x(4t − 3)

(36)

SPEI2 : y2 (6t + 1)

= f (x(t), x(t − 1), x(t − 2),

x(t − 3), x(6t), x(6t − 1), x(6t − 2), x(6t − 3))

(37)

FIGURE 7. The Standardized Precipitation Evapotranspiration Index
(SPEI) for the period from January 1901 until December 2015 within
a) month, b) four months and c) six months.

As an alternative to the previously mentioned models,
for drought forecasting problems we additionally used the
LSTM model proposed in [13] and multivariate linear
regression (LR) for performance comparison. The proposed
PEC-WNN accomplished significantly low RMSE (Tab. 14)
with monthly and four-month data used as inputs given
in (36). The PEC-WNN model also provides the lowest
MAPE as seen in table 15.

The results of forecasting the SPEI index have shown
reasonable prediction accuracy for a six-month time scale
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TABLE 14. The RMSE results for applied models and equations for SPEI
data set.

TABLE 15. The MAPE (%) results for applied models and equations for
SPEI data set.

TABLE 16. The DA (%) results for applied models and equations for SPEI
data set.

TABLE 17. The SPEI RMSE error comparison for PEC-WNN, LSTM and LR.

considering the uncertainty level of stochasticity. The accu-
racy of the proposedmethodwith increasing the scale of SPEI
input data from four-months to six-months average data does
not show better performances. Evaluated SPEI prediction at
different time scale simultaneously used increases the perfor-
mance of the proposed method.

IV. DISCUSSION
The time series prediction model where a separate NN
model is used for predictive error correction of the main
NN, PEC-WNN has been applied to different kinds of
deterministic, chaotic, and stochastic time series problems.
The introduced method, PEC-WNN, has been compared
to twenty time series prediction methods found in the lit-
erature, to demonstrate the prediction performance where
the PEC-WNN model demonstrates the lowest RMSE error.
The predictive error compensation model overall reduces the
RMSE but when applied together with wavelet transform
as a preprocessing mechanism surpasses the other methods
applied and found in the literature. The PEC-WNN has been
applied to different problems without changing the network
structure and hyperparameters. The PEC-WNN, although in
its structure, uses two NNs is less computationally expensive
and time-consuming with respect to other MLmethods found
in the literature. The PEC-WNN complexity concerning the
number of parameters is relatively low (Tab. 18). The results
are consistent with one of the conclusions found in [40],

TABLE 18. The number of parameters of compared models.

which states that simple models tend to outperform complex
models. The proper arrangement of input data sets can signif-
icantly improve the forecasting performance of the proposed
model. The results show that different sizes of input data
frames used together with consecutive values improve the
forecasting performances.

V. CONCLUSION
In this work, a predictive error compensated wavelet pre-
processed NN model for time series prediction problems is
proposed. The model is consisting of at least two separate
NNs, where the input data are preprocessed using DWT in
both of them. It has been demonstrated that the second pre-
dictive error compensating network significantly improved
the overall accuracy of the proposed model at all bench-
mark problems. TheMackey-Glass, Box-Jenkins, and Lorenz
Attractor problems are used to evaluate the prediction per-
formance for chaotic time series case and global drought
forecasting problem for a stochastic case. The results show
that the PEC-WNN model provides 64% less RMSE for the
Lorenz Attractor, 78% less RMSE for the Box-Jenkins, and
95% less RMSE for the Mackey-Glass benchmark problems.
The proposedmethod achieves reasonable results also in fore-
casting the global drought SPEI index. An additional advan-
tage of the proposed model is less sensitivity to its hyper-
parameters and structural settings for a broad range of time
series prediction problems. The same network structure of
PEC-WNNhas been used in all given benchmark evaluations.
Both the time and space complexity of the proposed model
was less than the compared other machine learning methods
in all cases. Though the proposed PEC-WNNmethod demon-
strated promising results, more improvements can also be
achieved through fusion with additional cascaded predictive
error compensating networks for multidimensional data sets.
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