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ABSTRACT In this article, a novel three-phase asymmetrical multilevel inverter is presented. The proposed
inverter is designed with an optimal hardware components to generate three-phase nineteen output voltage
levels. The proposed inverter exhibits various advantages like a suitable output voltage waveform with
improved power quality, lower total harmonic distortion (THD), and more moderate complexity, reduction
in cost, reduced power losses, and improved efficiency. A comparison of the proposed topology in terms
of several parameters with existing methods illustrates its merits and features. The proposed inverter tested
with steady-state and dynamic load disturbances. Various experimental results are included in this article
to validate the performance of the proposed inverter during various extremities. In addition, a detailed
comparison is tabulated between simulation and experimental results graphically. The proposed inverter
has been stable even during load disturbance conditions. The simulation and feasibility model are verified

using a prototype model.

INDEX TERMS Multilevel inverter (MLI), total harmonic distortion, asymmetrical multilevel inverter.

I. INTRODUCTION

The multilevel inverter is gaining a lot of importance in
industrial and high-power applications because of the usage
of low-level inverter results in an output with more signif-
icant harmonics. So, the research and study of these mul-
tilevel inverters are gaining a lot of importance. There are
different methods to realize the working of multilevel invert-
ers [1]-[6]. The most prominent among these topologies is
neutral point clamped inverters, the flying capacitors, and the
cascaded inverters [2]. These topologies are aided with dif-
ferent switching patterns like single pulse width modulation
SPWM, multi-carrier pulse width modulation MCPWM, and
staircase modulation technique to achieve AC output voltage
waveform with lower harmonics. With an increased number
of levels of the inverter, the THD improves. In a neutral point
clamped method [7]-[9], diodes are used to facilitate multiple
voltage levels to the capacitor bank connected in cascade
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mode via various phases. The diodes are the clamping devices
that allow limited voltage to transfer through them, reducing
the stress from other devices. The peak voltage of these
inverters is half of the energy supplied, which is one shortfall
and the same can be eliminated by aggregating the number
of diodes, switches, and condensers, the output voltage is
limited and for over three-levels the charge balance gets
disturbed. The applications of these inverters include static
Var compensation, variable motor speed drives, high voltage
DC and AC transmission lines, high voltage system inter-
connection. Flying capacitors [10] topology is quite simi-
lar to the diode-clamped multilevel inverter, but capacitors
clamping devices in this method, unlike the diode-clamped
MLI [23]-[39].

In recent past, modular multilevel converters (MMC) are
suited for high-voltage applications and these are introduced
with various sub-modules, where each sub-module comprises
two switches with a DC capacitor. The switching losses and
harmonics are less. Number of switches and capacitors are
used in this topology, which increases the control complexity
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FIGURE 1. Proposed Three-Phase Configuration of 19MLI.

and cost [11], [12]. There are three types of multilevel invert-
ers neutral point clamped (NPC) [13], Cascade H-bridge
inverter (CHB) [14] and flying capacitor (FC) [15]. Number
of switches and clamping diodes are used in diode-clamped
inverter for higher levels, moreover the balancing of capac-
itors is a challenging task as these are connected in series.
Even for higher levels, larger number of capacitors are
used in flying capacitor where the balancing of voltage is
complex [16].

The advantage of symmetric structures is modularity that
can able to design and extend easily. Two such inverter
structures are presented in [17], [18], where the mixture of
basic units and H-bridge used based on non-isolated DC
sources require number of switches, increases the control
complexity, size and cost. A new multilevel inverter topology
with insulated driver circuit and reduced number of switches
has been presented in [19]. In addition, the calculation of
DC voltage sources is proposed, and it comprises four high
rating switches. This requires a bi-directional switch for the
blocking voltage and conducting current in both directions.

In [20], a three-phase multilevel inverter suited for elec-
trical drive applications has been presented. Counterpart of
the CHB inverters, power cells are cascaded, and each cell
is having two series legs. The design equations for the load
voltage with steps carried out using pulse-width modulation
phase shifting multi-carrier modulation technique are ana-
lyzed. There are several DC voltage sources in this topology
results in the increase in the total cost of the inverter which is
a disadvantage of this structure.

A new topology of multilevel inverter is presented in [21].
This structure mainly focuses on reducing the power tran-
sistors regarding the number of levels. Various equations
are derived mathematically. This requires a bi-directional
switch for the blocking voltage and conducting current in both
directions.

This article presents a reduced circuit part for renewable
energy applications, counting inverter topology at nineteen
levels. This manuscript presents a 19-level asymmetric cas-
caded MLI with reduced DC sources and switches with
relativity low THD. The proposed inverter is implemented
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FIGURE 2. Proposed Phase Leg-A Configuration of 19MLI.

and tested only with a resistive, inductive load, and dynamic
variations in the load from R to L and vice versa. The anal-
ysis of total standing voltage can be done [22]. During the
dynamic load period conditions, the proposed inverter is well
stabilized [23]-[41], and this inverter is suitable for renewable
energy applications [23]-[41].

The article was structured as follows. Section II that fol-
lows cans the details of the proposed topology of 19-levels.
Part III presents the parameter calculations, section IV
presents the loss and efficiency, section V presents TSV cal-
culation, and section VI and section VII present the findings
of the analysis and experiment along with the simulation
results.

Il. PROPOSED THREE-PHASE ASYMMETRICAL INVERTER
TOPOLOGY

The proposed three-phase 19-level-inverter is shown in Fig.1.
The topology proposed for each phase comprises two bidirec-
tional and nine unidirectional power semiconductor switches
for each phase leg is shown in Fig.2. The bidirectional
switches are used to avoid short-circuits and to block currents
in both directions for the DC supply. In this topology, usually,
the desired voltage is realized from different DC voltage links
or sources. Based on the DC sources, the cascaded MLIs are
classified as symmetrical(equal) and asymmetrical(unequal)
inverters. In symmetrical type, the voltage of the DC links is
held at the same level. The demerit of symmetrical topology
is that with the increase in output voltage levels, the num-
ber of switches also increases. In order to overcome this,
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TABLE 1. Conduction states of switches.

Vo(V)
V1+Va+V3=400.5
V1+V3=356
V1-Vo+V3=311.5
Va+V3=267
V3=222.5
V1+V2=l78
V1=133.5
V1-V2=89
Vo=44.5

oV

-Vo=-44.5
(V1-V2)=-89
-V1=-133.5
(Vi+V2)=-178
-V3=-222.5
-(V2+V3)=-267
-(V1-Va+V3)=-
311.5
(V2+V3)=-356
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(V1+V2+V3)=400.5

the DC links are supplied with unequal voltages called the
asymmetrical topology. In the proposed 19 level asymmet-
rical MLI, the switches are selected based on the strategy
in avoiding short circuit in the specified path of current
traversal. The initial level is got by conducting the switches
S3, S5, SA, TA and TB forming a closed path precisely
without short circuit. In this mode of operation, the block-
ing voltage of switches is in calculating the total standing
voltage. In the second mode of operation, the switches S2,
S5, SA, TA, TB are in conduction. These are selected for
avoiding the short circuit, and even the addition of maximum
blocking voltages of each semiconductor switch is lesser in
value, which results in less TSV and cost effective. Similarly,
the switch selection patterns up to 19 level are represented
in Table.3. Based on this look-up table, the switches are
selected based on the above conditions in which the overall
loop of conduction of switches provides an efficient operation
of an inverter with less standing voltage across switches.
The proposed topology is implemented with three unequal
DC sources namely, Vi=133.5, V,=44.5V, and V3=222.5V
and load resistance 100 ohms, respectively. The switch-
ing losses in the system depend on switching frequency,
which is less because of the reduced voltage. This topol-
ogy also comprises the combining of various switches to
enhance the efficiency of the inverter. The switching states
for the proposed inverter are tabulated in Table 1. The pro-
posed inverter phase A and modes of operation are shown
in Fig.3 to 21, respectively. In Mode-1, the power switches
S3, Ss, Sa, Ta, and Tg are turn-on(conduction state) and
remaining switches will turn-off then, the output voltage
is the sum of Vp=V;| + V3 + V3=+4400.5V at the load
ends. In Mode-2, the power switches Sy, S5, S4, T4, and
Tp are turn-on(conduction state) and remaining switches will
turn-off then, the output voltage is the sum of Vo=V +V3 =
4356V at the load ends. In Mode-3, the power switches
S>, Sa, S, T4, and Tp are turn-on(conduction state) and
remaining switches will turn-off then, the output voltage is
the sum of Vo=V —V,+V3 = 4311.5V at the load ends.
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FIGURE 3. Mode-1 Vg = V; +V, + V3 = +400.5V.

In Mode-4, the power switches Si, S3, Ss, T4, and Tp
are turn-on(conduction state) and remaining switches will
turn-off then, the output voltage is the sum of Vp=V,+V3 =
4267V at the load ends. In Mode-5, the power switches
S1, Sy, S5, T4, and Tp are turn-on(conduction state) and
remaining switches will turn-off then, the output voltage is
Vo=V3 = +222.5V at the load ends. In Mode-6, the power
switches Sz, S4, Sa, Ta, and Tp are turn-on(conduction
state) and remaining switches will turn-off then, the output
voltage is the sum of Vo=V +V, = +178V at the load
ends. In Mode-7, the power switches Sy, S4, S4, T4, and
Tp are turn-on(conduction state) and remaining switches will
turn-off then, the output voltage is Vo=V 1=+133.5V at the
load ends. In Mode-8, the power switches S», S4, S5, Sa,
Sp, Ta, and Tp are turn-on(conduction state) and remaining
switches will turn-off then, the output voltage is the sum of
Vo=V1-V,=89V at the load ends. In Mode-9, the power
switches Si, S3, S4,, T4, and Tp are turn-on (conduction
state) and remaining switches will turn-off then, the output
voltage is Vp=V,=44.5V at the load ends. In Mode-10,
the power switches Tpg, and Tp are turn-on(conduction state)
and remaining switches will turn-off then, the output voltage
is Vp=0V at the load ends. In Mode-11, the power switches
S1, S3, Sa,, Tc, and Tp are turn-on(conduction state) and
remaining switches will turn-off then, the output voltage is
Vo = —V, = —44.5V at the load ends. In Mode-12,
the power switches Sz, S4, S5, Sa, Sg,, Tc, and Tp are turn-
on(conduction state) and remaining switches will turn-off
then, the output voltage is the sum of Vo = —(V1—Vy) =
—89V at the load ends. In Mode-13, the power switches S»,
S4, S4, T, and Tp are turn-on(conduction state) and remain-
ing switches will turn-off then, the output voltage is Vo =
—V;1 = —133.5V at the load ends. In Mode-14, the power
switches S3, S4, Sa, T¢, and Tp are turn-on(conduction
state) and remaining switches will turn-off then, the output
voltage is the sum of Vo = —(V| + V) = —178V at the
load ends. In Mode-15, the power switches S1, S;, S5, Tc,
and Tp are turn-on(conduction state) and remaining switches
will turn-off then, the output voltage is Vo = —V3 =
—222.5V at the load ends. In Mode-16, the power switches
Si, S3, S5, Te, and Tp are turn-on(conduction state) and
remaining switches will turn-off then, the output voltage is
the sum of Vo = —(V2 + V3) = —267V at the load
ends. In Mode-17, the power switches S», S4, Sg, Tc, and
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FIGURE 5. Mode-3 Vg =V; —V, + V3 = +311.5V.

Tp are turn-on(conduction state) and remaining switches will
turn-off then, the output voltage is the sum of Vg = —(V| —
V2+V3) = —311.5V atthe load ends. In Mode-18, the power
switches Sy, S5, S4, Tc, and Tp are turn-on(conduction state)
and remaining switches will turn-off then, the output voltage
is the sum of Vo = —(V1 4+ V3) = —356V at the load
ends In Mode-19, the power switches S3, S5, S4, T¢, and
Tp are turn-on(conduction state) and remaining switches will
turn-off then, the output voltage is the sum of Vo = —(V1 +
V2+4V3) = —400.5V at the load ends. The expected (typical)
output and gate pulse waveform are shown in Fig.22 and
simulation output voltage, current, THD, and gate pulses are
generated by staircase pulse width modulation technique are
shown in Fig.23 to Fig.27 respectively. The proposed 19 level
asymmetrical MLI is designed in such a way that the desired
output voltage to be 400V. This can be achieved by the proper
design of DC sources, such as V1=133.5V, V2=44.5V and
V3=222.5V based on the number of levels and proposed
topology. The selection of bidirectional switches at a specific
location avoids the short circuit and blocks the current in both
directions for a DC supply. The selected DC sources are tested
with various modes of operation based on the conduction of
switches regarding the switching frequency, and the expected
output is achieved, which is explained in Table.1.

A. DEVELOPMENT OF POTENTIAL MLI PARAMETERS

Parameters for the proposed topology circuit are set as:
The switches number(No. of switches) are calculated as;

N switches = 3k+2 (1)

If k is the no. of sources, then the switches no. of switches=
3 *3 + 4 = 13 by taking k=3.
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FIGURE 9. Mode-7 Vg = V; = +133.5V.

The sources no. of are calculated as:
N source = k (2)

Then the sources are N_source=3, taking k=3
The output level No. of is got as;

Nieets =2(2°) +3 3)
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FIGURE 13. Mode-11 Vg = —V, = —44.5V.

Then the level no. of is Nlel,d=2(23 + 3) = 19 with k=3
The voltage from the output is defined as;

Voups = [(2°) +1]+ V2 *

Then the voltage of the output is
Vourpur=(2> + 1) % 445 =
Vo=Vdc=44.5V.

400.5V, taking k=3 and

VOLUME 8, 2020
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FIGURE 17. Mode-15 Vg = —V5 = —222.5V.

Ill. POWER LOSS AND EFFICIENCY CALCULATION OF MLI
The losses can be calculated in both cases, the losses of
conduction and losing switching are the two key losses that
follow switches. The conduction losses can be got as follows;

Pciicre = [V_icar + R_cri® (1)] i(1) (5)
where Vigpr is IGBT forward voltage drop, and V_g; is
diode drop forward voltage. The o is a constant for the
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FIGURE 21. Mode-19 Vg = —(V1 + V2 + V3) = —400.5V.

IGBT specification [41], [42], and R_;gpr is the equivalent
resistance of the IGBTs and R_y is the equivalent resistance
of the diodes [41], [42]. The average value of the conductive
power loss (P_.;) of the multilevel inverter can be given as
follows [41], [42], considering that the current path includes
both N_;gpr transistor and N_, diodes at the moment ¢ [47].

1 2
Pa=5- f [N _igar (t) P_ei 168 (1) di] — (6)
7T Jo

212520

10vde
9Vde
8Vde
7Vde
6Vde
SVde
4vde
3Vde
2Vde
Vde

-Vde . i
Time(s)
avae A
-4Vde
-6Vde
-Tvde
-8Vde
-10Vde

Output Voltage Levels (V)

JJ1M oo Mo [c
. noonon

aonnoononanAAne o

wn
P4

i
;
g

\

E

\

E
B
B
4
—1
=
/

-
>
\

Switches (On/Off States)

-
=

Tc I >
T |

TinTe(s)

FIGURE 22. Expected (Typical) Output and Gate pulse waveform

of 19 MLL

Switching loss can be calculated according to the capacity
used in the switches. Losses may be got depending on the
turn-on and turn-off times of the switches. The losses from
switching can be estimated based on linear differences in
switching current and voltage. The energy figures are: Where
En_on and En_off are respectively the witch k turn-ON and
turn-OFF losses. The losses from switching are equal to the
sum of power losses from turn-on and turn-off, calculated:

Nﬁswitch N_on,k N_oﬂ,k

Ps=f Z Z En_on i+ Z En_o xj @)
K=1 j=1 j=1

The total power losses calculated as follows (P_total loss)
P_total loss — P_cl + P_sl (8)

The efficiency of the Inverter given below

P P
Efficiency = g —out )
P_in P_out + P_lass
where the output power and the input power are P_out and

P_in, respectively.
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FIGURE 24. Simulation Three-Phase output waveform of 19 MLI.

Can estimate the output power as follows;

P ot =V _yms ¥ 1 _pmg (10

Using equation (10) (V_rms =282.4V & I_rms=2.828A)
the experimental output power of 799.87 W is got. For
measurement, the parameter values are taken from the
IGBT CM75DU-12 datasheet [41], [42]. The V_switch value
(0.6V) is taken from the plot of performance characteristics
and RIGBT is 0.4-ohm, turn-on delay as 100 ns, turn-on up
time as 250 ns, turn off delay time as 200 ns and turn off
fall time as 300 ns for 11 switches [41], [42]. The proposed
inverter architecture would require 37 measures in one full
cycle. The conduction losses are determined by using equa-
tion 1; P_y; = 53.854 W, and E o, E_ o are 0.124W and
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FIGURE 26. Simulation Phase Leg-A output voltage & current waveform
of 19 MLI.

0.1625W respectively, from equation 7 the switching losses
are 0.2865 W, therefore, the total losses are calculated during
the conduction time and switching time by using equation 8
is 54.14W, finally from equation 9 efficiency is 93.67%.

IV. COMPARISON WITH RECENT INVERTERS

The proposed inverter contrasted with related topologies
of new inverters. Table.2 and Fig.28 to Fig.34 provides a
comparison of different component parameters such as sev-
eral electrical power switches (NSW), several DC sources
(NDCS), driver circuits (NDC), clamping diodes (NCMP),
clamping capacitors (NCP), efficiency(Eff), TSV, THD and
higher output voltage levels required for the inverter pro-
posed. thirteen power switches and three DC sources were
used in this topology. Next, the sum of gate driver circuits
is thus the same as the number of switches. Then, compared
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TABLE 2. Comparison of proposed with existing MLIs. "
Components | [43] | [44] | [45] | [46] | [47] | [48] | Proposed P25
MLI i
Switches 12 10 22 11 10 11 13 !
Sources T 2 3 5 2 q 3 z 20
levels 19 19 19 19 19 19 19 3
Driver 11 19 22 19 10 11 13 E
Circuits 5 15
Clamping 11 16 26 19 14 11 13 Z
Diodes a P
Clamping - 4 - - - - - kS 10 - -
Capacitors 5 ’
Transformers | 3 - - - 2 - - 'g o il
%THD - - 372 | 378 | 393 | - 3.89 s 5
Efficiency 87.723 - 93.49| - - - 93.67 z
(%) H |
TSV (V) 68Vdg 80Vdd 74Vd¢ 72Vdq 62Vdq 52Vdg¢ 60Vdc 0 . “
[43] [44] 145]  [46] [47] [48] Proposed
v
< Topologies ~  ----ceeeeeeeeommoonnans >
A 25 PO0g
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to existing topologies, the suggested asymmetrical topology, < 0 T TR — 5.

each part was calculated for a similar voltage level. While all

current topologies will need 10 to 22 switches [43]-{48] and FIGURE 31. Comparison of Recent Inverters vs Proposed MLI with

1 to 8 DC sources to provide an output voltage of 19 rates, NCMP(No. of Clamping diodes).

the proposed topology needs only 13 switches and three

sources with low THD. Compared with traditional topology, for a potential renewable application. Since the DC-link
the drastically reduced need for switches in the proposed condensers are not required for the proposed topology, they
topology to produce better results makes it more suitable are free from the question of voltage balance. Besides that,
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it doesn’t require any capacitor clamping and diodes clamp-
ing. Every topology, therefore, has its own merits and demer-
its. The topology suggested has several benefits, such as
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fewer switching devices, DC source count and driver circuits,
and a minimum number of switches per voltage point. For
asymmetric topology, the value of 3.89 percent total har-
monic distortion (THD) follows the IEEE 519 requirement.
Therefore, it concluded that the proposed topology requires
a minimum switch count using both high and fundamental
switching frequencies, thus minimizing power losses and
costs.

V. TSV (TOTAL STANDING VOLTAGE) CALCULATION
The maximum voltage stress across all switches is the impor-
tant parameter for the topology, and it can be represented as
the total standing voltage (TSV), which is equal to the sum of
maximum voltage stress across the switches [49], [S0]. This is
an important factor for the selection of switches. Total stand-
ing voltage (TSV) is the term which is determined regarding
the blocking voltages across all the switches with all voltage
levels considered. The voltage stresses across each pair of the
complementary switch will be same. However, the TSV is
calculated for the proposed topology and is compared with
various topologies and found to be the best in having the less
standing voltage because of which the losses get decreased.
As the blocking voltage capability is less, the rating of the
switches is fewer results in cost effective. The voltage stress
of the switches in different units is given as: The bidirec-
tional switch voltages are Vsp;=V; and the unidirectional
switch voltages are Vg,,,;=2V; where is i =1,2...... n and
n is the number of complementary switches. With tertiary
mode, the maximum output voltage (Vo,max) of the proposed
topology is:

Vo.max = 400V (11)

The total standing voltage (TSV) is an important factor for the
selection of switches. TSV is the addition of the maximum
blocking voltage across each semiconductor device [22].
The look-up table for 19-level inverter is shown In Table.3.
Therefore, the voltage across the switches are:

Vs1 = 6Vge

Vs = Vss = 10Vac

Vs = Vsa =8V

Via = Vre = WV

Vrg = Vip = 10V,

The voltage stress of unidirectional switches of a bidirectional

switch is given as: Vg4=6V,;,. and Vsp=2V,;. As two unidirec-

tional switches are used for the two bidirectional switches,

blocks the voltage of 8Vdc. Therefore,

Tsy =2(Vs1+Vrp+Vr)+Vsa+Vsp =52V +8Vie =60V,

12)

The TSV (total standing voltages) of the proposed inverter is
compared with existing inverters is shown in Fig.34.

VI. EXPERIMENTAL RESULTS

The prototype for 19 level inverter hardware setup systems
is recognized and confirmed it experimentally. Fig. 44 spec-
ifies the prototype of the multilevel inverter proposed for
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TABLE 3. The look up table for 19-level inverter.

Level ON Switches

1 S3,S55,54,TA, T
2 S2,S5,54,TA, T
3 S2,54,55,TA, T
4 51,513,855, T4, T

5 51,952,855, T4, T
6

7

8

S3,854,54,. T4, T
52,84, 54, TAT, T
S2,584,855,584,.58,Ta, Tp

9 51,853,854, T, Tp
10 Ta,Th,
11 51,853,584, Tc, Tp
12 Sa, S4, S5, 54,58, Tc, Tp
13 Sa, 84,54, Tc, Tp
14 S3,854,54.Tc.Tp
15 51,852,855, 17¢,.Tp
16 51,582,853, T¢,.Tp
17 S2, 84,58, Tc, Tp
18 S2, 85,54, Tc, Tp
19 S3, 85,54, Tc, Tp
2 3 4 :BUD 0s 20008/ Stop
= |
[ — S SN N
5] |
Dy
=pNiEnn
7] __|
IE | — R
- |
7]
o]
|

FIGURE 35. Experimental Gates Pulses of 19 MLI.
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FIGURE 36. Experimental Output waveform of Phase Leg-A 19 MLI.

this. Simulink block sets are dumped in to the digital I/O
ports by dSPACE RTI 1104, and the MATLAB-Simulink is
used to implementing the PWM form of staircase modulation
(for gate pulses). Use 20 output pins, which are calculated
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FIGURE 38. Experimental Output waveform of Three- Phase 19 MLI.
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FIGURE 39. Experimental Output waveform of Phase Leg-A with R Load.

using physical I/O ports, and real-time interfacing appli-
cations are facilitated. The pulse is created from the
TLP 250 instrument, which is mined to input the RTI
1104 dSPACE. Gate driver is used to boosting the 5 V
to 15 V PWM pulse setup. The control switch is turned
on with a 15V pulse. The specifications of the prototype
model part are shown in Table 5, the results of the prototype
investigation are verified at a steady-state, load disturbance
situations are conducted with the help of resistive, inductive
loads, and THD is shown in Figures 35 to 43, respectively.
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FIGURE 40. Experimental Output waveform of Phase Leg-A with L(Motor)
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FIGURE 42. Experimental Output waveform of Phase Leg-A with LR Load.

The pulses from the gate produced using Driver Circuit
TLP250 is shown in Figure.35. The steady-state study
was verified with 400 V resistive load (R load), with
4 A attaining output current. The RMS output and voltage
found at 282.84 V and 2.828 A current, respectively. The
hardware tests are shown respectively in Figure.36, Fig-
ure.37, Figure.38 and Figure.39. The experimental proto-
type results show notably that with 19 output voltage levels.
Speciously, the waveform shows that the angle of the transi-
tion between the charge current and the charge voltage is zero.

VOLUME 8, 2020

FIGURE 44. Prototype Model of 19MLI.

After the achievements of steady-state testing with resistive
load, we presented 400 V motor (inductive value is 98mH
with 50ohm internal resistance) load (loading power factor)
and 6.8 A current. The output current and voltage RMS value
are respectively reached with 282.84 V and current 4.808 A.
The experimental findings are given in Figure.40. The results
show that, with 19 output voltage levels. The phase angle
between the lagging charge current and the lagging load
voltage is shown in the waveform. To be sure, tons rarely
happen distinctly. These can happen continuously in resis-
tive and inductive loads. Typically, where a resistive load is
present, an unforeseen addition of inductive load is likely to
match the resistive load in parallel or vice versa. The output
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TABLE 4. Simulation and experimental results.

the sizing of the circuit components. The proposed inverter
balanced well during complex charging (load disturbance)
conditions. This inverter is highly adaptive for high-power

19 MLI output parameters Simulation Experimental
Three phase line to line output | 400.5V per | 400V per phase
voltage phase
Phase leg-A (Line to Line) 400.5V, 4A 400V, 4A
Phase leg-A (Equal magnitude) 400V 400V, 4A
R-Load 400V, 4A 400V, 4A
RMS Voltage and Current 282.4V, 2.828A | 282.4V, 2.828A
L-Load (Motor) 400V 400V, 6.8A
THD % 3.7% 3.89%
TABLE 5. Experimental specification.
Component Type ratings
Switches IGBT-CM75DU- 600V,75A
12H
Driver ICs TLP250 -
Power supply Programmable DC | 0-500V
Sources
Controller dSPACE RTI1104
Load Resistive and Motor | 100 ohm and 98mH
(Inductor)

voltage must stay steady even in these circumstances is shown
in Figure.41 and Figure.42. Figure 39, and Figure 40 shows
the experimental voltage THD is 3.89 percent. The experi-
mental component requirements are tabled in Table.5. The
proposed MLI could produce higher voltage outputs with
fewer hardware components and low THD. The proposed
19 MLI is tested experimentally with L (motor), RL and LR
loads. The results got are like simulation. The three-phase
line to line voltage of simulation is 400.5 V whereas 400V
got experimentally in all phases shown in Table.4. The phase
leg-A with equal magnitude are 400V, 4A in both simulation
and experimental results. The output waveform of phase
leg-A is tested with R, motor, RL and LR loads: with R load,
400V, 4A and 798.62W are got at output, with L (motor)
load, 400V and 6.8A are got, In RL load, 400V remains in
both resistive and inductive operation resembling the systems
output is stable, during load disturbance R and L are in paral-
lel. In LR load, 400V remains in both inductive and resistive
operation resembling the stable output, and during the load
disturbance, resistive load is alone in the system. THD in
simulation is 3.7% whereas 3.89% experimentally. The pro-
posed inverter is designed with optimal hardware components
with improved efficiency, reduced power losses, lower THD
compared to existing MLIs. The proposed inverter well suits
for renewable energy applications.

VII. CONCLUSION

A three-phase nineteen level asymmetric MLI is tested and
implemented. The proposed inverter generates an increased
number of output voltage levels with a lesser amount of DC
sources and power switches. This inverter makes a voltage at
3.89 % THD, and efficiency is 93.67% got according to IEEE
standards. The proposed inverter is tested with study-sate and
dynamic load disturbance. In this article, a reduced part count
of 19-level inverter topology proposed for high-reliability
renewable energy applications. The proposed topology used
the inherent properties of sinusoidal voltages to minimize
part count to improve the efficiency of the inverter without
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and renewable energy systems.

REFERENCES

[1]

[2]

[3]

[4]
[51

[6]

[7]
[8]

[9

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

A. Nabae, 1. Takahashi, and H. Akagi, “A new Neutral-Point-Clamped
PWM inverter,” IEEE Trans. Ind. Appl., vol. IA-17, no. 5, pp. 518-523,
Sep. 1981.

J. Rodriguez, J.-S. Lai, and F. Zheng Peng, “Multilevel inverters: A survey
of topologies, controls, and applications,” IEEE Trans. Ind. Electron.,
vol. 49, no. 4, pp. 724-738, Aug. 2002.

Y. S. Lai and F. S. Shyu, “Topology for hybrid multilevel inverter,”
IEE Proc.-Electr. Power Appl., vol. 149, no. 6, pp.449-458,
Nov. 2002.

T. A. Meynard and H. Foch, “Multi-level choppers for high voltage appli-
cations,” EPE J., vol. 2, no. 1, pp. 45-50, Jan. 1992.

O. M. Mueller and J. N. Park, “Quasi-linear IGBT inverter topolo-
gies,” in Proc. IEEE Appl. Power Electron. Conf. Expo., Feb. 1994,
pp. 253-259.

M. D. Manjrekar, P. K. Steimer, and T. A. Lipo, ‘““‘Hybrid multilevel power
conversion system: A competitive solution for high-power applications,”
1EEE Trans. Ind. Appl., vol. 36, no. 3, pp. 834-841, May/Jun. 2000.

R. H. Baker, “High-voltage converter circuit,” U.S. Patent 4203151,
pp. 123-151, May 13, 1980.

M. E. Ahmed and S. Mekhilef, “Design and implementation of a multi
level three-phase inverter with less switches and low qutput voltage distor-
tion,” J. Power Electron., vol. 9, no. 4, pp. 593-603, 2009.

M. Fracchia, T. Ghiara, M. Marchesoni, and M. Mazzucchelli, “Opti-
mized modulation techniques for the generalized N-level converter,” in
Proc. 23rd Annu. IEEE Power Electron. Spec. Conf., Jun./Jul. 1992,
pp. 1205-1213.

T. A. Meynard and H. Foch, “Multi-level conversion: High voltage chop-
pers and voltage-source inverters,” in Proc. Rec. 23rd Annu. IEEE Power
Electron. Spec. Conf., Jun./Jul. 1992, pp. 397-403.

R. Marquardt, “A new modular voltage source inverter topology,” in Proc.
Conf. Rec. EPE, 2003, doi: 10.1109/PTC.2003.1304403.

A. Lesnicar and R. Marquardt, “An innovative modular multilevel con-
verter topology suitable for a wide power range,” in Proc. IEEE Bologna
Power Tech Conf., vol. 3, Jun. 2003, p. 6.

X. Yuan and I. Barbi, “Fundamentals of a new diode clamping multi-
level inverter,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 711-718,
Jul. 2000.

M. N. A. Kadir, S. Mekhilef, and H. W. Ping, ““Dual vector control strategy
for a three-stage hybrid cascaded multilevel inverter,” J. Power Electron.,
vol. 10, no. 2, pp. 155-164, Mar. 2010.

J. Huang and K. A. Corzine, “Extended operation of flying capaci-
tor multilevel inverters,” IEEE Trans. Power Electron., vol. 21, no. 1,
pp. 140-147, Jan. 2006.

C. Feng, J. Liang, and V. G. Agelidis, “Modified phase-shifted PWM
control for flying capacitor multilevel converters,” IEEE Trans. Power
Electron., vol. 22, no. 1, pp. 178-185, Jan. 2007.

M. R. Banaei, R. Alizadeh, H. Khounjahan, E. Salary, and
A. R. Dehghanzadeh, ‘“Z-source-based multilevel inverter with
reduction of switches,” IET Power Electron., vol. 5, no. 3, pp. 385-392,
Mar. 2012.

M. F. Kangarlu, E. Babaei, and S. Laali, “Symmetric multilevel inverter
with reduced components based on non-insulated DC voltage sources,”
IET Power Electron., vol. 5, no. 5, pp. 571-581, 2012.

E. Babaei, “A cascade multilevel converter topology with reduced number
of switches,” IEEE Trans. Power Electron., vol. 23, no. 6, pp. 2657-2664,
Nov. 2008.

G. Waltrich and I. Barbi, “Three-phase cascaded multilevel inverter using
power cells with two inverter legs in series,” in Proc. IEEE Energy Con-
vers. Congr. Expo., Sep. 2009, pp. 3085-3092.

J. Dixon and L. Moran, “High-level multistep inverter optimization using
a minimum number of power transistors,” IEEE Trans. Power Electron.,
vol. 21, no. 2, pp. 330-337, Mar. 2006.

M. D. Siddique, S. Mekhilef, N. M. Shah, A. Sarwar, A. Igbal,
and M. A. Memon, “A new multilevel inverter topology with reduce
switch count,” IEEE Access, vol. 7, pp. 58584-58594, 2019, doi: 10.
1109/ACCESS.2019.2914430.

VOLUME 8, 2020


http://dx.doi.org/10.1109/PTC.2003.1304403
http://dx.doi.org/10.1109/ACCESS.2019.2914430
http://dx.doi.org/10.1109/ACCESS.2019.2914430

C. Dhanamjayulu et al.: New Three-Phase Multi-Level Asymmetrical Inverter With Optimum Hardware Components

IEEE Access

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

A. Rufer, M. Veenstra, and K. Gopakumar, “Asymmetric multilevel con-
verter for high resolution voltage phasor generation,” in Proc. EPE, 1999,
p. 10.

M. Veenstra and A. Rufer, “Control of a hybrid asymmetric multilevel
inverter for competitive medium-voltage industrial drives,” IEEE Trans.
Ind. Appl., vol. 41, no. 2, pp. 655-664, Mar. 2005.

S. Mekhilef, A. M. Omar, and N. A. Rahim, “Modelling of three-phase
uniform symmetrical sampling digital PWM for power converter,” in Proc.
Can. Conf. Electr. Comput. Eng., May 2008, pp. 1505-1508.

S. Mariethoz and A. Rufer, “Design and control of asymmetrical multi-
level inverters,” in Proc. IEEE 28th Annu. Conf. Ind. Electron. Soc.,
Nov. 2002, pp. 840-845.

F. Blaabjerg, Z. Chen, and S. B. Kjaer, “Power electronics as efficient
interface in dispersed power generation systems,” IEEE Trans. Power
Electron., vol. 19, no. 5, pp. 1184-1194, Sep. 2004.

M. V. Rajkumar and P. S. Manoharan, “Modeling and simulation of
five-level five-phase voltage source inverter for photovoltaic systems,”
J. Przeglad Elektrotechniczny, vol. 10, no. 10, pp. 237-241, 2013.

S. Selvakumar, A. Vinothkumar, and M. Vigneshkumar, ““An efficient new
hybrid cascaded H-bridge inverter for photovoltaic system,” in Proc. 2nd
Int. Conf. Devices, Circuits Syst. (ICDCS), Mar. 2014, pp. 1-6.

E. Babaei and S. Laali, “New extendable 15-level basic unit for multi-
level inverters,” J. Circuits, Syst. Comput., vol. 25, no. 12, Dec. 2016,
Art. no. 1650151.

R. A. Ahmed, S. Mekhilef, and H. Wooi Ping, “New multilevel inverter
topology with minimum number of switches,” in Proc. TENCON-IEEE
Region 10th Conf., Nov. 2010, pp. 1862-1867.

L. Vijayaraja, S. G. Kumar, and M. Rivera, “A new topology of multilevel
inverter with reduced part count,” in Proc. IEEE Int. Conf. Automat./23rd
Congr. Chilean Assoc. Autom. Control (ICA-ACCA), Oct. 2018, pp. 1-5.
M. S. A. Dahidah, G. S. Konstantinou, and V. G. Agelidis, “SHE-PWM
control for asymmetrical hybrid multilevel flying capacitor and H-bridge
converter,” in Proc. IEEE 9th Int. Conf. Power Electron. Drive Syst.,
Dec. 2011, pp. 29-34.

E. Babaei, “Charge balance control methods for a class of fundamental
frequency modulated asymmetric cascaded multilevel inverters,” J. Power
Electron., vol. 11, no. 6, pp. 811-818, Nov. 2011.

E. Bircenas, S. Ramirez, V. Cardenas, and R. Echavarria, ‘“Cascade mul-
tilevel inverter with only one DC source,” in Proc. 8th IEEE Int. Power
Electron. Congr., Tech. Proc. CIEP, Oct. 2002, pp. 171-176.

M. Sabahi, A. R. Marami Iranaq, K. M. Bahrami, K. M. Bahrami, and
M. B. B. Sharifian, “Harmonics elimination in a multilevel inverter with
unequal DC sources using genetic algorithm,” in Proc. Int. Conf. Electr.
Mach. Syst., Aug. 2011, pp. 1-5.

B.-R. Lin, T.-C. Wei, and H.-K. Chiang, “An eight-switch three-phase VSI
for power factor regulated shunt active filter,” Electr. Power Syst. Res.,
vol. 68, no. 2, pp. 157-165, Feb. 2004.

A.Nami, F. Zare, A. Ghosh, and F. Blaabjerg, “A hybrid cascade converter
topology with series-connected symmetrical and asymmetrical diode-
clamped H-bridge cells,” IEEE Trans. Power Electron., vol. 26, no. 1,
pp. 51-65, Jan. 2011.

C. Dhanamjayulu and S. Meikandasivam, “Implementation and compari-
son of symmetric and asymmetric multilevel inverters for dynamic loads,”
IEEE Access, vol. 6, pp. 738-746, 2018.

C. Dhanamjayulu and S. Meikandasivam, ““‘Design and implementation of
symmetric cascaded multilevel inverter using sub multi-cells,” J. Adv. Res.
Dyn. Control Syst., vol. 9, no. 18, pp. 1657-1668, 2017.

C. Dhanamjayulu, G. Arunkumar, B. J. Pandian, C. V. R. Kumar,
M. P. Kumar, A. R. A. Jerin, and P. Venugopal, ‘“‘Real-time implementa-
tion of a 31-level asymmetrical cascaded multilevel inverter for dynamic
loads,” IEEE Access, vol. 7, pp. 51254-51266, 2019.

C. Dhanamjayulu, G. Arunkumar, B. Jaganatha Pandian, and
S. Padmanaban, “Design and implementation of a novel asymmetrical
multilevel inverter optimal hardware components,” Int. Trans. Electr.
Energy Syst., vol. 30, no. 2, pp. 1-28, Feb. 2020.

F. Kang, “A modified cascade transformer-based multilevel inverter and
its efficient switching function,” Electr. Power Syst. Res., vol. 79, no. 12,
pp. 1648-1654, 2009.

R. Barzegarkhoo, E. Zamiri, M. Moradzadeh, and H. Shadabi, “Symmetric
hybridised design for a novel step-up 19-level inverter,” IET Power Elec-
tron., vol. 10, no. 11, pp. 1377-1391, Sep. 2017.

K.-M. Tsang and W.-L. Chan, “Single DC source three-phase multilevel
inverter using reduced number of switches,” IET Power Electron., vol. 7,
no. 4, pp. 775-783, Apr. 2014.

VOLUME 8, 2020

[46] R. S. Alishah, D. Nazarpour, M. Sabahi, and S. H. Hosseini, “New
hybrid structure for multilevel inverter with fewer number of components
for high-voltage levels,” IET Power Electron., vol. 7, no. 1, pp. 96-104,
Jan. 2014.

[47] J. Venkataramanaiah, Y. Suresh, and A. K. Panda, “Design and develop-
ment of a novel 19-level inverter using an effective fundamental switching
strategy,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 6, no. 4,
pp. 1903-1911, Dec. 2018.

[48] E. Babaei, A. Dehqan, and M. Sabahi, “A new topology for multilevel
inverter considering its optimal structures,” Electr. Power Syst. Res.,
vol. 103, pp. 145-156, Oct. 2013.

[49] M. D. Siddique, A. Igbal, M. A. Memon, and S. Mekhilef, “A new
configurable topology for multilevel inverter with reduced switching com-
ponents,” IEEE Access, vol. 8, pp. 188726-188741, 2020.

[S0] M. D. Siddique, S. Mekhilef, N. M. Shah, J. S. M. Alj,
M. Seyedmahmoudian, B. Horan, and A. Stojcevski, “Switched-
capacitor-based boost multilevel inverter topology with higher

voltage gain,” IET Power Electron., vol. 13, no. 14, pp. 3209-3212,
Nov. 2020.

C. DHANAMJAYULU (Member, IEEE) received
the B.Tech. degree in electronics and communi-
cation engineering from JNTU University, Hyder-
abad, India, the M.Tech. degree in control and
instrumentation systems from IIT Madras, Chen-
nai, India, and the Ph.D. degree in power elec-
tronics from the Vellore Institute of Technol-
ogy, Vellore, India. He is currently a Postdoctoral
Researcher with the Department of Energy Tech-

e nology, Aalborg University, Esbjerg, Denmark.
Since 2010, he has been a Senior Assistant Professor with the Vellore
Institute of Technology, where he is currently a Faculty Member and a
member of the Department of Control and Automation, School of Electrical
Engineering, Vellore Institute of Technology, and also a Senior Assistant
Professor. He was invited as a Visiting Researcher with the Department
of Energy Technology, Aalborg University, funded by the Danida Mobility
Grant, Ministry of Foreign Affairs of Denmark, on Denmark’s International
Development Cooperation. His research interests include multilevel invert-
ers, power converters, active power filters, power quality, grid-connected
systems, smart grid, electric vehicle, electric spring, and tuning of mem-
ory elements and controller parameters using soft-switching techniques for
power converters, average modeling, steady-state modeling, and small-signal
modeling stability analysis of the converters and inverters.

PALANISAMY KALIANNAN (Senior Member,
IEEE) received the bachelor’s degree in electrical
engineering from the KSR College of Technol-
ogy, India, in 2000, the master’s degree (Hons.)
in applied electronics from the Coimbatore Insti-
tute of Technology, India, in 2004, and the Ph.D.
degree in electrical engineering from the Vellore
Institute of Technology, Vellore, India, in 2013.
He has been a Deputy Director of Electrical Main-
tenance and Projects and an Associate Professor of
the Energy and Power Electronics Division, Vellore Institute of Technology,
where he has been the Head of the Center for Smart Grid Technology since
2007. From 2016 to 2018, he was the Head of the Department of Energy
and Power Electronics Division. He has authored over 96 scientific articles
in referred conference proceedings and international journals in the field of
renewable energy, battery energy storage, multilevel converters, and power
quality. He is a certified Energy Auditor by the Bureau of Energy Efficiency,
Government of India. He has taken up various consultancy projects in energy
efficiency and power quality improvement.

212527



IEEE Access

C. Dhanamjayulu et al.: New Three-Phase Multi-Level Asymmetrical Inverter With Optimum Hardware Components

SANJEEVIKUMAR PADMANABAN (Senior
Member, IEEE) received the bachelor’s degree
in electrical engineering from the University
of Madras, Chennai, India, in 2002, the mas-
ter’s degree (Hons.) in electrical engineering
from Pondicherry University, Puducherry, India,
in 2006, and the Ph.D. degree in electrical engi-
neering from the University of Bologna, Bologna,
Italy, in 2012. He was an Associate Professor
with Vellore Institute of Technology from 2012 to
2013. In 2013, he joined the National Institute of Technology, India, as a
Faculty Member. In 2014, he was invited as a Visiting Researcher with
the Department of Electrical Engineering, Qatar University, Doha, Qatar,
funded by the Qatar National Research Foundation, Government of Qatar.
He continued his research activities with the Dublin Institute of Technol-
ogy, Dublin, Ireland, in 2014. He served as an Associate Professor with
the Department of Electrical and Electronics Engineering, University of
Johannesburg, Johannesburg, South Africa, from 2016 to 2018. Since 2018,
he has been a Faculty Member with the Department of Energy Technology,
Aalborg University, Esbjerg, Denmark. He has authored over 300 scientific
articles.

He is a Fellow of the Institution of Engineers, India, the Insti-
tution of Electronics and Telecommunication Engineers, India, and
the Institution of Engineering and Technology, U.K. He was a recip-
ient of the Best Paper cum Most Excellence Research Paper Award
from the IET-SEISCON’13, IET-CEAT’16, IEEE-EECSI’'19, and IEEE-
CENCON’19, and five best paper awards from ETAEERE’16 and spon-
sored lecture notes in Electrical Engineering, Springer book. He is an
Editor/Associate Editor/Editorial Board for refereed journals, including the
IEEE SystEMs JourNAaL, the IEEE TRANSACTION ON INDUSTRY APPLICATIONS,
IEEE Access, IET Power Electronics, IET Electronics Letters, and the
Wiley-International Transactions on Electrical Energy Systems, a Subject
Editorial Board Member of Energy Sources Energies Journal, MDPI, and
the Subject Editor of the IET Renewable Power Generation, IET Generation,
Transmission and Distribution, and FACTS journal (Canada).

PANDAV KIRAN MAROTI (Member, IEEE)
received the bachelor’s degree in electronics and
telecommunication from Dr. Babasaheb Ambed-

‘ e kar Marathwada University, Aurangabad, India,
4 in 2011, the M.Tech. degree (Hons.) in power
electronics and drives from the Vellore Institute

® / of Technology, Vellore, India, in 2014. He is cur-

|
2 rently pursuing the Ph.D. degree in the field of
\ \ I power electronics with the University of Johannes-
burg, South Africa. He was an Assistant Professor
with the Marathwada Institute of Technology, Aurangabad, India, from
2014 to 2016. He is currently a Visiting Researcher with Qatar University.
He received the Global Experience Scholarship for his Ph.D. study. He has
authored or coauthored scientific articles in the field of power electronics
(multilevel dc/dc and dc/ac converter and multiphase open winding inverter).
He is an Active Professional Member of the Industrial Electronics, Power
Electronics, Industrial Application, and Young Professionals societies. He is
also an Active Reviewer Member of various reputed international confer-
ences and journal, including the IEEE and the IET. He received the Best
Paper Award from ETAEERE in 2016 sponsored lecture note in Electrical
Engineering, Springer book series.

212528

JENS BO HOLM-NIELSEN (Senior Member,
IEEE) was born in 1954. He received the Ph.D.
degree. He is currently the Head of the Research
Group of Bioenergy and Green Engineering,
Department of Energy Technology, Aalborg Uni-
versity, Denmark. He has experience in the field
of biomass feedstock production, biorefinery con-
cepts, and biogas production, for 30 years. He was
a Board Member of research and development
committees of the cross-governmental body of
biogas developments in Denmark from 1993 to 2009. He is a Secretary and/or
the Chair of NGO biogas and bioenergy organizations. He is the Chair and
a Presenter of sustainable and 100 percent renewables and SDG-17 goals.
He has experience of a variety of EU projects. He was an organizer of interna-
tional conferences, workshops, and training programs in EU, USA, Canada,
China, Brazil, India, Iran, Russia, Ukraine, among others. His research inter-
ests include managing research, development, and demonstration programs
in integrated agriculture, environment and energy systems. He has fulfilled
the biomass and bio-energy research and development projects. His principal
focuses on biofuels, biogas, and biomass resources. He is an EDU and
supervises M.Sc. and Ph.D. students in these research fields. He has involved
in training programs, such as international courses, training programs, and
supervision for Ph.D. students, and academic staff, governmental bodies,
and experts in bioenergy systems. His full biography at www.aau.dk profile
search Jens Bo Holm-Nielsen.

VOLUME 8, 2020



