
Received November 3, 2020, accepted November 18, 2020, date of publication November 24, 2020,
date of current version December 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3039882

Steady-State Sine Cosine Genetic
Algorithm Based Chaotic Search for Nonlinear
Programming and Engineering Applications
A. A. MOUSA1,3, M. A. EL-SHORBAGY 2,3, AND M. A. FARAG 3
1Department of Mathematics and Statistics, College of Science, Taif University, Taif 21944, Saudi Arabia
2Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
3Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt

Corresponding author: M. A. El-Shorbagy (mohammed_shorbagy@yahoo.com)

This work was supported by Taif University Researchers Supporting Project Number (TURSP-2020/48), Taif University, Taif,
Saudi Arabia.

ABSTRACT This paper proposes a newly meta-heuristic approach, steady-state sine cosine genetic
algorithm-based chaotic search, for solving nonlinear programming and engineering applications. It is a
combination of sine cosine approach (SCA), steady-state genetic algorithm (SSGA), and chaotic search
(CS), and named as chaos-enhanced SCAwith SSGA. The proposed approach integrates SSGA’s exploitation
ability and SCA’s exploration ability and local search capability of CS. The performance of the new approach
works in two different stages. Firstly, SCA and SSGA start together to increase exploration capability and
exploitation tendencies. Secondly, CS used to improve the approximate solution obtained from the first stage
and reach the global solution. Hence, the proposed new approach will be more robust as it avoids trapping
into local minima in addition to the speed of the search process and rapid convergence towards the global
solution. The efficiency of the proposed approach is verified by using it to solve 32 well-known benchmark
problems and different engineering design problems. Simulation results show that the proposed approach is
competitive and better in most cases as a comparison to others.

INDEX TERMS Chaos search, hybrid approach, nonlinear programming problems, engineering applica-
tions, optimization.

I. INTRODUCTION
The optimization problem is deemed as the procedure of
obtaining the best element from a suite of available choices
to find the minimum/maximum value of an objective function
while satisfying some constraints. One of the important opti-
mization problems is the nonlinear programming problem
(NPP) which is stated as follows [1]:

Min F(z)

Subject to: z ∈ S;

S =
{
gt (z) ≤ 0, t = 1, 2, . . . , p
hj (z) = 0, j = 1, 2, . . . , q,

}
zli ≤ zi ≤ z

u
i i = 1, 2, . . . , dim; (1)
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where F(z) is the objective function, z = [z1, z2, . . . , zdim]T

is the decision vector, gt (z) are the inequality constraint
functions, hj (z) are equality constraint functions and S refers
to the feasible search space that has all the possible solutions
which satisfy all the constraints. Every decision variable zi is
limited by its upper and lower boundaries [zli, z

u
i ].

Recently, optimization problems have emerged in numer-
ous fields such as information theory [2], economics [3],
computer science [4], and statistical physics [5]. Therefore,
the development of optimization algorithms is an interesting
point for researchers.

Optimization methods are techniques that are employed
to obtain the optimal solutions of optimization problems
in different fields. Generally, the optimization techniques
are usually classified into deterministic and stochastic tech-
niques [6]. Deterministic algorithms have an enormous
advantage, such as the fact that they can find global optima
and that they converge to a solution much faster with higher
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accuracy while fulfilling the local search task compared to
stochastic methods. However, they are very CPU-intensive
and useless on intractable NP-hard problems, non-convex
optimization problems, and complex problems [7]. There-
fore, many stochastic optimization techniques/meta-heuristic
algorithms have been developed to solve such difficult opti-
mization problems.

Meta-heuristic algorithms tackle optimization problems as
black boxes. This means that the derivation of the mathe-
matical models is unneeded. In other words, it is trying to
improve its inputs for maximizing or minimizing its out-
puts only by evaluating the objective function and check
the feasibility of constraint functions [8]. The basic concept
of most meta-heuristic algorithms is the inspiration from
nature, animal behaviors, or physical phenomena. The popu-
lar meta-heuristic algorithms that solving optimization prob-
lems are genetic algorithm (GA) [9], evolutionary strategy
(ES) [10], harmony search algorithm [11], [12], differential
evolution (DE) [13], particle swarm optimization (PSO) [14],
imperialistic competitive algorithm [15], simulated anneal-
ing (SA) [16], whale optimization algorithm (WOA) [17],
salp swarm algorithm (SSA) [18], grasshopper optimization
algorithm (GOA) [19], firefly algorithm (FA) [20], mon-
key algorithm (MA) [21], melody search algorithm [22],
shuffled frog leaping algorithm (SFLA) [23], artificial bee
colony (ABC) [24], social spider optimization (SSO) [25],
grey wolf optimization (GWO) [26], ant colony optimiza-
tion (ACO) [27], SCA [28], algorithms that are inspired
by fish schools [29], bats [30], and cuckoo birds [31], etc.
The meta-heuristic algorithms solve optimization problems
randomly. Also, they are characterized by a gradient-free
mechanism and high flexibility which means that they are
applicable readily to complex real-life problems in various
fields [32].

Although meta-heuristic algorithms perform well com-
pared to deterministic methods, they may face difficulties
such as being stuck in a local optimum, insufficient diver-
sity of solutions, and an imbalance between exploitation
and exploration trends in some complex problems. To over-
come these weaknesses, most of the researchers proposed
hybridization strategies between meta-heuristic algorithms to
improve the solution quality, benefit from their advantages,
and to overcome any deficiencies. In addition, these hybrid
strategies have many characteristics as gift robust algorithms
with faster performance and treatment of large tasks. For
example, Goel and Maini [33] proposed the algorithm of the
FA and ACO to be hybrid, HAFA. FA was used to scan for
the unexplored space for solutions, while in ACO, the method
of shaking pheromones was used to prevent pheromone stag-
nation in the exploited areas. In [34], Nasr et al. presented
a hybrid optimization algorithm between one of the intelli-
gence techniques (genetic algorithm) and chaos theory. The
chaos theory was introduced as a local search to improve
the solution quality and find the optimal solution. In [35],
Jadon et al. suggested a hybrid ABC algorithm with DE
for creating a better convergence algorithm and improved

the balance between exploitation and exploration capabili-
ties. While Turanoğlu and Akkaya proposed a new hybrid
heuristic algorithm called SA based on bacterial foraging
optimization (BFO) algorithm in [36]. In [37] the authors pro-
vided a hybrid variation of the classic cat swarm optimization
(CSO) algorithm; where it is an easy to use, efficient, and
fast algorithm. In addition, in [38], Abualigah et al. proposed
a novel combination of krill herd (KH) algorithm with har-
mony search (HS) algorithm, namely, H-KHA, to increase
the global search capacity (diversification). The enhancement
involves adding a global search operator of the HS algorithm
to the KH algorithm for enhancing the exploration search
capacity thereby moving krill individuals toward the best
global solution. Furthermore, in [39], Shaheen et al. proposed
a hybrid algorithm between the GWO and PSO method to
reach the optimal solution; where GWO was hybridized with
the PSOmethod to improve the progress of the GWO. Finally,
In [40] a modern, reliable and efficient hybrid approach,
based on the combination of a firefly algorithm (FA) with
the adaptive particularly tunable fuzzy PSO (APT-FPSO) is
proposed. In the internal configuration of the FA in order
to prevent premature convergence of the originating FA, the
APT-FPSOuses an enhanced version of the fuzzy-based PSO,
by improved exploitation and exploration procedures.

Genetic algorithm (GA) is one of the meta-heuristic algo-
rithms that introduced as a proficient global technique for
solving complex optimization problems based on the techni-
calities of natural selection, evolution, and genetics [9]. GA is
well suitable for solving nonlinear optimization problems,
where it uses a set of points for the evaluation process in
the search domain. GA has still gained an increasing interest
in the field of different industrial applications [41]–[43].
However, GA when dealing with complex and large systems
has many disadvantages such as extreme slowness and the
difficulty in ensuring access to the global optimum solution
as it requires an increase in the number of iterations (i.e. long
search time) [44], [45]. To avoid these defects, some of the
researchers have added a new genetic operator and improved
the control parameters and the structure of GA [46], [47].
There are many dissimilar models for GA such as steady-state
genetic algorithm (SSGA) and generational genetic algorithm
(GGA) [48]. GGA and SSGA both follow the general scheme
of GA. The difference between GGA and SSGA is that
SSGA produces two new chromosomes or a small number
of chromosomes in every iteration; while GGA produces a
large number of chromosomes in each iteration and thus the
population changes significantly [49]. So, the SSGA is cur-
rently a better choice when fitness evaluations and feasibility
of the chromosomes are computationally expensive. Due to
these features, it is used in the proposed approach.

On the other hand, SCA is a recent meta-heuristic algo-
rithm that was introduced by Mirjalili [28] for solving opti-
mization problems. It is a variant of GWO. SCA is looking
for the best solutions via a mathematical model that is based
on trigonometric sine and cosine functions. Mirjalili [28]
proved that SCA has efficient performance compared to other
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recent meta-heuristic algorithms. Nevertheless, as with any
meta-heuristic algorithm, SCA depends on adaptive and ran-
dom variables; thus, an acceptable solution cannot always
be obtained. In addition, there is no internal memory for
SCA that keeping track of the previously found solutions. So,
SCA loses all information about the solutions that exceed the
global best and it never maintains the possible solutions set
which may have a chance to reach the global solution [50].
Accordingly, the SCA exploitability is weak, which some-
times leads to solutions falling into local traps.

While, chaos theory has been implemented in several fields
such as economics, sociology, philosophy, physics, engineer-
ing, biology, and meteorology. It was initially introduced by
Lorenz in 1963 and described as the so-called ‘‘butterfly
effect’’ [51]. Chaos is a bounded dynamic unstable behav-
ior that is highly sensitive to its initial conditions; where
small changes in the starting values or the parameters tend
to affect the immensely various future behaviors. There are
so-called chaotic maps that have three main characteristics
which are ergodicity, randomness, and sensitivity to the initial
condition [52]. Recently, the mathematics of chaos theory
has been used to improve various optimization methods. So,
most researchers incorporate chaotic maps with the opti-
mization techniques in order to get the global solutions of
complex problems [53]–[55] and accelerate the convergence
to the optimal solution such as adaptive firefly algorithm
with chaos [56], Chaos-enhanced cuckoo search optimiza-
tion algorithm [57], chaos game optimization [58], chaos
grasshopper optimization algorithm [59], chaotic fruit fly
optimization algorithm [60] and chaos-enhanced bat algo-
rithm [61].

So, in this paper a newly meta-heuristic hybrid approach,
steady-state sine cosine genetic algorithm based chaotic
search, for solving nonlinear programming and engineering
applications. It is a combination of sine cosine approach
(SCA), steady-state genetic algorithm (SSGA), and chaotic
search (CS), and named as chaos-enhanced SCA with SSGA.
The motivation for proposing this algorithm that it integrates
SSGA’s exploitation ability and SCA’s exploration ability
and local search capability of CS. The proposed hybrid
approach is tested on a suite of unconstrained and constrained
optimization problems [62]–[65] with different degrees of
difficulty and problems related to engineering constrained
design [66], [67].

The main contributions of this paper are:
1. A new meta-heuristic hybrid approach, a combination

between SCA, SSGA, and CS, for solving nonlinear
programming and engineering applications is presented
and evaluated.

2. Integrating SSGA’s exploitation ability, SCA’s explo-
ration ability.

3. CS strategy, to enhance the solution quality and access
to the optimal solution, is applied.

4. According to the convergence curves and statistical
results, comparisons between SCA, SSGA, and the
proposed approach demonstrated the relevance of the

combination between SCA and SSGA and the proposed
approach’s ability to reach better solutions than SCA and
SSGA.

5. The proposed meta-heuristic hybrid approach is effec-
tively applied for nonlinear programming and as well
engineering applications; where good results were
achieved, compared to earlier studies.

The remainder of this article is presented as follows: first of
all, a brief discussion of the related works about the proposed
algorithm is presented in Section 2 which briefly describes
SSGA, SCA, and chaos theory. Section 3 includes the expla-
nation about a chaos-based hybrid SCA-SSGA algorithm,
while Section 4 includes reporting of as well as analyzing the
experimental results. Finally, Section 5 presents the conclu-
sion of this article.

II. RELATED WORKS
In this section, we give a brief description of SSGA, SCA,
and chaos theory.

A. STEADY-STATE GENETIC ALGORITHM
During the seventies of the twentieth century, J. Holland put
forward the GA as an optimization algorithm for obtaining a
global or near-global optimal solution [9]. GAmimics natural
evolution: genetic inheritance and the Darwinian theory of
biological evolution [68]. GA commences with a population
of chromosomes (solutions) that are evolved towards better
solutions by an iterative process. GA has many varying mod-
els for solving any problem such as GGA and SSGA [48].
The SSGA starts with an initial population of a specific size
referred to by popsize. SSGA obtains an offspring population,
with size newpop, created via crossover as well as mutation of
certain individuals that are selected from the base population.
In fact, the offspring that is newly created is assessed and
after that, it is combined with the base population. Each
chromosome of the new population is repaired and after
that, all chromosomes are ranked based on the value of their
objective functions. Following the ranking process, newpop
worst chromosomes in the ranking are replaced in order to
bring the population back to its base size popsize. Conse-
quently, after replacement, the new population contains the
best chromosomes. Chromosomes number newpop, which is
to be removed, is decided by the user. After producing the
new population, the termination condition gets checked, and
if it is met, then the approach stops; otherwise, the evolution
proceeds to complete the new population as described previ-
ously [69]. The scheme of SSGA is shown in Figure 1.

B. SINE COSINE ALGORITHM (SCA)
SCA is a meta-heuristic algorithm that is based on the forms
of sine and cosine functions and was first put forward in the
year 2016 [28]. SCA starts by creating random solutions.
These solutions are evolved repeatedly towards better solu-
tions during the optimization process. In addition, the search
domain is controlled by modifying the range of the sine and
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FIGURE 1. The scheme of steady-state genetic algorithm.

cosine. These steps are repeated until meeting the termination
criterion. SCA’s mathematical formulation is:

x t+1i =

{
x ti + r1 × sin(r2)×

∣∣r3pti − x ti ∣∣ , r4 < 0.5
x ti + r1 × cos(r2)×

∣∣r3pti − x ti ∣∣ , r4 ≥ 0.5;
(2)

where x ti is the position of current solution in ith dimension
at t th iteration, r1, r2, r3, r4 are the random numbers, and pi
is the best solution of the destination points in ith dimension.
As shown in (2), SCA uses 4 variables (r1, r2, r3, r4) to tune.
r1 decides direction of the movement of the search agent
which either could be in the area between the destination and
solution or could be outside it by the following expression:

r1 = c
(
1−

t
Tmax

)
; (3)

where c is constant, t is the current iteration, and Tmax is
the iterations maximum number. Meanwhile, r2 is a ran-
dom number belongs to [0, 2π ], which shows how far the
movement might be towards or outwards the destination. r3
assigns a random weight for the destination by stochastically
emphasizing when r3 < 1 but when r3 > 1 deemphasizing
the impact of destination in defining the distance. In the end,
r4 ∈ [0, 1] decided whether sine or cosine formula will be
utilized. Figure 2 (taken from [28]) gives a description of how
the above equations define space between the two solutions
in the search domain, and the pseudo code of SCA [70] is
shown in Figure 3.

C. CHAOS THEORY AND THEIR MAPS
Chaos indicates a random situation in the deterministic sys-
tem. Such a state is the development of nonlinear systems by
deterministic policies and it is a long-term behavior with no
fixed period [71]. Chaos theory is concerned with the initial
conditions, where chaotic motion can traverse all the states in
accordance with itself within a certain range without repeat-
ing these states. In this way, the chaotic motion is ergodic.
Therefore, in optimization techniques, it is more advanta-
geous to use chaos search compared to disorderly random
searches. The chaotic map is an evolution function that shows
some kind of chaotic behavior. There are several chaotic
maps that have been presented in the literature [72]–[74]
such as Sinusoidal map, Tent map, Sine map, Gauss map,
Piecewise map, Logistic map. Table 1 presents a summary
of the mathematical formulas of various chaotic maps.

III. CHAOS-ENHANCED SCA WITH SSGA
Chaos-enhanced SCA with SSGA combines the advantages
of SSGA, SCA, and chaos strategy so as not to be trapped
into local optima, quicken the seeking process and accelerate
the convergence to a global solution. The proposed approach,
as in Figure 4, functions in two stages: during the first stage,
the hybridization between SSGA and SCA is implemented
as the global optimization method to obtain the approximate
solution of the optimization problem. After that, the chaotic
search is applied to speed up the convergence and enhance
the solution quality and access to the best solution. The steps

VOLUME 8, 2020 212039



A. A. Mousa et al.: Steady-State Sine Cosine GA Based CS

FIGURE 2. The effect of Sine and Cosine in Eq. 2 on the next position.

FIGURE 3. The pseudo code of SCA.

of the Chaos-enhanced SCA with SSGA can be illustrated as
follows:

Stage 1: SSGA and SCA
Step 1. Initialization. A population of size popsize is gen-

erated.
Step 2. Evaluation. The fitness of each individual in this

population is evaluated.
Step 3. Ranking. On the basis of fitness values, the popu-

lation is ranked.
Step 4. SSGAmethod.Operators of SSGA (crossover and

mutation) are applied to the top 20% of individuals to create
another 20% of individuals.

Step 5. SCA method. Apply SCA equations for updating
the 80% of individuals with the worst fitness.

Step 6. Termination criterion. Repeated the steps from
2 to 5 until the termination criterion is reached and obtained
the best solution.

Stage 2: Chaotic search
Optimizing the objective function by using SSGA and SCA

may yield an approximated solution y∗ =
(
y∗1, y

∗

2, . . . , y
∗

dim

)
.

By chaotic search, we can perturb y∗ to explore its local
region and get the optimal solution as shown below [75]:

Step 1. The boundary range [ai, bi]∀i = 1, 2, . . . , dim of
chaotic search is obtained by y∗i − ε < ai, y∗i + ε > bi,
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TABLE 1. The mathematical formulas of various chaotic maps.

where ε is a specified radius of the chaotic search
region.

Step 2. A chaotic number zk∀k = 1, . . . , kmax is obtained
by various chaotic maps.

Step 3. For all zk∀k = 1, . . . , kmax the chaotic number zk

is mapped into the boundary range [ai, bi] by [76]:

yki = ai + zk (bi − ai) (4)

which leads to the following:

yki = yi − ε + 2εzk ∀i = 1, 2, .... dim . (5)

Step 4. If f
(
yk
)
< f (y∗), the best solution y∗ is updated

by setting y∗ = yk .
Step 5. If f (y∗) is not enhanced for all iterations (kmax),

the chaotic search process is stopped and y∗ is put out as the
optimal solution.

IV. RESULTS OF NUMERICAL EXPERIMENTS
This section illustrates the results about the performance
of the chaos-enhanced SCA with SSGA, where the effi-
ciency of the proposed approach is examined by 25 uncon-
strained benchmark functions of 10 dimensions provided by
Suganthan et al. [62] during the CEC 2005 special session
on real parameter optimization. Such benchmark functions

consist of 5 unimodal functions and 20 multimodal functions.
Features of these functions are listed in [62]. In addition,
the proposed algorithm solved 7 constrained benchmarks
problems (available in Appendix A) taken from the litera-
ture [63]–[65]. Moreover, six engineering design problems
(available in Appendix B)—common in the field of mechan-
ical engineering, chemical engineering, and electrical engi-
neering [50], [51]—are solved to verify the reliability and
validity of the proposed approach for engineering appli-
cations. Mechanical applications are the optimum design
of the speed reducer, the pressure vessel, the disk brake,
and the three-bar truss. Meanwhile, the problem of the
cost minimization of a transformer design is chosen to be
solved as the electrical application. Finally, the problem
of the optimal design of chemical reactors is selected to
be solved as an application of chemical engineering. The
mathematical formulations of all constrained test functions
and different engineering applications are available in the
Appendix.

The proposed method is encrypted on the Intel Core
machine i5, 1.80 GHz, and 4 GB of RAM in the MATLAB
(R2016b). As with any meta-heuristic algorithm, the pro-
posed hybrid algorithm contains a set of parameters that affect
the algorithm’s performance. Table 2 defines the parameters
used to execute the proposed method.
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FIGURE 4. The flow chart of the proposed approach.

TABLE 2. The description of the parameters set.

A. PERFORMANCE EVALUATION OF CHAOTIC HYBRID
APPROACH WITH DIFFERENT CHAOTIC MAPS
To evaluate the different chaotic maps, 6 unconstrained prob-
lems (chosen from the 25 CEC 2005 benchmark functions)
are solved by chaos-enhanced SCA with SSGA algorithm.
These problems are F1 from unimodal function and F9, F11,
F13, F14, and F15 from multimodal functions. For each
chaotic map, every problem is solved 30 times by the pro-
posed algorithm. Table 3 presents the best solutions obtained
by chaos-enhanced SCA with SSGA for each problem with

different chaotic maps. Figure 5 gives a comparison between
the 10 chaotic maps in accordance with the rank of the best
results obtained by the proposed algorithm with every map.
Table 3 and Figure 5 show that the quality of the solutions
obtained by the chaos-enhanced SCA with SSGA with the
sine map is better than the solutions obtained with other maps
(i.e., the sine map obtains the best performance, where the
sine chaotic map with the hybridization of SSGA and SCA
gives the best results).

According to these results, the sine map is chosen to be
used for the chaotic search in the proposed algorithm. The
equation of the sine map [62] is:

zk+1 =
c
4
sin
(
πzk

)
; 0 < c ≤ 4, k = 1, 2, . . . (6)

Figure 6 shows the sequence of 1000 chaotic randomnumbers
generated by a sine map with z0 = 10−3 and c = 4.

B. THE SIMULATION RESULTS OF UNCONSTRAINED
PROBLEMS (25 CEC’2005 BENCHMARK PROBLEMS)
In this subsection, the chaos-enhanced SCA with SSGA
is tested on 25 CEC 2005 benchmark functions of
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FIGURE 5. Comparison between the 10 chaotic maps in accordance with
the rank of the best result gotten by each map.

FIGURE 6. The chaotic random numbers generated by sine map.

dimension 10 [62]. The approach has been run 50 times for
each SSGA, SCA, and the proposed algorithm based on a
sine map. The termination condition is set to 100000 function
evaluations. Table 4 gives a comparison between the global
solutions and solutions obtained by SSGA, SCA, and the
proposed algorithm of the 25 CEC2005 benchmark func-
tions. Also, the percentage of improvement in the results
obtained by the chaos-enhanced SCA with SSGA is shown
in Table 4.

Moreover, a set of well-known swarm intelligence and
evolutionary algorithms has been utilized for evaluating
the performance of the proposed approach in compari-
son with them. This set of approaches was used before
in [30], [71], [77]. Derrac et al. in [77] used CEC’2005 func-
tions to illustrate the use of the set of nonparametric sta-
tistical procedures, conducting an analysis of the results of
this set of well-known swarm intelligence and evolution-

TABLE 3. The best values for each problem obtained by the proposed
approach with different chaotic maps.

ary algorithms in solving CEC2005 functions. Meanwhile,
El-Shorbagy et al. [71] used this set of algorithms in evaluat-
ing the performance of CGA in solving the CEC2005 bench-
mark suite. Chakri et al. [30] used this set of evolutionary and
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TABLE 4. Comparison between the results obtained by SSGA, SCA and proposed algorithm and the global solution of 25 CEC2005 benchmark functions
with improvement percentage.

swarm intelligence algorithms to compare the performance
of the directional bat algorithm with them in solving the
CEC2005 benchmark suite.

The algorithms considered are as follows: steady-state
genetic algorithm (SSGA) [77], [78], the CHC algo-
rithm [79], two instances of the classic scatter search
model SS-Arit and SS-BLX [80], [81], restart covariant
matrix evolutionary strategy with an increasing population
(IPOP-CMA-ES) [82], the PSO algorithm [77], [83], and
self-adaptive differential evolution (SaDE) [84], the clas-
sical differential evolution with two crossover strategies
Rand/1/exp (DE-Exp) and Rand/1/bin (DE-Bin) [85], chaotic
genetic algorithm (CGA) [71], and finally directional bat
algorithm (dBA) [30]. The parameter settings of these algo-
rithms used in the comparison are given in [77] and [30].
All the above approaches had been run 50 times for each
benchmark problem. Each approach terminated either when
the maximal number of evaluations reached 100000 or when
the error obtained is less than 10e−8. The results of the
average errors (the differences between the best-obtained
results and the true global optima) of these algorithms pro-
vided in [30], [71], [77] are used to perform the comparison
between the proposed approach performance and the other
techniques on CEC2005 benchmark functions. The compari-
son between the average errors obtained for 25 unconstrained
benchmark problems with the proposed algorithm and the
other optimization approaches is given in Table 5. Moreover,
the different approaches used in the comparison are ranked
based on the average error values and the results are given
in Figure 7.

1) PERFORMANCE ANALYSIS ON SOLVING
UNCONSTRAINED OPTIMIZATION PROBLEMS
The simulation result in Table 4 shows the chaos-enhanced
SCA with SSGA can improve the quality of the solutions
of both SSGA and SCA. Moreover, it can be noted that the
proposed algorithm improves the quality of the solutions in
all functions, where the proposed algorithm obtains solutions
better than those obtained by SSGA or SCA. In addition,
the chaos-enhanced SCA with SSGA converges to the opti-
mal value, escaping from local optima. This means that intro-
ducing a hybrid between SCA and SSGA with chaotic search
accelerates the seeking operation of the global optimal solu-
tion. Moreover, the comparison between the average error
obtained by the proposed approach and 11 continuous opti-
mization algorithms given in Table 5 proves that the proposed
approach obtains better solutions than those of all 11 opti-
mization algorithms on average. Moreover, as per the results
are given in Figure 7, the proposed approach has the first
rank 20 times and the second rank twice, which means that
the proposed approach is better than other swarms intelligent
and evolutionary algorithms. Thus, it can be stated that the
proposed hybrid algorithm works well and converges rapidly
towards the optimal solution to unconstrained benchmark
problems.

C. THE SIMULATION RESULTS OF
CONSTRAINT PROBLEMS
For the constrained problems, every constrained problem is
independently solved by the proposed approach 30 times
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FIGURE 7. The comparison of the different algorithms for unconstrained functions based on their ranks.

(similar to the algorithms which are used in the compari-
son [71]) with the same number of iterations. The best values,
mean values, worst values, and standard deviation are used to
evaluate the proposed algorithm convergence speed, as well
as the solution accuracy and stability compared to the SSGA
and SCA.

The results are illustrated in Table 6, while Figure 8 gives
the convergence curves of the best run of the proposed algo-
rithm, SCA, and SSGA for all constrained problems. Table 7
gives the comparison between the optimal solution and the
best values of the 7 benchmark functions obtained by Aug-
mented Lagrange particle swarm optimization (ALPSO) [63],
chaotic genetic algorithm (CGA) [71], self-adaptive velocity
particle swarm optimization (SAVPSO) [65], A hybridization
of GA with an artificial immune system (GA-AIS) [86],
Adaptive Penalty Method (APM) [86], and the proposed
algorithm. The parameter settings of CGA and ALPSO were
described in [71], where the parameter settings of GA-AIS
and APMwere given in [86]. In addition, The ALPSO, CGA,
APM, SAVPSO, GA-AIS, and the proposed algorithm are
ranked according to the error values(the difference between

the mean values of the result obtained by algorithms over
30 runs and the global solution) and the results are shown
in Table 8.

1) PERFORMANCE ANALYSIS ON SOLVING CONSTRAINED
OPTIMIZATION PROBLEMS
As a result of Table 6 and Figure 8, the proposed algorithm
obtains better results than those obtained by both SSGA
and SCA and converges to the global solution faster than
both SSGA and SCA. This means that the hybridization of
SCA and chaotic search with SSGA speed up the optimum
seeking operation and lead to avoiding falling in local optima.
In addition, Tables 7 and 8 prove that the proposed approach is
superior to ALPSO,APM,GA-AIS, SAVPSO, and CGAwith
regard to most test functions. For test functions C1, C3, C5,
C6, and C7, the proposed algorithm gives an accurate global
optimizing capability, where it obtained the solution equal to
the global solutions. For test functions C2 and C4, the pro-
posed algorithm exhibits an excellent optimization capability,
where it obtained global solutions. Therefore, the results
indicate that the proposed algorithm is considerably superior
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TABLE 5. Average error obtained by proposed algorithm and 11 continuous optimization algorithms for the 25 CEC’2005 benchmark functions.

TABLE 6. The Simulation results of the proposed approach, SSGA and SCA for constrained problems [63]–[65].

to other approaches with regard to the accuracy of the opti-
mization and capabilities of global optimizing.

D. THE SIMULATION RESULTS OF ENGINEERING
DESIGN PROBLEMS
To check the efficiency of chaos-enhanced SCA with SSGA,
each problem of the six applications is independently run
ten times with the same number of iterations. Table 9 gives
the worst values, best values, average values, and the stan-
dard deviation by our proposed approach, SCA, and the

SSGA to assess the convergence speed, in addition to the
stability and solution accuracy of the algorithm. Furthermore,
Figure 9 presents the convergence curves of the best run
of the proposed approach, SCA, and SSGA for all applica-
tions. In addition, Table 10 gives a comparison between the
best solution obtained by our approach and different opti-
mization algorithms such as nonlinear optimization software
(CONOPT, KNITRO, MINOS, and SNOPT) [66], hybrid
glowworm swarm optimization (HGSO) [87], and multiob-
jective tabu/scatter search (MITS) [67].
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FIGURE 8. The convergence curves of proposed algorithm and SSGA for constrained optimization problems.

TABLE 7. The comparison of the best solutions obtained by ALPSO [63], CGA [71], SAVPSO [65], APM [86], GA-AIS [86], and the proposed algorithm and
the optimal solutions of the 7 constrained benchmark function.

1) PERFORMANCE ANALYSIS ON SOLVING ENGINEERING
APPLICATIONS
As shown in Figure 9 and Table 9, the results of the
chaos-enhanced SCA with SSGA were better compared
to the results obtained by both SSGA and SCA. Further-
more, the proposed approach converges to the best solution

faster than SSGA and SCA which means that our hybrid
approach speeds up the optimum seeking process and con-
verges to prove that the proposed approach outperforms other
approaches at most applications. Firstly, our algorithm shows
its superiority over other approaches in three applications
out of six (P1, P5, and P6). But, for the application P2,
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TABLE 8. Ranking of the average error values of the constrained benchmark functions for ALPSO, CGA, and the proposed algorithm.

FIGURE 9. The convergence curves of the best run of the proposed approach, SCA and SSGA for the engineering applications.

the proposed algorithm outperforms CONOPT, KNITRO,
HGSO, andMITS, but it is equal in performancewith SNOPT
andMINOS. Also, for application P4 the, proposed algorithm
outperforms MITS, but it is equal in performance with the
others. For application P3, the proposed algorithm’s perfor-
mance is equal to the other methods. Finally, we can say that
the results of various applications demonstrate that our pro-
posed algorithm is considerably superior to other approaches
with respect to global optimizing capabilities and accuracy of
optimization.

A comparative study was carried out in this section to
evaluate the proposedmeta-heuristic hybrid approach. Firstly,
meta-heuristic algorithms suffer from the solution quality.
Therefore the suggested method was introduced to improve
the efficiency of the solution by integrating the merits of two
meta-heuristic algorithms. In addition, a chaotic search (CS)
was used to ensure that the optimal solutionwas found. On the
other hand, unlike deterministic algorithms, our method is
searching by using a population of points, not a single
point. It can thus give an optimal solution. Furthermore, our
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TABLE 9. The Simulation results of the proposed approach, SSGA and SCA for engineering design problems.

TABLE 10. The comparison between the results of the proposed algorithm and various continuous optimization approaches in engineering design
problems.

approach uses only details on the objective function, not
other properties. It can thus solve the optimization problems
of non-smooth, non-continuous, and non-differentiable that
currently occur in real-life applications. Another encourag-
ing point is that the results of the simulation indicate the
superiority of the proposed meta-heuristic hybrid approach
to those stated in the literature, as it is better than both
SCA, SSGA, and other approaches. The reason for this is
due to the integration between SCA (exploration ability) and
SSGA (exploitation ability) and CS (local search capability).
Finally, due to the simplicity of the newmeta-heuristic hybrid
approach, it can address complex problems of realistic dimen-
sions. But in general, as with all meta-heuristic approaches,
the proposed meta-heuristic hybrid approach can usually
make improvements in terms of either computational speed
or accuracy. In other words, a guarantee of improvement
in the computational speed or accuracy is not guaranteed
when solving any optimization problem. However, it can be
said that the proposed approach is competitive and able to
solve nonlinear programming and engineering applications
efficiently.

Computational complexity (CC) is concerned with evalu-
ating the amount of work required to solve a specific prob-
lem. Evaluating the CC of the proposed algorithm includes

looking for a very wide area; where the CC for these issues
is NP. The suggested method can be used to arrive at an
appropriate solution with an acceptable running time and give
an appropriate answer that may be the best answer, or close
to it. The key explanation for the lower CC of running the
proposed algorithm is that our method prevents a systematic
search of the problem area. Finally, with an acceptable choice
of SCA parameters, SSGA operators, and CS procedures,
the proposed hybrid method can be used to achieve optimum
computational complexity.

V. CONCLUSION
This article proposed newly meta-heuristic approach, steady-
state sine cosine genetic algorithm-based chaotic search,
to solve nonlinear programming and engineering applica-
tions. It integrates the merits of the sine cosine algorithm
(SCA), steady-state genetic algorithm (SSGA), and chaotic
search (CS) and named as chaos-enhanced SCA with SSGA.
It was tested by different benchmark problems and engineer-
ing applications to demonstrate its superior to find the global
optimal solution. The proposed algorithm showed several
advantages, which we mention as follows:
1) The proposed algorithm merges SSGA’s exploitation

ability, SCA’s exploration ability, and local search
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capability of CS which leads to an increase in its capac-
ity to reach the global solution.

2) Incorporating the SSGA with SCA and CS avoid the
trapping into local minima, quicken the seeking process,
and accelerate the convergence to the global solution.

3) Generating the solutions in a new generation by SSGA
operations and mechanisms of SCA preserves the diver-
sity of the individuals and prevents them from being
similar to each other.

4) The results proved that the proposed algorithm improved
the solution quality and the convergence rate of both
SCA and SSGA.

5) The results of numerical experiments proven that the
proposed algorithm is superior to those stated in the
literature, as it is significantly better than other methods
of comparison.

6) It can be used to solve complex practical optimization
problems due to its simplicity.

In future works, other large-scale and more complex
engineering problems can be considered such as resource
allocation problem, economic load dispatch problem, unit
commitment problem, optimization of wind turbines sitting
in a wind farm, real-time applications, etc. Also, the pro-
posed approach can be modified to solve other optimization
problems such as nonlinear bilevel programming problems,
interval quadratic programming problems, data clustering
problems, etc. Finally, the proposed algorithm can be devel-
oped in order that it can solve multiobjective optimization
problems.

APPENDIX
The mathematical formulations of constrained benchmark
problems and engineering design problems are presented
below:

APPENDIX I. CONSTRAINED BENCHMARK PROBLEMS
C1: Constrained problem 1

Min x21 + x
2
2

Subject to: x1 − 3 = 0

− x2 + 2 ≤ 0

− 10 ≤ xt ≤ 10, t = 1, 2

C2: Constrained problem 2

Min
1

4000
(x21 + x

2
2 )− cos(

x1
√
1
) cos(

x2
√
2
)+ 1

Subject to: x1 − 3 = 0

− x2 + 2 ≤ 0

− 10 ≤ xt ≤ 10, t = 1, 2

C3: Constrained problem 3

Min
− sin (2πx1)3 sin (2πx1)

x31 (x2 + x1)

Subject to: − x1 + (x2 − 4)2 + 1 ≤ 0

x21 − x2 + 1 ≤ 0

0.1 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10

C4: Constrained problem 4

Min (x1 − 10)3 + (x2 − 20)3

Subject to: − (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0

− (x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

10 ≤ x1 ≤ 13,

0 ≤ x2 ≤ 100

C5: Constrained problem 5

Min x21 + (x2 − 1)2

Subject to:− x21 + x2 = 0

− 1 ≤ xt ≤ 1, t = 1, 2

C6: Constrained problem 6

Min
(√

dim
)dim dim∏

t=1

xt

Subject to:
dim∑
t=1

x2t − 1 = 0

0 ≤ xt ≤ 1, t = 1, 2, . . . , 4

C7: Constrained problem 7

Min 5.357857x23 + 0.8356891x1x5 + 37.293239x1

− 40792.141

Subject to:[
−85.334407− 0.0006262x1x4
−0.0056858x2x5 + 0.0022053x3x5

]
≤ 0

[
85.334407+ 0.0006262x1x4
+0.0056858x2x5 − 0.0022053x3x5 − 92

]
≤ 0

[
−80.51249− 0.0029955x1x2
−0.0071317x2x5 − 0.0021813x23 + 90

]
≤ 0

[
80.51249+ 0.0029955x1x2 + 0.0071317x2x5
+0.0021813x23 − 110

]
≤ 0

[
−9.300961− 0.0012547x1x3 − 0.0047026x3x5
−0.0019085x3x4+20

]
≤0

[
9.300961+ 0.0012547x1x3 + 0.0047026x3x5
+0.0019085x3x4 − 25

]
≤ 0

78 ≤ x1 ≤ 100, 33 ≤ x2 ≤ 45,

27 ≤ x3 ≤ 45, 27 ≤ x4 ≤ 45,

27 ≤ x5 ≤ 45
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APPENDIX II. ENGINEERING DESIGN PROBLEMS
P1: Optimal design of a small propeller-type aircraft engine
speed reducer for by minimizing weight

Min

 0.7854x1x22
(
−43.0934+ 14.933x3 + 3.3333x23

)
+7.477

(
x36 + x

3
7

)
− 1.508

(
x26 + x

2
7

)
+0.7854

(
x4x26 + x5x

2
7

)


Subject to:
27

x1x22x3
− 1 ≤ 0,

3947.5

x1x22x
2
3

− 1 ≤ 0,

1.93x34
x2x46x3

− 1 ≤ 0,

1.93x35
x2x3x47

− 1 ≤ 0,√(
745x4
x2x3

)2
+ 16900000

110x36
− 1 ≤ 0,√(

745x5
x2x3

)2
+ 15750000

85x37
− 1 ≤ 0,

x1
12x2

− 1 ≤ 0,
x2x3
40
− 1 ≤ 0,

5x2
x1
− 1 ≤ 0,

1.9+ 1.5x6
x4

− 1 ≤ 0,

1.9+ 1.1x7
x5

− 1 ≤ 0,

2.6 ≤ x1 ≤ 3.6,

0.7 ≤ x2 ≤ 0.8,

17 ≤ x2 ≤ 28,

7.3 ≤ x4 ≤ 8.3,

7.8 ≤ x5 ≤ 8.3,

2.9 ≤ x6 ≤ 3.9, 5 ≤ x7 ≤ 5.5.

P2: Optimal design of a pressure vessel byminimizing overall
costs, including material costs, shaping and welding.

Min
[
19.84x21x3 + 1.7781x2x23 + 3.1661x21x4

+ 0.6224x1x3x4]

Subject to: 0.0193x3 − x1 ≤ 0,

0.00954x3 − x2 ≤ 0,

x4 − 240 ≤ 0,

− πx23x4 −
4
3
πx33 + 1296000 ≤ 0,

0.5 ≤ x1 ≤ 1,

0.3 ≤ x2 ≤ 0.5,

40 ≤ x3 ≤ 50,

170 ≤ x4 ≤ 240.

P3: Optimal design of a disc brake

Min
[
4.9

(
−x21 + x

2
2

)
(x4 − 1) /100000

]

Subject to: − 30+ 2.5 (x4 + 1) ≤ 0

20− (−x1 + x2) ≤ 0
x3

3.14
(
−x21 + x

2
2

) − 0.4 ≤ 0

980000
(
−x21 + x

2
2

)
x3x4

(
−x31 + x

3
2

) ≤ 32,

900−
0.0266x3x4

(
−x31 + x

3
2

)(
−x21 + x

2
2

) − 1 ≤ 0

0.00222x3
(
−x31 + x

3
2

)(
−x21 + x

2
2

)2 − 1 ≤ 0

55 ≤ x1 ≤ 80,

75 ≤ x2 ≤ 110,

1000 ≤ x3 ≤ 3000,

2 ≤ x4 ≤ 20.

P4: Design of three-bar truss

Min
[
2
√
2 x1 + x2

]
L

Subject to:
1

x1 +
√
2x2

p− σ ≤ 0

x2
2x1x2 +

√
2x21+

p− σ ≤ 0

√
2 x1 + x2

2x1x2 +
√
2 x21

p− σ ≤ 0

0.1 ≤ x1 ≤ 1, 0.1 ≤ x2 ≤ 1;

L = 100cm,

σ = 2kN/cm2,

p = 2kN/cm2

P5: Cost Minimization of a Transformer Design

Min


0.0607x1x4x25 (x1 + x2 + x3)
+0.0187x2x3 (x1 + 1.57x2 + x4)
+0.0204x1x4 (x1 + x2 + x3)
+0.0437x2x3x26 (x1 + 1.57x2 + x4)


Subject to: 0.001x1x2x3x4x5x6 − 2.07 ≥ 0,

[1− 0.00058x2x3x26 (x1 + 1.57x2 + x4)

− 0.00062x1x4x25 (x1 + x2 + x3)] ≥ 0,

xt ≥ 0, t = 1, ...., 6

P6: optimal design of chemical reactors as Geometric pro-
gramming problem

Min [−x1 − x2 + 0.4x0.671 x−0.677 +
0.4x0.672

x0.678

+ 10]

Subject to: 0.1x1 + 0.0588x5x7 ≤ 1,

0.1x1 + 0.1x2 + 0.0588x6x8 ≤ 1,
4x3
x5
+

2

x0.713 x5
+

0.0588x7
x1.33

≤ 1

4x3
x6
+

2

x0.714 x6
+

0.0588x8
x1.34

≤ 1

0.1 ≤ xt ≤ 10, t = 1, . . . 8
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