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ABSTRACT Multi-label twin support vector machine (MLTSVM), being an effective multi-label classifier
based on twin support vector machine (TSVM), has been widely studied and applied due to its excellent
classification performance. However, there are some disadvantages in classical MLTSVM: (a) MLTSVM
needs to solve a series of quadratic programming problems (QPPs), which makes its learning speed lower.
(b) For multi-label learning problems, it is very difficult to obtain all labels of all samples. In fact, the datasets
that we can obtain only contain a small amount of labeled samples and a large amount of partially labeled and
unlabeled samples. However, MLTSVM can only use expensive labeled samples and ignore cheap unlabeled
and partially labeled samples. For the drawbacks, we propose a novel semi-supervised multi-label least
squares twin support vector machine, called SS-MLLSTSVM. Firstly, to speed up solving, SS-MLLSTSVM
introduces the least squares idea into each sub-classifier of MLTSVM, which makes each sub-classifier
only need to solve a system of linear equations, instead of one QPP. Secondly, SS-MLLSTSVM can
make full use of the geometric information in unlabeled and partially labeled samples by introducing
manifold regularization term into each sub-classifier. The experimental results on the benchmark datasets
show that, compared with the existing multi-label classification algorithms, our SS-MLLSTSVM has better
classification performance.

INDEX TERMS Twin support vector machine, least squares, multi-label learning, semi-supervised learning.

I. INTRODUCTION
TSVM [1], proposed by Jayadeva et al. in 2007, can be used
to solve the binary classification problem. Because of its
high learning speed and good generalization performance,
it has been widely studied and applied. Many improvements
of TSVM have been proposed, such as [2]–[18].

The above improvements can only solve the single-label
learning problems, not solve the multi-label learning prob-
lems in which each sample may simultaneously belong to
multiple labels. The multi-label learning problem is com-
mon, such as [19]–[22]. Up till now, there are two types
of methods to solve the multi-label learning problem: prob-
lem transformation and algorithm adaptation. The prob-
lem transformation method solves the multi-label learning
problem by transforming it into one or more single-label
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problems, such as label powerset (LP) [23], binary relevance
(BR) [24], random k-labelsets (RAKEL) [25], classifier
chains (CC) [26], calibrated label ranking (CLR) [27], and
so on. The algorithm adaptation method extends the existing
single-label learning algorithm to handle multi-label learning
problem, such as ranking support vector machine (Rank-
SVM) [28], collective multi-label classifier (CML) [29],
multi-label k-nearest neighbor (ML-KNN) [30], multi-label
decision tree (ML-DT) [31], backpropagation for multilabel
learning (BPMLL) [32], and so on.

In order to extend TSVM to handle the multi-label learn-
ing problem, in 2016, Chen et al. proposed a multi-label
twin support vector machine (MLTSVM) [33]. Compared
with other traditional multi-label classification algorithms,
MLTSVM has better generalization performance. Thereafter,
many improvements of MLTSVM have been presented, such
as KNN-based multi-label twin support vector machine with
priority of labels (PKNN-MLTSVM) [34], structural least
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square twin support vector machine for multi-label learning
(ML-SLSTSVM) [35], et al.
However, there are some disadvantages in classical

MLTSVM and its improvements: (a) MLTSVM needs to
solve a series of quadratic programming problems (QPPs),
which makes its learning speed lower. (b) For multi-label
learning problems, it is very difficult to obtain all labels
of all samples. In fact, the datasets we can obtain only
contain a small amount of labeled samples and a large
amount of partially labeled and unlabeled samples. However,
MLTSVM can only use expensive labeled samples and
ignore cheap unlabeled and partially labeled samples.
For the drawbacks, we propose a novel semi-supervised
muti-label least squares twin support vector machine, called
SS-MLLSTSVM. Firstly, to speed up solving,
SS-MLLSTSVM introduces the least squares idea into each
sub-classifier of MLTSVM, which makes each sub-classifier
only need to solve a system of linear equations, instead of
one QPP. Secondly, SS-MLLSTSVM canmake full use of the
geometric information in unlabeled and partially labeled sam-
ples by introducing manifold regularization term into each
sub-classifier. The experimental results on the benchmark
datasets show that, compared with the existing multi-label
classification algorithms, our SS-MLLSTSVM has better
generalization performance.

The structure of this article is as follows: Section 2 intro-
duces some related works, such as TSVM, least squares
twin support vector machine (LSTSVM), MLTSVM, etc.
In Section 3, the SS-MLLSTSVM is proposed, including
linear case, nonlinear case and decision function. The fourth
section presents the experimental results and analysis of our
proposed algorithm on the benchmark datasets. The fifth
section is the conclusions.

II. RELATED WORKS
For the binary classification problem, the training set is
marked as T = {(xi, yi) |i = 1, . . . ,m}, where xi ∈ Rn is the
training sample and yi ∈ {+1,−1} is the label corresponding
to the training sample xi. For convenience, we denote positive
training samples as A ∈ Rm1×n and negative training samples
as B ∈ Rm2×n, where m = m1+m2 is the total number of the
training samples.

A. TSVM
The goal of TSVM is to seek the following two nonparallel
hyperplanes:

f+ (x) : xw+ + b+ = 0 and f− (x) : xw− + b− = 0. (1)

The original problem of TSVM is as follows:

min
w+,b+,ξ−

1
2
‖Aw+ + e+b+‖2 + c+eT−ξ−,

s.t. − (Bw+ + e−b+)+ ξ− ≥ e−, ξ− ≥ 0, (2)

min
w−,b−,ξ+

1
2
‖Bw− + e−b−‖2 + c−eT+ξ+,

s.t. Aw− + e+b− + ξ+ ≥ e+, ξ+ ≥ 0, (3)

where c± are the penalty parameters, ξ± are the relaxation
variables, and e± are the vector of all 1 of the proper
dimension.

The dual problems of (2) and (3) are as follows:

max
α

eT−α −
1
2
αTE

(
FTF

)−1
ETα,

s.t. 0 ≤ α ≤ c+e−, (4)

max
γ

eT+γ −
1
2
γ TF

(
ETE

)−1
FT γ,

s.t. 0 ≤ γ ≤ c−e+, (5)

where α and γ are the Lagrange multipliers, E =
[
B e−

]
and F =

[
A e+

]
.

The two nonparallel hyperplanes can be obtained by solv-
ing the dual problems (4) and (5) as follows:

v1 =
[
wT+ b+

]T
= −

(
FTF

)−1
ETα, (6)

v2 =
[
wT− b−

]T
=

(
ETE

)−1
FT γ. (7)

B. LSTSVM
Similar to TSVM, LSTSVM also seeks two nonparallel
hyperplanes. However LSTSVM solves the following two
quadratic programming problems (QPPs) to obtain the two
nonparallel hyperplanes:

min
w+,b+,ξ−

1
2
‖Aw+ + e+b+‖2 +

1
2
c+ξT−ξ−,

s.t. − (Bw+ + e−b+)+ ξ− = e−, (8)

min
w−,b−,ξ+

1
2
‖Bw− + e−b−‖2 +

1
2
c−ξT+ξ+,

s.t. Aw− + e+b− + ξ+ = e+. (9)

Different from the primal problems (2) and (3) of TSVM,
LSTSVM replaces the inequality constraints with equality
constraints and 1-norm of slack variables ξ± with the square
of 2-norm.

By substituting equality constraints into the objective
functions in (8) and (9), we can obtain[

A e+
]T [A e+

] [
wT+ b+

]T
+ c+

[
B e−

]T [B e−
] [
wT+ b+

]T
+ c+

[
B e−

]T e− = 0, (10)[
B e−

]T [B e−
] [
wT− b−

]T
+ c−

[
A e+

]T [A e+
] [
wT− b−

]T
− c−

[
A e+

]T e+ = 0. (11)

Supposing G =
[
B e−

]
, H =

[
A e+

]
, we can obtain

[
wT+ b+

]T
= −

(
GTG+ c+HTH

)−1
GT e−, (12)[

wT− b−
]T
=

(
HTH + c−GTG

)−1
HT e+. (13)
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C. MLTSVM
For the multi-label learning problems, we set the training set
as T = {(xi, yi) |i = 1, . . . ,m}, where xi ∈ Rn is the training
sample, yi = {yi1, . . . , yik , . . . , yiK } is the label sequence of
the sample xi,

yik=

{
+1, if xi belongs to the kth class,
−1, otherwise,

(14)

1 ≤ k ≤ K , m is the total number of training samples and K
is the total number of labels.

The MLTSVM seeks the following K hyperplanes:

fk (x) : xwk + bk = 0, k = 1, 2, . . . ,K . (15)

Denote the samples belonging to the kth class by Ak and
the samples not belonging to the kth class by Bk . To obtain
the kth hyperplane, the original problem of MLTSVM is as
follows:

min
wk ,bk ,ξBk

1
2

∥∥Akwk + eAkbk∥∥2 + ckeTBk ξBk
+

1
2
λk (‖wk‖2 + b2k ),

s.t. −(Bkwk+eBkbk )+ξBk ≥eBk , ξBk ≥ 0, (16)

where ck is the penalty parameter, ξBk is the slack variable,
λk is the regularization parameter, and eAk (Bk ) are the vector
of all 1 of the proper dimension.

By introducing Lagrange function and using Karush-
Kuhn-Tucker (KKT) optimization theory, the dual problem
of (16) can be obtained as follows:

max
αBk

eTBkαBk −
1
2
αTBkG(H

TH + λk Ik )−1GTαBk ,

s.t. 0 ≤ αBk ≤ ck , (17)

where H =
[
Ak eAk

]
, G =

[
Bk eBk

]
, Ik is the identity

matrix of proper dimensions, and αBk is the Lagrange
multiplier.

By solving the dual problem, we can obtain

uk =
[
wTk bTk

]T
= −(HTH + λk Ik )−1GTαBk . (18)

III. SS-MLLSTSVM
Consider the semi-supervised multi-label learning problem
with training set T = {(xi, yi) |i = 1, . . . , u}, where xi ∈ Rn

is the training sample, and yi = {yi1, . . . , yik , . . . , yiK } is the
label sequence of the sample xi.

yik=


+1, if xi belongs to the kth class,
−1, if xi does not belongs to the kth class,
0, uncertain,

(19)

1 ≤ k ≤ K , u is the total number of all training samples,
including labeled, unlabeled and partially labeled samples
and K is the total number of labels.

A. SEMI-SUPERVISED LEARNING FRAMEWORK
To solve the semi-supervised learning problems, Belkin et al.
proposed a manifold regularization framework. The objec-
tive function of the manifold regularization framework is
expressed as follows:

f ∗=argmin
f ∈Hk

l∑
i=1

V (xi, yi, f )+γH ‖f ‖2H+γM ‖f ‖
2
M , (20)

where f is the classification function to be solved, Hk is the
reproducing kernel Hilbert space (RKHS), the first part V is
the loss function of labeled samples, the second part ‖f ‖2H
is a regularization term used to control the complexity of the
classifier, and the third part ‖f ‖2M is a manifold regularization
term, which reflects the internal manifold structure of data
distribution.

B. MODEL
1) LINEAR CASE
For the label k , SS-MLLSTSVM seeks a hyperplane

fk (x) : xwk + bk = 0, k = 1, 2, . . . ,K . (21)

The second part ‖f ‖2H of (20) can be expressed as:

‖fk‖2H =
1
2

(
‖wk‖22 + b

2
k

)
. (22)

The third part ‖f ‖2M of (20) can be expressed as:

‖fk‖2M =
1
u2

u∑
i,j=1

Wi,j
(
fk (xi)− fk

(
xj
))2
= f Tk Lfk , (23)

where fk = [fk (x1) , . . . , fk (xu)]T = Twk +ebk , L = D−W
is the Laplace matrix of the whole samples, W is defined as
follows:

Wi,j=

{
exp

(
−
∥∥xi − xj∥∥22 /2σ 2

)
,

0,

if xi and xj are
k nearest neighbor1

otherwise,
(24)

and D is defined as follows:

Di,i =
l+u∑
j=1

Wi,j. (25)

For the kth label, we suppose Ak = {xi|yik = +1}, Bk =
{xi|yik = −1}, Uk = {xi|yik = 0}, T = Ak ∪ Bk ∪ Uk . The
original optimization problem of the linear SS-MLLSTSVM
is:

min
1
2

(
Akwk + eAkbk

)2
+

1
2
ck2

(
‖wk‖2 + b2k

)
+
1
2
ck1ξTBk ξBk +

1
2
ck3(Twk + ebk)TL (Twk + ebk) ,

s.t. −
(
Bkwk + eBk bk

)
+ ξBk = eBk , (26)

1K nearest neighbor algorithm (KNN) [36] is used to judge whether
samples xi and xj are neighbors.
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where cki(i = 1, 2, 3) are the penalty parameters, and L is the
Laplace matrix of the whole samples. It can be observed from
the optimization problem (26) that (a) similar to LSTSVM,
SS-MLLSTSVM replaces the inequality constraints of the
MLTSVM with the equality constraints and 1-norm of slack
variables ξBk of MLTSVM with the square of 2-norm;
(b) unlike MLTSVM and LSTSVM, SS-MLLSTSVM adds
manifold regularization term in order to make full use of
the information of partially labeled and unlabeled sam-
ples. Therefore, SS-MLLSTSVM can effectively solve the
semi-supervised multi-label problem.

The Lagrange function of (26) is as follows:

L (wk , bk)=
1
2

(
Akwk+eAkbk

)2
+
1
2
ck2

(
‖wk‖2+b2k

)
+

1
2
ck1
(
eBk +Bkwk+eBk bk

)2
+

1
2
ck3(Twk+ebk)TL (Twk+ebk) . (27)

Using KKT condition, we can obtain:

∂L
∂wk
= ATk

(
Akwk + eAkbk

)
+ ck3T TL (Twk + ebk)

+ ck1BTk
(
eBk +Bkwk+eBk bk

)
+ ck2wk = 0, (28)

∂L
∂bk
= eTAk

(
Akwk + eAkbk

)
+ ck3eTL (Twk + ebk)

+ ck1eTBk

(
eBk + Bkwk + eBk bk

)
+ ck2bk = 0.

(29)

Combining (28) and (29), we can obtain:[
ATk
eTAk

] [
Ak eAk

] [wk
bk

]
+ ck1

[
BTk
eTBk

] [
Bk eBk

] [wk
bk

]
+ ck1

[
BTk
eTBk

]
eBk + ck2

[
wk
bk

]
+ ck3

[
T T

eT

]
L
[
T e

] [wk
bk

]
= 0. (30)

Denoting E =
[
Ak eAk

]
, F =

[
Bk eBk

]
, J =

[
T e

]
and

uk =
[
wTk bk

]T , we can obtain

uk=−ck1[ETE+ck2Ik+ck1FTF+ck3JTLJ ]−1FT eBk .

(31)

2) NONLINEAR CASE
In this section, we extend the linear SS-MLLSTSVM to
the nonlinear case using the approximate kernel generating
surface. For the nonlinear case, SS-MLLSTSVM constructs
K approximate kernel generating surface

fk (x) : K (x,T T )wk + bk = 0, k = 1, 2, . . . ,K , (32)

where K (·, ·) is a suitable kernel function.

Similar to the linear case, the second part and the third part
in (20) can be respectively expressed as follows:

‖fk‖2H =
1
2

(
wTk K

(
T ,T T

)
wk + b2k

)
, (33)

‖fk‖2M = f Tk Lfk

=

(
K
(
T ,T T

)
wk+ebk

)T
L
(
K
(
T ,T T

)
wk+ebk

)
.

(34)

The original optimization problem of nonlinear
SS-MLLSTSVM is as follows:

min
1
2

(
K
(
Ak ,T T

)
wk + eAkbk

)2
+

1
2
ck1ξTBk ξBk

+
1
2
ck3
(
K
(
T ,T T

)
wk + ebk

)T
×L

(
K
(
T ,T T

)
wk + ebk

)
+

1
2
ck2

(
‖wk‖2 + b2k

)
,

s.t. −
(
K
(
Bk ,T T

)
wk + eBk bk

)
+ ξBk = eBk . (35)

The Lagrange function of (35) can be constructed as
follows:

L (wk , bk) =
1
2

(
K
(
Ak ,T T

)
wk + eAkbk

)2
+

1
2
ck3
(
K
(
T ,T T

)
wk + ebk

)T
×L

(
K
(
T ,T T

)
wk + ebk

)
+

1
2
ck1
(
K
(
Bk ,T T

)
wk + eBk bk + eBk

)2
+

1
2
ck2

(
‖wk‖2 + b2k

)
. (36)

Using KKT condition, we can obtain:

∂L
∂wk
= K

(
Ak ,T T

)T (
K
(
Ak ,T T

)
wk + eAkbk

)
+ ck2wk

+ ck1K
(
Bk ,T T

)T (
K
(
Bk ,T T

)
wk+eBk bk+eBk

)
+ ck3K

(
T ,T T

)T
L
(
K
(
T ,T T

)
wk + ebk

)
= 0,

(37)
∂L
∂bk
= eTAk

(
K
(
Ak ,T T

)
wk + eAkbk

)
+ ck2bk

+ ck1eTBk

(
K
(
Bk ,T T

)
wk + eBk bk + eBk

)
+ ck3eTL

(
K
(
T ,T T

)
wk + ebk

)
= 0. (38)

Combining (37) and (38), we can obtain:[
K
(
Ak ,T T

)T
eTAk

] [
K
(
Ak ,T T

)
eAk

] [wk
bk

]

+ ck1

[
K
(
Bk ,T T

)T
eTBk

] [
K
(
Bk ,T T

)
eBk

] [wk
bk

]

+ ck1

[
K
(
Bk ,T T

)T
eTBk

]
eBk + ck2

[
wk
bk

]
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+ ck3

[
K
(
T ,T T

)T
eT

]
L
[
K
(
T ,T T

)
e
] [wk

bk

]
= 0.

(39)

Denoting E=
[
K
(
Ak ,T T

)
eAk

]
, F =

[
K
(
Bk ,T T

)
eBk

]
,

J =
[
K
(
T ,T T

)
e
]
and uk =

[
wTk bk

]T , we can obtain

uk = −ck1[ETE+ck2Ik+ck1FTF+ck3JTLJ ]−1FT eBk .

(40)

C. DECISION FUNCTION
In this subsection, by fusing the K sub-classifiers [37],
we present the decision function of our SS-MLLSTSVM.
For a new sample x, as mentioned above, if the sample x
is close enough to a hyperplane, it should be marked as the
corresponding label. In other words, if the distance dk (x)
between x and the kth hyperplane

dk (x) =

∣∣wTk x + bk ∣∣
‖wk‖

, k = 1, . . . ,K , (41)

is less than or equal to the given value 1k , k = 1, . . . ,K ,
the sample x is assigned to the kth label.
To choose the proper 1k , we apply the strategy in the

MLTSVM, which is a simple and effective method, i.e. we set
1k = 1 = minp=1,...,K

(
1
‖wp‖

)
, k = 1, . . . ,K .

D. COMPLEXITY ANALYSIS
In this subsection, we analyze the computational complex-
ity of SS-MLLSTSVM. The computational complexity of
SS-MLLSTSVM mainly includes two parts: solving the
Laplace matrix of the whole samples and solving the lin-
ear equations. The main computational burden of solving
the Laplace matrix of the whole samples is to seek the
K nearest neighbor of each sample, and the computational
complexity of seeking the K nearest neighbor of all samples
is O

(
u2 log (u)

)
. For linear case, the computational com-

plexity of solving linear equations is O
(
d3
)
, where d is the

dimension of training samples. For nonlinear case, the com-
putational complexity of solving linear equations is O

(
u3
)
,

where u is the total number of all training samples. There-
fore, the computational complexities of linear and nonlinear
SS-MLLSTSVM are respectively O

(
u2 log (u)+ Kd3

)
and

O
(
u2 log (u)+ Ku3

)
.

IV. EXPERIMENTS
In this section, we present the classification results of our
proposed SS-MLLSTSVM onmultiple datasets. We compare
our SS-MLLSTSVM with BPMLL [32], Rank-SVM [28]

and MLTSVM on the multi-label benchmark datasets. All
the algorithms are implemented in MATLAB (R2017b), and
the experimental environment is Intel Core i3 processor with
4G RAM.

A. BENCHMARK DATASETS
In the experiments, we used five common multi-label
datasets, including flags, birds, emotions, yeast and scene.
The datasets cover multiple fields, including image, audio,
music, biology, and so on. The details of the datasets are listed
in Table 1. In addition, in order to investigate the classification
ability of our proposed algorithm, we choose 50% of the
datasets as labeled samples and the remaining samples as
unlabeled samples.

B. EVALUATION CRITERIA
In the experiments, in order to evaluate the performance of
the algorithm, we use 7 common evaluation metrics, includ-
ing Hamming loss, average precision, coverage, one error,
ranking loss, balanced accuracy and Kappa. Next, we will
introduce the 7 evaluation metrics in detail.

Let m be the total number of samples and K be the total
number of labels. Yi and Yi respectively represent the relevant
label set and irrelevant label set of sample xi. The function
f (x, y) returns the confidence of y being the right label of
sample x, and the function rank (x, y, f ) returns a descending
rank of f (x, y) for any y ∈ {y1, . . . ,yK }. For the kth label,
TPk represents the number of samples that belong to the kth
label and are predicted correctly; TNk represents the number
of samples that do not belong to the kth label and are not
predicted to be the kth label; FPk represents the number of
samples that do not belong to the kth label and are predicted
to be the kth label; FNk represents the number of samples
that belong to the kth label and are not predicted to be the kth
label.

1) HAMMING LOSS
Hamming loss is used to measure the proportion of labels
which are misclassified

Hamming loss =
1
m

m∑
i=1

1
K
|h (xi)1Yi|, (42)

where h (xi) is the predicted labels of sample xi.

2) COVERAGE
Coverage is used to measure that, to cover all possible
labels of samples, how far we need to go down the ranked

TABLE 1. Detailed description of the datasets.
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label list.

coverage =
1
m

m∑
i=1

max
y∈Yi

rank (xi, y, f )− 1. (43)

3) ONE ERROR
One error is used to measure the proportion of samples whose
label with the highest prediction probability isn’t in the true
label set.

one error =
1
m

m∑
i=1

H (xi), (44)

where

H (xi) =

{
0, if argmax f (xi, y) ∈ Yi
1, otherwise.

(45)

4) RANKING LOSS
Ranking loss is used to measure the proportion of label pairs
that are reversely ordered.

ranking loss

=
1
m

m∑
i=1

(
1

|Yi|
∣∣Yi∣∣ ∣∣{(y′y′′) |f (xi, y′) ≤ f (xi, y′′) ,

y′ ∈ Yi, y′′ ∈ Yi
}∣∣ ) . (46)

5) AVERAGE PRECISION
Average precision is used to measure the proportion of labels
ranked above a particular label y ∈ Yi.

average precision

=
1
m

m∑
i=1

×

 1
|Yi|

∑
y∈Yi

∣∣{(y′ ∈ Yi) |rank (xi, y′, f )≤rank (xi, y, f )}∣∣
rank (xi, y, f )

.
(47)

6) BALANCED ACCURACY
Balanced accuracy is used to measure the classification per-
formance of the classifier for unbalanced dataset.

balanced accuracy =
1
K

K∑
k=1

TPRk + TNRk
2

, (48)

where TPRk =
TPk

TPk+FNk
, TNRk =

TNk
TNk+FPk

.

7) KAPPA
Kappa coefficient is used to test the consistency between the
predicted results of the classifier and the actual results.

kappa =
1
K

K∑
k=1

pok − pek
1− pek

, (49)

where

pok =
TPk + TNk

m
, (50)

pek =
TPk × (TPk + FNk)+ TNk × (TNk + FPk)

m2 .

(51)

C. PARAMETER SETTING
The parameters of classifiers have an important impact on
the classification performance. We use 5-fold cross valida-
tion to select optimal parameters. The parameters of each
algorithm are set as follows: For the BPMLL, the num-
ber of hidden neurons is set to 20% of the input dimen-
sion, and the number of training epochs is 100. For the
Rank-SVM, the kernel function parameter and penalty
parameter c are selected from

{
2−6, . . . , 20, . . . , 26

}
. For

the MLTSVM, the penalty parameters ck and regulariza-
tion parameter λk are selected from

{
2−6, . . . , 20, . . . , 26

}
.

For the SS-MLLSTSVM, the penalty parameters ck1
and regularization parameters ck2, ck3 are selected from{
2−6, . . . , 20, . . . , 26

}
.

D. RESULTS
The classification results of BPMLL, Rank-SVM, MLTSVM
and our SS-MLLSTSVM on benchmark datasets are pre-
sented in this subsection. In the experiments, we use 5-fold
cross validation to evaluate these algorithms. The mean and
standard deviation of 20 rounds 5-fold cross validation for
each metrics are respectively listed in Tables 2 to 8.

From Table 2 and 3, we can observe that our
SS-MLLSTSVM is superior to all other multi-label classi-
fiers for average precision and balanced accuracy. However,
from Table 4 to 8, we can observe that no algorithm is
superior to any other algorithms on all datasets for coverage,
Hamming loss, one error, ranking loss and kappa. Further,
we use Friedman test to evaluate each algorithm statistically.
The Friedman statistics are as follows:

χ2
F =

12N
k (k + 1)

∑
j

R2j −
k(k + 1)2

4

 , (52)

whereRj = 1
N

∑
i
r ji , r

j
i represents the rank of the jth algorithm

on the ith dataset, k is the number of classifiers, and N is the
number of datasets. Because χ2

F is undesirably conservative,
we apply the better statistic

FF =
(N−1) χ2

F

N (k−1)−χ2
F

∼ F (k−1, (k−1) (N−1)) . (53)

For coverage, Hamming loss, one error, ranking loss
and kappa, we list the rank of different multi-label clas-
sifiers in Table 9 to 13. We can obtain χ2

F (coverage) =
12.24, χ2

F (Hamming loss) = 6.36, χ2
F (one error) =

9.72, χ2
F (ranking loss) = 8.76, χ2

F (kappa) = 10.92
and FF (coverage) = 17.74, FF (Hamming loss) =
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TABLE 2. Average precision of 4 algorithms on the benchmark datasets.

TABLE 3. Balanced accuracy of 4 algorithms on the benchmark datasets.

TABLE 4. Coverage of 4 algorithms on the benchmark datasets.

TABLE 5. Hamming loss of 4 algorithms on the benchmark datasets.

TABLE 6. One error of 4 algorithms on the benchmark datasets.

TABLE 7. Ranking loss of 4 algorithms on the benchmark datasets.

TABLE 8. Kappa of 4 algorithms on the benchmark datasets.

3.09, FF (one error) = 7.36, FF (ranking loss) = 5.62,
FF (kappa) = 8.60. For the significance level α = 0.10,
the critical values F (3, 12) = 2.61. Because FF (coverage),

FF (Hamming loss), FF (one error), FF (ranking loss) and
FF (kappa) are larger than the critical values, 4 algo-
rithms have significant differences for the 5 metrics.
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FIGURE 1. The influence of the parameters ck1 and ck2 = ck3 on average precision.

FIGURE 2. The influence of the parameters ck1 and ck2 = ck3 on coverage.

TABLE 9. Ranks of 4 algorithms for coverage.

TABLE 10. Ranks of 4 algorithms for Hamming loss.

TABLE 11. Ranks of 4 algorithms for one error.

From Table 9 to 13, we can see that the average rank of
our SS-MLLSTSVM is lower than other algorithms, in other
words, our SS-MLLSTSVM has better classification perfor-
mance for the 5 metrics.

TABLE 12. Ranks of 4 algorithms for ranking loss.

TABLE 13. Ranks of 4 algorithms for kappa.

We present the training time of each algorithm in Table 14.
From Table 14, we can observe that, compared with other
algorithms, although SS-MLLSTSVM needs to calculate the
Laplace matrix of the whole samples, our SS-MLLSTSVM
still has higher leaning speed.

E. PARAMETERS ANALYSIS
In this subsection, we investigate the influence of parameters
ck1, ck2 and ck3 on the classification performance of the
SS-MLLSTSVM. The results are shown in Figure 1 to 7.
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TABLE 14. Learning time of 4 algorithms on the benchmark datasets.

FIGURE 3. The influence of the parameters ck1 and ck2 = ck3 on Hamming loss.

FIGURE 4. The influence of the parameters ck1 and ck2 = ck3 on one error.

FIGURE 5. The influence of the parameters ck1 and ck2 = ck3 on ranking loss.

From Figure 1 to 7, we can observe that (a) the classifica-
tion metrics of the SS-MLLSTSVM vary dramatically with
the change of the parameters, which means that the parame-
ters have great influence on the classification metrics of the

SS-MLLSTSVM; (b) for Hamming loss, balanced accuracy
and kappa, the parameter ck1 has strong influence and the
parameters ck2 and ck3 have weak influence, while there is no
obvious difference among ck1, ck2 and ck3 for other metrics.
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FIGURE 6. The influence of the parameters ck1 and ck2 = ck3 on balanced accuracy.

FIGURE 7. The influence of the parameters ck1 and ck2 = ck3 on kappa.

FIGURE 8. Average precision of SS-MLLSTSVM, MLTSVM and Rank-SVM for different number of unlabeled samples.

FIGURE 9. Coverage of SS-MLLSTSVM, MLTSVM and Rank-SVM for different number of unlabeled samples.

F. SENSITIVITY ANALYSIS
In this subsection, we investigate the effect of size of unla-
beled samples on classification performance. Figure 8 to

14 shows the classification results of MLTSVM, Rank-SVM
and SS-MLLSTSVM on flags, birds and emotions for the
different number of unlabeled samples.
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FIGURE 10. Hamming loss of SS-MLLSTSVM, MLTSVM and Rank-SVM for different number of unlabeled samples.

FIGURE 11. One error of SS-MLLSTSVM, MLTSVM and Rank-SVM for different number of unlabeled samples.

FIGURE 12. Ranking loss of SS-MLLSTSVM, MLTSVM and Rank-SVM for different number of unlabeled samples.

From Figure 8 to 14, we can observe that, with the
increase of unlabeled samples, the classification metrics
of the MLTSVM and Rank-SVM remain constant, that
is mainly because MLTSVM and Rank-SVM can only

use labeled samples, not unlabeled samples, while the
classification metrics of SS-MLLSTSVM become better
and better, that’s mainly because, SS-MLLSTSVM can
make full use of the valuable samples to construct a
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FIGURE 13. Balanced accuracy of SS-MLLSTSVM, MLTSVM and Rank-SVM for different number of unlabeled samples.

FIGURE 14. Kappa of SS-MLLSTSVM, MLTSVM and Rank-SVM for different number of unlabeled samples.

more reasonable classifier and improve the classification
performance.

V. CONCLUSION
In this article, we propose an semi-supervised multi-label
learning algorithm, named SS-MLLSTSVM.
SS-MLLSTSVM introduces the least squares idea into each
sub-classifier of MLTSVM to improve learning speed and
make full use of the geometric information in unlabeled and
partially labeled samples to improve generalization perfor-
mance. The experimental results on the benchmark datasets
indicate that, compared with popular multi-label classifiers,
our SS-MLLSTSVM has better classification performance,
especially for the dataset that contains a large number of par-
tially labeled and unlabeled samples. The high-dimensional
data have great effects on the classification performance.
Therefore, feature reduction for multi-label learning will be
the focus of our future research.
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