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ABSTRACT An optimal robust control solution for general nonlinear systems with unknown but observable
dynamics is advanced here. The underlying Hamilton-Jacobi-Isaacs (HJI) equation of the corresponding
zero-sum two-player game (ZS-TP-G) is learned using a Q-learning-based approach employing only
input-output system measurements, assuming system observability. An equivalent virtual state-space model
is built from the system’s input-output samples and it is shown that controlling the former implies controlling
the latter. Since the existence of a saddle-point solution to the ZS-TP-G is assumed unverifiable, the solution
is derived in terms of upper-optimal and lower-optimal controllers. The learning convergence is theoretically
ensured while practical implementation is performed using neural networks that provide scalability to the
control problem dimension and automatic feature selection. The learning strategy is checked on an active
suspension system, a good candidate for the robust control problem with respect to road profile disturbance
rejection.

INDEX TERMS Active suspension system, approximate dynamic programming, neural networks, optimal
control, reinforcement learning, state feedback, zero-sum two-player games.

I. INTRODUCTION
Feedback control systems that are robust when faced with
external disturbances are a common challenge and also fre-
quently pose a direct or indirect design specification. To this
end, the robust optimal control design is a highly attractive
approach that has gained renewed attention lately in the
zero-sum (ZS) game framework. Although the robust optimal
design is, for quite some time now, well-posed for linear
systems and solved by the H-infinity framework, it was not
until the works by [1], [2] that the framework was imported
to nonlinear systems robust optimal control in the form of the
L2-gain optimal control. The goal of this latter formulation is
to solve theHamilton-Jacobi-Isaacs (HJI) equation, accepting
the fact that for general nonlinear systems, it is often impossi-
ble to find analytical solutions. A very well-studied approach
to the L2 control design is formulated as a ZS differential
game [3]–[7] between two competing players: the optimal
controller and the worst-case optimal disturbance controller.
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Whenever the HJI equation is feasible, these two players are
the minimax saddle-point solution for it, and the feasibility
of the HJI equation is well studied for linear systems and it
depends on the attenuation level as a prescribed degree of
performance [8]–[10]. Whereas, for general nonlinear sys-
tems, the common approach is to not directly assume the HJI
equation feasibility and rather to try to search for its solution
using the concepts of upper-optimal and lower-optimal con-
trollers who act as upper and lower bounds for the optimal
controller, respectively, when the HJI solution exists, or, they
act as independent optimal solutions when an infeasible HJI
exists [11], [12].

There exists a large number of solution approaches to
the HJI equation, stemming from the methods employed by
Approximate Dynamics Programming (ADP) also known as
Reinforcement Learning (RL), for which ample research is
very active [13]–[26]. These works from ADP have been
applied, to name just a few, on discrete-time systems [27]
vs. continuous-time systems, in known-system [28] or in
unknown-system approaches [29], [30]. In game theory, [27]
proposed an iterative ADP algorithm for solving the HJI
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equation related to ZS game problems for discrete-time affine
nonlinear systems with known dynamics. In [28], ADP was
derived to find the optimal saddle-point in feedback strate-
gies of a nonlinear continuous-time system ZS game with
affine input and control constraints using two-player policy
iterations. In [29] ADP solves a discrete-time zero-sum game
for linear systems with continuous states using Q learning
for unknown system. In [31], a near optimal solution based
on successive approximation of HJI equation and distur-
bance inputs and control update was given for a discrete
time affine nonlinear system subjected to unknown internal
system dynamics and disturbances. In [32], an online adaptive
real-time policy learning method based on zero-sum games
for nonlinear discrete-time systemswas proposed for learning
the HJI equation. In [33], an online adaptive robust dynamic
programming algorithm using policy iteration scheme for
ZS-TP-G of continuous-time unknown systems subject to
uncertainties was considered. In [34], a data-based adaptive
critic method using output feedback for unknown model
and system states was described under disturbance mea-
surement assumption. In [35], a data-based policy iteration
Q-learning algorithm for ZS-TP-G was developed for linear
systems to eliminate process dynamics knowledge. Recent
game-theoretical contributions (some in nonzero-sum games)
for nonlinear systems are reported in [36]–[38], in the more
general framework of robust control [39], [40].

The first ADP-based solution approach for solving the HJI
equation for unknown system dynamics is the Q-learning
one [29] in which learning the HJI solution relies on data
collected from the system to be controlled. In Q-learning,
the learning process produces the two optimal controllers
as state-feedback ones that must use the entire state infor-
mation available. This is contradictory to some extent to
the model-free label of the method itself, since knowing the
natural system state requires a significant insight into the
system, such as the system order and usually the nature of
the underlying phenomenological process which is highly
correlated with, e.g., the time-scale of the system. On the
other hand, not using the entire state for learning optimal
control poses great challenges to the learning process since
the system is a partially observable one. This is the reason
why some ADP approaches for solving the HJI ZS-TP-G
were devised for handling observable systems and they rely
only on input-output (IO) samples collected from the system.
These IO samples are subsequently used to build a so-called
virtual state that defines a virtual state-space model transfor-
mation of the original system. Unfortunately, the approach
has been tackled for linear systems only, in a number of recent
works [34], [41], [42] and not for general nonlinear systems,
to the authors’ best knowledge. This last remark serves as an
incentive to one of this work’s main contributions.

On another hand, designing off-the-shelf ADP techniques
is another challenge since a great deal of effort is concerned
with suitable parameterization of the nonlinear cost func-
tion and of the controllers, respectively. Most often, auto-
matic basis function selection is a difficult task. Whereas, for

observable systems whose state is built from past IO samples,
the order of the equivalent virtual state quickly increases,
which creates a two-fold problem: the adequate exploration
of the input-state-output space and the time-correlation of
the successive input and output samples [43]. These issues
are related to the so-called dimensionality disaster problem
which is well-known to the ADP and RL methods. This is
why neural networks (NNs) have been the most flexible tool
employed until now for parameterizing function approxima-
tors. Their main advantage is the self-regulated scalability
to the control problem dimension, approximation capacity
boosted by complex architectures and overfitting avoidance
mechanisms intrinsically embodied in the NNs training pro-
cedures. Therefore, the NNs are considered to be a standard
tool in ADP that can automate the basis functions (or fea-
tures) selection in the function approximation tasks that are
mandatory with the ADP approaches.

Based on the above ideas, the goal of this article is to
integrate several concepts into a fully functional approach
to designing robust control for observable general unknown
nonlinear systems. The contributions of this work are as
follows:

- extension of the Q-learning approach to solve the optimal
robust control problem as a ZS-TP-G solution to the HJI
equation of general unknown nonlinear observable systems.
An equivalent virtual state-spacemodel of the original system
is built from IO samples and subjected to robust control
learning. The approach does not assume that a solution to
HJI is feasible, therefore it searches for one via the compu-
tation of the intermediate upper-optimal and lower-optimal
controllers. Theoretical analysis provides convergence of the
proposed Q-learning-based solution.

- a NN-based implementation that proves scalability to the
control problem dimension and automatic feature selection,
in spite of the highly-dimensional virtual state vector.

- validation on a nonlinear industrial system of practical
importance: an active suspension system.

The active suspension system is a well-suited candidate
for learning robust control since it inherently deals with the
road profile disturbance rejectionwhen employed on a variety
of transportation vehicles (cars, trains, etc.) and it presents
itself as a naturally underdamped system stemming from
the two-mass-spring-damper class of systems. On another
hand, the suspension system is a high order one (it has six
natural states when the active hydraulic actuator dynamics
is considered) and it makes it costly to measure all states.
Hence it makes a good candidate for an observable system.
Fortunately, it turns out to be a fully observable one where
the virtual state can be constructed from present and past
values of only one output measurement (the deviation of
the ‘‘car body’’ from the rest position) and from past values
of the two inputs: the control input of the actuator and the
disturbance input). Since measuring the road disturbance
input is not a valid option in practice, a solution is offered
to this problem, which proves that better attenuation of the
road profile impact on the ‘‘car body’’ motion is achieved
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than with respect to a competitive optimal controller which is
not learned with disturbance rejection ability in mind. While
there exists a consistent body of scientific literature dealing
with the optimal active suspension control and in particular
in that of reinforcement learning applied for the suspension
control [44]–[48], none of the above solutions deal with
the nonlinear unknown-dynamics observable case, as done
herein.

There are several advantages of learning a disturbance
rejecting optimal controller for an active suspension system:

- avoidance of the system dynamics knowledge,
- the observability-based solution that requires only IO

samples to reconstruct the system state,
- artificial disturbances that emulate road conditions are

easily generated in fixed stands in a learning facility.
This article structure is oriented as follows. The second

Section defines the ZS robust optimal control prob-
lem formulation and proposes a Q-learning-based solu-
tion employing upper-optimal and lower-optimal controllers.
Theoretical learning convergence analysis is performed.
Section III describes the practical implementation of the
proposed learning strategy, under neural networks used as
function approximators. The case study in Section IV exten-
sively validates the learning concept on a realistic quarter-
car active suspension model and provides discussions and
implementation details. Final conclusions are the subject of
the final Section V.

II. ZS ROBUST OPTIMAL CONTROL PROBLEM
DEFINITION AND SOLUTION
A. UNKNOWN OBSERVABLE SYSTEM
Let the nonlinear unknown system

S :

{
xk+1 = f(xk , ūk ),
yk = h(xk ),

(1)

defined in discrete-time, comprise of a transition function
equation and output equation respectively. The system state is
xk = [xk,1 . . . xk,n]T ∈ �X ⊂ Rn, the system’s input is ūk =
[uTk ,d

T
k ]
T
∈ �Ū ⊂ Rm,uk ∈ Rmu ,dk ∈ Rmd ,m = mu +md ,

the control input is uk = [uk,1, . . . , uk,mu ]
T
∈ �U ⊂ Rmu ,

the disturbance input is dk = [dk,1, . . . , dk,md ]
T
∈ �D ⊂

Rmd , the measured (and controlled) output is denoted yk =
[yk,1, . . . , yk,p]T ∈ �Y ⊂ Rp. The functions f,h are assumed
unknown on their definition domains and also continuously
differentiable. In addition to unknown system dynamics, fur-
ther system assumptions are listed:
A1. System (1) is completely state observable.
A2. System (1) is IO controllable from uk to yk .
A3. System (1) is IO stable inside the domain defined by

the input and output.
A1–A3 are common for defining control problems for sys-

tems with unknown dynamics. Since they are not verifiable
due to unknown system model, they are validated from work-
ing experience with the system, or from technical datasheets.

Assessment efforts of linear systems’ controllability and
observability was proposed e.g. in the works [49], [50].
Observation 1: The input vector lumping both the control

inputs and the disturbance inputs is important for deriving
the two-player formulation of the optimal robust control
solution.
In the attempt to derive state-feedback controllers, the state

in (1) is not measurable. The observability theory allows
to derive an alternate state-space model for (1) in terms
of a virtual state. The support for this claim is given as
follows.
Lemma 1: If pair (f,h) in (1) is observable, then there exists

a map 8 and a positive integer r such that

xk = 8(Yk,k−r ,Uk−1,k−r ),

Yk,k−r = [(yk )T . . . (yk−r )T ]T ,Uk−1,k−r

= [(ūk−1)T . . . (ūk−r )T ]T . (2)

Proof: See [51].
A virtual state vector is next introduced as zk =

[(Yk,k−r )T , (Uk−1,k−r )T ]T ∈ �Z ⊂ Rp(r+1)+mr . Then,
Theorem 1 in [51] showed that, based on (1) and (2), a new
virtual state-space system with output equation is defined
as

zk+1 = F(zk , ūk ),

yk = zk,1, (3)

which is completely observable (the components of zk are
sequences built from current and past successive IO samples)
and controllable (since it has the same input and output
as (1)).
The summarized ideas from [51] are:
a) System (3) is IO controllable since it has the same input

and output as (1);
b)With unknown state dimension n in (1), r from Lemma 1

corresponds to an observability index and it is also unknown.
Increasing r (and, subsequently the dimension of the virtual
state zk ) is the general advice. As [51] shows, beyond some
value of r , no information gain about the state xk is obtained
from zk ;
c) Controlling (1) and (3) is the same issue, except that (3)

uses a ‘‘measurable’’ state information. It means that learning
control for (3) will render the control for (1);
d) Model (1) accommodates a wide range of processes,

including time-delay ones. By properly introduced additional
state variables and via variables substitutions, the time delay
in the control input and in the states will result in another
virtual state-space model (3) that is fully state observable and
controllable (Comment 7 from [51]).
e) When learning state feedback controllers of the form

ūk = C̆(zk ) (with some function C̆ : �Z → �U ), note that
when plugging in this controller to close the control system
loop, a recurrent controller emerges, since zk includes past
samples of the input ūk . This type of recurrent controller is
known as a nonlinear output error (NOE) model.
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In order to develop the control solution in terms of dis-
turbance rejection, the input ūk is split to show distinctively
the control input and the disturbance input (Observation 1) as
ūk = [uTk ,d

T
k ]
T ,uk ∈ Rmu ,dk ∈ Rmd . The final virtual state

space model is

zk+1 = F(zk ,uk ,dk ),

yk = zk,1. (4)

Next, the optimal robust control problem of (4) is formu-
lated as a ZS-TP-G.

B. ZS CONTROL PROBLEM DEFINITION AND SOLUTION
The goal is to minimize a certain cost serving as performance
index, with the optimization problem of the optimal control
problem defined as

C∗,D∗ = argmin
C

max
D

J (zk ) =
∑∞

j=k
U (zj,uj,dj), (5)

with uj = C(zj),C : �Z → �u is the state feedback
controller w.r.t. input uk and dj = D(zj),D : �z → �d
is the state feedback disturbance controller w.r.t. to input
dk . Here, �Z , �u, �d are domain spaces of appropriate
dimension. In (5), the penalty function U is of the form
U (zj,uj,dj) = 2(zj) + C(zj)TWCC(zj) − D(zj)TWDD(zj)
where 2(zj) > 0 ∈ R is a state penalty term capturing
the desired learning goal (regulation or tracking w.r.t. the
state trajectory zk ), and WC ,WD are square positive def-
inite weight matrices. A controller pair {C , D} is called
admissible if it renders a finite cost J in (5) and it stabilizes
the closed-loop control system. Minimization of the cost
from (5) is interpreted as a degree of attenuation achieved
by the control system faced with any disturbance dk ∈
�d , when only the optimal controller C∗(zk ) is used in
closed-loop.
Definition 1 [12]: In the existence domains spaces of the

controllers C,D, the optimal controllers C∗,D∗ are a saddle-
point solution for the ZS-TP-G (5) if, for all C,D, it holds
that

J (zk ,C∗(zk ),D(zk )) ≤ J∗(zk )

, J (zk ,C∗(zk ),D∗(zk ))

≤ J (zk ,C(zk ),D∗(zk )). (6)

For general nonlinear systems with intractable analytical
solutions for (5) and moreover, for those nonlinear systems
with unknown dynamics, the existence of a saddle-point equi-
librium is not guaranteed, as pointed out in [12]. In this sense,
according to [2], upper-optimal and lower-optimal costs were
introduced as

J̄∗(zk ) = min
C

max
D

J (zk ,C(zk ),D(zk )),

J∗(zk ) = max
D

min
C

J (zk ,C(zk ),D(zk )). (7)

These upper-optimal and lower-optimal costs ensure that
J∗(zk ) = J∗(zk ) = J̄∗(zk ) when the saddle-point solution

J∗(zk ) exists and also that J∗(zk ) ≤ J̄∗(zk ) when such a
solution is not feasible. Moreover, J∗(zk ), J̄∗(zk ) satisfy the
Hamilton-Jacobi-Isaacs optimality equations which suggests
using iterative ADP solutions to overcome the difficulty of
calculating the upper optimal and lower optimal costs for
general nonlinear systems.

Notice that when the saddle-point solution (5) does not
exist, the optimal controllers from (7) differ, i.e. C̄∗(zk ),
D̄∗(zk ) = argmin

C
max
D

J (zk ,C(zk ),D(zk )) differ from

C∗(zk ),D∗(zk ) = argmax
D

min
C

J (zk ,C(zk ),D(zk )).
To compute the optimal controllers from (7) for both

upper and lower costs, upper and lower extended costs called
Q-functions are defined as

Q̄(zk ,uk ,dk ) = U (zk ,uk ,dk )+ Q̄(zk+1,C(zk+1),D(zk+1))

= U (zk ,uk ,dk )+ J̄ (zk+1),

Q(zk ,uk ,dk ) = U (zk ,uk ,dk )+ Q(zk+1,C(zk+1),D(zk+1))

= U (zk ,uk ,dk )+ J (zk+1), (8)

having the well-known meaning: they are the cost of tak-
ing any action (uk , dk ) in state zk and afterwards act-
ing only subject to controller actions calculated by C
and D in all subsequent states. They are directly con-
nected to the original upper and lower costs J as shown
in (8). The advantage of such Q-functions is that the
optimal controllers are computable by directly minimiz-
ing w.r.t. uk and dk the upper optimal and lower-optimal
Q-functions Q̄∗(zk ,uk ,dk ),Q∗(zk ,uk ,dk ), once these are
found.

Value Iteration (VI)-like algorithms are next proposed to
calculate the upper-optimal and lower-optimal Q-functions.
Their style is similar. For the upper optimal Q-function cal-
culation, the VI Algorithm 1 is as follows.

Algorithm 1
Starting from initial (not necessarily admissible) con-
trollers C̄0, D̄0, and an initial upper Q-function esti-
mate Q̄0, for all the possible combinations of the tuple
(zk ,uk ,dk ), alternate the following two steps at each iter-
ation j (starting with j = 1):
S1. Update the Q-function as

Q̄j(zk ,uk ,dk ) ⇐ U (zk ,uk ,dk )

+ Q̄j−1(zk+1,uk+1
= C̄j−1(zk+1),dk+1 = D̄j−1(zk+1)) (9)

S2. Improve the controllers as in

D̄j(zk ,uk ) = argmax
d

Q̄j(zk ,uk ,d),

C̄j(zk ) = argmin
u
Q̄j(zk ,u, D̄j(zk ,u)). (10)

S3. If stopping criterion (no more changes from Q̄j−1 to
Q̄j) is not met, go to S1, else stop the algorithm.
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The sense of the update operator ‘‘⇐’’ in (9) is understood
as the update of an infinitely dense table Q̄j(zk ,uk ,dk ), for
all (infinitely) possible combinations (zk ,uk ,dk ).
A compacted update form of the Algorithm 1 is possible,

by repeating the Q-function update as in

Q̄j(zk ,uk ,dk )⇐U (zk ,uk ,dk )+min
u

max
d

Q̄j−1(zk+1,u,d)

(11)

and to compute the upper-optimal controllers C̄∗, D̄∗ by
directly minimizing Q̄∗(zk ,uk ,dk ), once Q̄j(zk ,uk ,dk ) has
converged.

It is important to notice the order of themin max operations
in the VI updates for the upper Q-function, namely, max(.)
is performed before min(.). This is the important difference
w.r.t. the VI Algorithm 2 update for finding the lower-optimal
Q-function, described as follows:

Algorithm 2
Starting from initial (not necessarily admissible) con-
trollers C0,D0, and an initial lower Q-function esti-
mate Q

0
, for all the possible combinations of the tuple

(zk ,uk ,dk ), alternate the following two steps at each iter-
ation j (starting with j = 1):
S1. Update the Q-function as

Q
j
(zk ,uk ,dk ) ⇐ U (zk ,uk ,dk )

+Q
j−1

(zk+1,uk+1 = C j−1(zk+1),dk+1
= Dj−1(zk+1)) (12)

S2. Improve the controllers as in

C j(zk ,dk ) = argmin
u
Q
j
(zk ,u,dk ),

Dj(zk ) = argmax
d

Q
j
(zk ,C j(zk ,d),d). (13)

S3. If stopping criterion (no more changes from Q
j−1

to
Q
j
) is not met, go to S1, else stop the algorithm.

A compacted update form of Algorithm 2 is again possible
by repeating the Q-function update as in

Q
j
(zk ,uk ,dk )⇐U (zk ,uk ,dk )+max

d
min
u
Q
j−1

(zk+1,u,d)

(14)

and to compute the upper-optimal controllers C̄∗, D̄∗ by
directly minimizing Q̄∗(zk ,uk ,dk ), once Q̄j(zk ,uk ,dk ) has
converged.

Convergence of the VI update for the upper Q-function
to the upper-optimal controllers and to the upper-optimal
original cost is next analysed.
Theorem 1: The updates (9)–(10) (in compacted form

as in (11)) starting from C̄0, D̄0 and from an initial upper
Q-function estimate Q̄0(zk , C̄0(zk ), D̄0(zk )) ≥ 0, gen-
erating the sequences {Q̄j}, {C̄j}, {D̄j} according to Algo-
rithm 1, will converge to the upper-optimal Q-function

Q̄∗(zk ,uk ,dk ), to the upper-optimal original cost J̄∗(zk ) and
to the upper-optimal controllers C̄∗(zk ), D̄∗(zk ).

Proof: From the compact update (11), notice that on the
right-hand side we have, based on (8), that

min
u

max
d

Q̄j−1(zk+1,u,d)

(8)
= min

u
max
d
{U (zk+1,u,d)+ J̄j−1(F(zk+1,u,d))} (15)

where J̄j−1(zk ) is the upper original cost associated with
the upper extended cost Q̄j−1(zk ,uk ,dk ). Notice that the
right-hand side of (15) is in fact the VI update performed in
the space of the upper original cost:

J̄j(zk+1)⇐ min
u

max
d
{U (zk+1,u,d)+ J̄j−1(F(zk+1,u,d))}

(16)

which holds for all zk+1. In addition, notice that
Q̄0(zk , C̄0(zk ), D̄0(zk )) = J̄0(zk ) ≥ 0 is a positive definite
initialization of the upper original cost sequence {J̄j(zk )}.
Altogether, update (11), based on (15) and (16) define a
uniquely associated paired sequence {

(
Q̄j(zk ), J̄j(zk )

)
}.

It was shown in Lemma 1 from [12] that, with a proper
positive definite initialization J̄0(zk ) ≥ 0, the VI update
performed in the space of the original cost preserves
J̄j(zk ) ≥ 0 for all iterations j. Theorem 2 in [12] shows that
limj→∞ J̄j(zk ) = J̄∗(zk ), for all zk .

Following that the update (11) in the upper Q-function’s
space embeds the update (16) in the space of the original
upper cost and the latter converges to J̄∗(zk ), it implies by def-
inition (8), that limj→∞ Q̄j(zk ,uk ,dk ) = Q̄∗(zk ,uk ,dk ) ,
, U (zk ,uk ,dk )+ J̄∗(zk+1). It also implies that the controller
sequences {C̄j(zk )}, {D̄j(zk )} converge to their upper-optimal
values C̄∗(zk ), D̄∗(zk ).
By similar reasoning, convergence of the VI update for

the lower Q-function to the lower-optimal controllers and
to the lower-optimal original cost is captured by the next
Theorem 2.
Theorem 2: The updates (12)–(13) (in compacted form

as in (14)) starting from C0,D0 and from an initial lower
Q-function estimate Q

0
(zk ,C0(zk ),D0(zk )) ≥ 0, generat-

ing the sequences {Q
j
}, {C j}, {Dj} according to Algorithm 2,

will converge to the lower-optimal Q-functionQ∗(zk ,uk ,dk ),
to the lower-optimal original cost J∗(zk ) and to the lower-
optimal controllers C∗(zk ),D∗(zk ).

Proof: The proof uses a similar reasoning with the proof
of Theorem 1, but relies instead on the convergence of the
lower original cost sequence updates, shown in Lemma 2
and in Corollary 2 from [12]. It is therefore not detailed
here.

Observation 2: The proposed algorithms for computing
the upper-optimal and lower-optimal Q-functions corre-
sponding to the ZS-TP-G game do not use the system dynam-
ics knowledge. Practical implementations of the proposed
algorithms are detailed in the following Section.
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Observation 3: Following Theorem 5 and Corollary 7
from [12], important practical implications of the conver-
gence of the upper-optimal and lower-optimal Q-function
updates exist. Convergence of the upper-optimal and
lower-optimal Q-functions to the same value is a necessary
and sufficient condition for the existence of the saddle-point
solution to the ZS-TP-G game. Meaning that Q∗ = Q∗ =
Q̄∗, where Q∗ is the saddle-point solution in the space of
Q-functions. This is a consequence of J∗ = J∗ = J̄∗ in the
space of the original costs. On the other hand, convergence of
the upper and lower Q-functions to different values Q∗ 6= Q̄∗

means that a saddle-point solution to the ZS-TP-G game is
infeasible.

III. PRACTICAL ALGORITHMS IMPLEMENTATION
A. ZS-TP-G NN IMPLEMENTATION
Algorithms 1 and 2 described in the previous Section are prac-
tically implemented using function approximators, to deal
with large continuous state and action spaces affected by
high dimensionality. Neural networks (NNs) are the most
common structures employed to this purpose, owing to their
high approximation capability and well-established tuning
rules.

Let the NN function approximators for the Q-function,
and for the controllers C , D, be denoted Q̂(zk ,uk ,dk ,πQ),
Ĉ(zk ,πC ) and D̂(zk ,πD), respectively, where π i, i ∈
{Q,C,D} represents the tuneable NN weights of each indi-
vidual approximator. Most VI-like algorithms such as the
batch-fitted Q-learning variant that is going to be imple-
mented in this work, operate batch-wise and rely on a
dataset of transition samples collected from the process by
interaction. These samples form a collection (set) of tuples
M = {(zk ,uk ,dk , zk+1)} which allows the calculation of the
penalty function. Especially for theVI for unknown dynamics
case, these tuples must efficiently explore the state-action
space and to cover as uniformly as possible the entire space
�z × �u × �d , i.e. to try all possible actions (uk , dk ) in
every state zk . The advantage of the VI algorithms is that
they are off-policy in nature and they learn the optimal con-
trollers from transition samples collected under any other
controllers that can be used for efficient state-action space
exploration.

In terms of updating the approximated Q-function itera-
tively, based on the transition samples dataset M , the step
S1 from Algorithms 1 and 2 ((9) and (12) respectively) is
captured by the optimization problem

π
j+1
Q = argmin

π

1
|M |

×

|M |∑
k=1

(
Q̂(zk ,uk ,dk ,π )−U (zk ,uk ,dk )−
Q̂(zk+1, Ĉ(zk+1,π

j
C ), D̂(zk+1,π

j
D),π

j
Q)

)2

,

(17)

where Q̂, Ĉ, D̂ can be any of Q̄, C̄, D̄ (Algorithm 1) or
Q,C,D (Algorithm 2). The iteration number j has

been moved from the subscript of Q̄, C̄, D̄ (Q,C,D)
to the superscript of their corresponding parameteriza-
tions. Equation (17) improves the Q-function estimate
by bootstrapping on its most recent estimate: (17) is
the mean sum of squared errors (MSE) training cost
of the neural network Q̂(zk ,uk ,dk ,π ), having targets{
U (zk ,uk ,dk )+ Q̂(zk+1, Ĉ(zk+1,π

j
C ), D̂(zk+1,π

j
D),π

j
Q)
}
.

This makes the Q-function estimate improvement directly
amenable to standard NN training procedures (e.g. gradient-
based backpropagation). The squared error term under
the sum in (17) is the well-known one-step temporal
difference.

For the controller improvement steps in Algorithms 1 and
2 (equations (10) and (13) respectively), the controller
parameters π j+1C ,π

j+1
D are obtained from the cascaded NN

Q̂(zk , Ĉ(zk ,π
j
C ), D̂(zk ,π

j
D),π

j+1
Q ) again by gradient descent

and ascent steps (per the min(.) and max(.) operations
required by Algorithms 1 and 2). Since the succession of the
min(.) andmax(.) operations is different for the upper-optimal
Q-function calculation Algorithm 1 and for the lower-optimal
Q-function calculation Algorithm 2, the details are next given
for the former.

In Algorithm 1, the max(.) operation is performed first,
aiming at maximizing Q̄(zk , C̄(zk ,π

j
C ), D̄(zk ,πD),π

j+1
Q )

w.r.t. πD. This is equivalent to setting the targets of
Q̄(zk , C̄(zk ,π

j
C ), D̄(zk ,πD),π

j+1
Q ) equal to zero and take a

number of gradient ascent steps

π
[i+1]
D = π

[i]
D +

α1

B1

×

B1∑
k=1

 ∂Q̄(zk , C̄(zk ,π jC ), D̄(zk ,π [i]
D ),π j+1Q )

∂D̄

∣∣∣∣∣
π
[i]
D

∂D̄(zk ,π )
∂π

∣∣∣∣
π
[i]
D

)
(18)

for a specified number T1 of gradient ascent steps, start-
ing from an initial inner-loop iteration value π [i]

D = π
j
D,

over a number of B1 selected states zk (either randomly
picked from the dataset M or randomly generated in the
domain �z), and using a step-size α1. At each iteration of
(18), the number of B1 states zk are first forward propa-
gated through C̄(zk ,π

j
C ), D̄(zk ,π

[i]
D ) and afterwards through

Q̄(zk , C̄(zk ,π
j
C ), D̄(zk ,π

[i]
D ),π j+1Q ). Then, the gradient of

Q̄(zk , C̄(zk ,π
j
C ), D̄(zk ,π

[i]
D ),π j+1Q ) w.r.t. input D̄(zk ,πD) is

calculated with backpropagation and multiplied by the gradi-
ent of D̄(zk ,πD) w.r.t. πD, again calculated by backpropaga-
tion. After T1 iterations of (18), π

j+1
D = π

[T1]
D is rendered.

The min(.) operation in Algorithm 1 follows, to minimize
Q̄(zk , C̄(zk ,πC ), D̄(zk ,π

j+1
D ),π j+1Q ) w.r.t. πC . Notice that

the D̄(zk ,π
j+1
D ) NN already employs the most recent updated

parameter obtained after (18). Similarly, this is equivalent to
setting zero targets for Q̄(zk , C̄(zk ,πC ), D̄(zk ,π

j+1
D ),π j+1Q )

and minimize w.r.t. πC , accomplished by a specified number
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T2 of gradient descent steps of the form

π
[i+1]
C = π

[i]
C −

α2

B2

×

B2∑
k=1

∂Q̄(zk , C̄(zk ,π [i]
C ), D̄(zk ,π

j+1
D ),π j+1Q )

∂C̄

∣∣∣∣∣
π
[i]
C

×
∂C̄(zk ,π )
∂π

∣∣∣∣
π
[i]
C

)
(19)

performed by starting from an initial inner-loop iteration
value π [i]

C = π
j
C , over a number of B2 selected states zk

(either randomly picked from the dataset M or randomly
generated in the domain �z), and using a step-size α2. The
same computation mechanism applies, as in the case of the
max(.) operation (18). After T2 iterations of (19), π j+1C =

π
[T2]
C is rendered.
Algorithm 2 dedicated to the optimal lower Q-function and

optimal lower controllers’ calculations differs in the order
of the min(.) and afterwards max(.) operations. Meaning that
π
j+1
C is first updated, then used to updateπ j+1D . They are given

as

π
[i+1]
C = π

[i]
C −

α1

B1

×

B1∑
k=1

∂Q(zk ,C(zk ,π [i]
C ),D(zk ,π

j
D),π

j+1
Q )

∂C

∣∣∣∣∣
π
[i]
C

×
∂C(zk ,π )
∂π

∣∣∣∣
π
[i]
C

)
(20)

π
[i+1]
D = π

[i]
D +

α2

B2

×

B2∑
k=1

∂Q(zk ,C(zk ,π j+1C ),D(zk ,π
[i]
D ),π j+1Q )

∂D

∣∣∣∣∣
π
[i]
D

×
∂D(zk ,π )
∂π

∣∣∣∣
π
[i]
D

)
(21)

We summarize the NN-based solutions to the ZS-TP-G
aiming at computing the upper-optimal and lower-optimal
Q-functions and upper-optimal and lower-optimal con-
trollers, respectively, using the batch-fitted Q-learning style.
For the upper-optimal Q-function and upper-optimal con-
troller, Algorithm 3 is described first.

For the lower-optimal Q-function and lower-optimal
controller calculations, the following Algorithm 4 is
described.
Observation 4: After Algorithms 3 and 4 converge, it is

established whether the saddle-point solution to the ZS-TP-G
exists (the upper-optimal and lower-optimal Q-functions con-
verge to the same value) or, on the contrary, the saddle-point
solution does not exist. In practice, it is more convenient to
measure and analyse the upper and lower original costs val-
ues, evaluated with the current iteration controllers on a test
scenario, that is, J̄j(zk ) = Q̄(zk , C̄(zk ,π

j
C ), D̄(zk ,π

j
D),π

j
Q)

Algorithm 3 NN-Based Solution for the Upper-Optimal
Q-Function and Upper-Optimal Controller for the ZS-TP-G

1. Take the dataset M of collected transition samples as
input.

2. Initialize j̄,B1,B2,T1,T2, α1, α2,1π , all NNs’
architecture and training settings and the values j =
0,π0

Q,π
0
C ,π

0
D.

3. At a certain iteration step j, obtain an improved NN
estimate of the upper Q-function as the solution π j+1Q of
(17), using the entire dataset M of transition samples.
4. Initialize π [i]

D = π
j
D and iterate for T1 times on (18) to

find π j+1D . A set of B1 states zk is used.
5. Initialize π [i]

C = π
j
C and iterate for T2 times on (19) to

find π j+1C . A set of B2 states zk is used.
6. If the stopping criteria is not met in terms of maximum
number of iterations (j < j̄) and in terms of significant
changes in the Q-function NN parameters between itera-
tions (

∥∥∥π j+1Q − π
j
Q

∥∥∥ > 1π ), update j = j+1 and go to 3,
otherwise stop.

Algorithm 4 NN-Based Solution for the Lower-Optimal
Q-Function and Lower-Optimal Controller for the ZS-TP-G

1. Take the dataset M of collected transition samples as
input.
2. Initialize j,B1,B2,T1,T2, α1, α2,1π , all NNs’ archi-
tecture and training settings and the values j =

0,π0
Q,π

0
C ,π

0
D.

3. At a certain iteration step j, obtain an improved NN
estimate of the upper Q-function as the solution π j+1Q of
(17), using the entire dataset M of transition samples.
4. Initialize π [i]

C = π
j
C and iterate for T1 times on (20) to

find π j+1C . A set of B1 states zk is used.
5. Initialize π [i]

D = π
j
D and iterate for T2 times on (21) to

find π j+1D . A set of B2 states zk is used.
6. If the stopping criteria is not met in terms of maximum
number of iterations (j < j) and in terms of significant
changes in the Q-function NN parameters between itera-
tions (

∥∥∥π j+1Q − π
j
Q

∥∥∥ > 1π ), update j = j+1 and go to 3,
otherwise stop.

and J j(zk ) = Q(zk ,C(zk ,π
j
C ),D(zk ,π

j
D),π

j
Q), respec-

tively. J̄j(zk ) and J j(zk ) will be measured in the next case
study.

In the following, a state feedback optimal controller is
introduced for comparing the performance of the upper and
lower optimal controllers in terms of disturbance rejection
capability.

B. STATE FEEDBACK OPTIMAL CONTROLLER NN
IMPLEMENTATION
To assess the performance of the learned optimal upper and
lower controllers, a state feedback optimal controller (SFOC)
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is learned, that is set to solve the next optimization problem:

C∗ = argmin
C

J (xk )

=

∑∞

j=k
U (xj,uj),with U (xj,uj) = 2(xj)

+C(xj,πC )TWCC(xj,πC )T . (22)

The above cost preserves a part of the penalty term in
the original cost from (5), without penalizing the disturbance
term (WD = 0). The controller that learns to solve (22) uses
the straightforward system state and not a virtual state but
it is not designed to aim for disturbance attenuation. (22) is
solvable by any variant of Algorithm 3 or 4, without a ded-
icated disturbance controller NN approximator D(xk ,π

j
D),

but only with a NN controller C(xk ,π
j
C ) that is improved

at each step by minimizing the current iteration Q-function
NN Q(xk , uk ,π

j
Q). Let the Algorithm 5 used for SFOC

learning be

Algorithm 5 SFOC Learning
1. Collect another dataset M1 of transition samples from

the system, to be used as input to the algorithm. The
collection task takes place under dk = 0.
2. Initialize j̄,B,T , α,1π and initialize architectures and
training settings for the NNsQ(xk , uk ,π

j
Q) andC(xk ,π

j
C ).

Initialize the values j = 0,π0
Q,π

0
C .

3. At a certain iteration step j, using the entire datasetM1
of transition samples, obtain an improved NN estimate of
the Q-function as the solution π j+1Q of

π
j+1
Q = argmin

π

1
|M1|

×

|M1|∑
k=1

(
Q̂(zk ,uk ,π )− U (zk ,uk )
−Q̂(zk+1, Ĉ(zk+1,π

j
C ),π

j
Q)

)2

, (23)

4. Initialize π [i]
C = π

j
C and iterate for T times on

π
[i+1]
C = π

[i]
C −

α

B

×

B∑
k=1

 ∂Q̂(xk , Ĉ(xk ,π [i]
C ),π j+1Q )

∂Ĉ

∣∣∣∣∣
π
[i]
C

×
∂Ĉ(xk ,π )

∂π

∣∣∣∣∣
π
[i]
C

 , (24)

to find π j+1C . A number of B ≤ |M1| states xk from the
dataset M1 can be used.
5. If the stopping criteria is not met in terms of maximum
number of iterations (j < j̄) and in terms of significant
changes in the Q-function NN parameters between itera-
tions (

∥∥∥π j+1Q − π
j
Q

∥∥∥ > 1π ), update j = j+1 and go to 3,
otherwise stop.

IV. VALIDATION CASE STUDY
A. ACTIVE SUSPENSION SYSTEM
The continuous-time state-space model of the active suspen-
sion system for a quarter-car is [52]

˙̄x1 = x̄2
˙̄x2 =

1
ms

(−bs(x̄2 − x̄4)− ks(x̄1 − x̄3)− ksn(x̄1 − x̄3)3

+
A
ϕ
x̄5)

˙̄x3 = x̄4
˙̄x4 =

1
mu

(bs(x̄2 − x̄4)+ ks(x̄1 − x̄3)+ ksn(x̄1 − x̄3)3

−kt (x̄3 − x̄6)

−bt (x̄4 −41d)−
A
ϕ
x̄5)

˙̄x5 = −β x̄5 − ϕAα(x̄2 − x̄4)+ ϕφκ42u
˙̄x6 = 41d
y = x̄1

with κ = sgn[Ps − sgn(42u)
x̄5
ϕ
]

√∣∣∣∣Ps − sgn(42u)
x̄5
ϕ

∣∣∣∣,
(25)

where the model parameters are given as [52]: ms = 600kg,
mu = 60kg, kt = 200000N/m, bt = 1000Ns/m, ksn =
1000N/m, ks = 18000N/m, bs = 2500Ns/m, ϕ = 1×10−7,
β = 1s−1, A = 3.35 × 10−4m2,Ps = 10342500Pa,
α = 4.151 × 1013N/m5/2, φ = 1.545 × 109N/m5/2.
The displacements x̄1 and x̄3 of the sprung (car body) and
unsprung mass (wheel), respectively, are defined in (25)
w.r.t. to their resting position. A four-way valve-piston that
is actuated hydraulically, generates the force denoted as x̄5
in (25) as a consequence of applying a voltage on the actuator
input – this is the control input u. The road profile derivative
w.r.t. time models the input disturbance d . To normalize the
disturbance in d ∈ [−1; 1] (corresponding to +/– 3 cm/s
maximum amplitude of the road profile derivative), a scaling
constant 41 = 0.03 multiplies the input d in the model (25).
Similarly, the input u is brought to u ∈ [−1; 1] by using the
scaling constant 42 = 0.001. In (25), the sgn(.) denotes the
sign function. Clearly from (25), the output equation extracts
x̄1 as a measurable. The active suspension is schematically
depicted in Fig. 1.

Since the IO data from model (25) will be collected at the
fixed sample period of Ts = 0.01 sec, the model is regarded
as an equivalent discrete-time one (with a zero-order hold on
the inputs that preserves their value constant for one sample
period) and used for IO measurement. Importantly, the active
suspension model is not used in the learning process. Let the
states of the discrete-time equivalent model (25) be grouped
by xk = [x1,k , . . . , x6,k ]T (i.e. xi,k corresponds to x̄i). It then
follows that (25) can be expressed as xk+1 = f (xk , ūk =
[uk , dk ]T ).
For the active suspension, the artificial disturbance

d ∈ [−1; 1] is easily generated in fixed indoor stands and
is therefore measurable for learning purposes.
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FIGURE 1. Diagram of the active suspension system.

B. ACTIVE SUSPENSION SYSTEM OBSERVABILITY
DISCUSSION
The observability of (25) is next discussed, according to
the analysis of [53]. The system observability does not
depend on the inputs (uk , dk ) who are set to zero in (25).
The analysis is carried out on the continuous-time sys-
tem (25) and if the continuous-time system is observable,
the observability of its discrete-time counterpart is implied
when a sufficiently small sampling period is employed for
discretization. Kou et al. showed in [53] that for a nonlin-
ear dynamic autonomous continuous-time system with state
equation ẋ(t) = f (x(t)), x ∈ Rn and with output equation
y(t) = h(x(t)) ∈ Rm, under smoothness assumptions for
y(t) implying the existence of the k th order derivative of h(.)
such that km ≥ n, under Taylor series expansion of y(t) on a
time interval t ∈ [t0, t1] in the vicinity of any initial time t0,
a nonlinear map H (.) is built as in

z = H (x(t0)), where

z = [y(t0)T , y(1)(t0)T , . . . , y(k−1)(t0)T ]T ,

H (x(t0)) = [h0(x(t0))T , h0(x(t0))T , . . . , hk−1(x(t0))T ]T ,

where

y(t0) = h(x(t0)) , h0(x(t0)),

ẏ(t0) =
∂h0
∂t

(x(t0)) =
∂h0
∂x(t0)

(x(t0)) · f (x(t0))

, h1(x(t0)),

. . .

y(k−1)(t0) =
∂hk−2
∂x(t0)

(x(t0)) · f (x(t0)) , hk−1(x(t0)). (26)

The dynamic system described above is completely
observable on t ∈ [t0, t1], if H (.) is injective (univalent,
or one-to-one) from an initial state x(t0) to z. The univa-
lence of H (.) is a sufficient observability condition, since z
contains only the output and its derivatives at initial time
t0 [53] and not on the entire t ∈ [t0, t1]. If one can show
the map H (x) is (locally) invertible (i.e., a bijection) then its
injectivity follows. Local map invertibility is ensured by the
non-singularity of its Jacobian matrix determinant at a certain
given point, which for a square map H (x) is equivalent to the
maximum matrix rank of the Jacobian at the given point.

For system (25), by repeated substitutions (y = x̄1, ẏ =
˙̄x1 = x̄2, . . . ) using the model equations (25), it is verified
that the Jacobian ofH (x) is of full rank six, irrespective of the
point at which it is calculated.Meaning that (25) is observable
in continuous-time (and subsequently in discrete-time, for a
small enough sampling period). This implies that a virtual
state can be constructed from past inputs-outputs samples.

In practice, the model (25) is assumed unknown and the
observability must be assumed if not verifiable from liter-
ature or from working experience with the process. Since
the number of true states as well as the observability index
are unknown, the virtual state should be built from more
inputs-outputs past samples. It was reported in [51] that
beyond a certain number (the presumed observability index)
of past IO samples, there is no gain in information about the
state value.

C. COLLECTIONG TRANSITION SAMPLES FOR THE
LEARNING PROCESS
The first goal is to collect a transition samples dataset
M = {(zk ,uk ,dk , zk+1)}. Since the system (25) is observ-
able, a controllability index equal to six builds a virtual state
from past samples of the inputs uk , dk and from present and
past samples of the output yk . The virtual state has the form
zk = [yk , . . . , yk−6, uk−1, . . . , uk−6, dk−1, . . . , dk−6]T ∈
R19 and the system (25) is transformed to a virtual state-space
model of the form zk+1 = F(zk , uk , dk ) with output equation
yk = z1,k . In addition, the system is IO stable due to existing
friction and therefore it can be open-loop excited.

Then, the transition samples are gathered using the next
parameters for uk and dk : the input uk ∈ [−1; 1] is mod-
elled as a sequence of piece-wise constant steps, while the
amplitude follows a random uniform distribution. Each step
last for 0.5 sec, and it is perturbed with a random noise
extracted from another uniform distribution of amplitudes
inside [−0.2; 0.2]. This noise is added to uk every Ts seconds.
The disturbance input dk ∈ [−1; 1] is modelled similar to uk
but each constant portion lasts 0.6 sec. And it is additively
perturbed by a similar uniform random noise with the same
random uniform noise of amplitude [−0.2; 0.2] every Ts sec-
onds. The additive noise on the two input channels uk , dk are
uncorrelated. The database M of |M | = 20′000 transition
samples is built from 200 sec experiment time with the sys-
tem (25) in open-loop, excited by the above uk , dk . Since the
inputs were already normalized in [−1; 1] by introducing the
input normalizing coefficients in the model (25), the output
is normalized to yk ∈ [−1; 1], k = 1, |M | by dividing each
sample with the maximal absolute value max

k
|yk | from the

recorded history. Usually, all the inputs and outputs should
be normalized, leading to all the components of the virtual
state being normalized.

The virtual state’s components normalization is extremely
important since NNs approximators are going to be used. The
normalization coefficients of all states are memorized and
used to de-normalize the states, when running the learned
controller in the loop.
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D. CONTROLLER LEARNING SETTINGS AND RESULTS
Before the learning process, the penalty in the original cost (5)
is constructed as 20y2k + u

2
k − 4d2k (for WC = 1,WD = 4).

It is computed for each transition sample (zk ,uk ,dk , zk+1).
In order to find the upper-optimal and lower-optimal

controllers and Q-functions according to Algorithms 3 and
4 respectively, some approximators are selected as follows.
For each algorithm the same architectures are being used.
The Q-function is a 21−50−1 feedforward NN with tanh(.)
activation in the hidden layer and linear output activation. The
input of this approximator Q̂(zk , uk , dk ,πQ) is formed from
19 components of the virtual state and the two control inputs
uk , dk , while πQ formally captures the NN weights. These
weights are initialized with uniform random numbers inside
[−0.005; 0.005]. A random 80% of the training samples are
used for effective training and the rest are used as validation
data, for forcing early stopping in order to prevent training
overfitting. The training algorithm is a fast, scaled conjugate
gradient, for maximum 500 episodes. The training uses the
MSE criterion over the entire batch of transition samples. The
Q-function NN training (in both optimal upper and optimal
lower Q-function search process) solves in fact (17).

For the controllers Ĉ(zk ,πC ) and D̂(zk ,πD), the NN
approximators are also feedforward NNs of the form 19–
−10−1, with tanh activation in the hidden layer and linear
output activation. Their weights captured by πC ,πD are ini-
tialized as for the Q-function NN, but the two NNs’ training
must comply with the gradient ascent/descent steps imposed
by the upper-optimal controllers’ search (equations (18) and
(19) performed inside Algorithm 3) and by the lower-optimal
controllers’ search (equations (20) and (21) performed inside
Algorithm 4).

Other parameters are selected as follows. For Algorithm 3,
j̄ = 500,T1 = T2 = 50, α1 = α2 = 10−3,1π = 10−5,
while the gradient ascent/descent steps from (18) and (19)
are performed on a number of B1 = B2 = 256 values zk
randomly picked from the datasetM at each ascent or descent
step. For the Algorithm 4, the same parameter settings are
used.

The results obtained after the learning process takes place
is shown in Fig. 2, in terms of the normed difference between
successive Q-function weights vectors and in terms of the
measured attenuation cost [27], [31]

Jtest =
(∑10000

k=0
20y2k + u

2
k

)
/

(
4
∑10000

k=0
d2k

)
, (27)

defined and measured on test scenario lasting 100 seconds,
where a disturbance dk ∈ [−1; 1] (modelled as successive
piece-wise constant steps of uniform random amplitudes and
lasting for 0.5 sec) is used. The sequence dk has not been
presented to the system in the transition samples collection
phase used for learning the upper-optimal and lower-optimal
controllers.
Observation 5: Importantly, at every iteration, Jtest is mea-

sured with the upper and lower controllers (C̄(zk ,π
j
C ) and

C(zk ,π
j
C ) respectively) in closed-loop, without using the

FIGURE 2. The learning process for the upper-optimal upper and
lower-optimal controllers.

disturbance controllers D̄(zk ,π
j
D) and D(zk ,π

j
D), their out-

puts being replaced by the test input signal dk . These latter
disturbance controllers are necessary only throughout the
learning process of Algorithms 3 and 4.
Inspecting the bottom subplot in Fig. 2, the original costs

J̄j(zk ) and J j(zk ) converge to the same value, meaning that the
saddle-point solution to the game exists. The upper subplot
in Fig. 2 also indicates that after many iterations, no more
changes tend to occur in the upper and lower Q-function
estimates, a sign of learning process’ convergence.

E. COMPARISONS AND DISCUSSIONS OF THE RESULTS
For learning the SFOC via Algorithm 5 for comparison pur-
poses, the following optimization problem is solved

C∗ = argmin
C

J (xk ) =
∑∞

j=k
20x21,j + u

2
j ,

with uj = C(xj), (28)

which is computed for the transition samples collected under
the same uk settings used in the previous subsection, letting
dk = 0. As a consequence of null disturbance, a fifth order
state model version of (25) results. Two feed-forward NNs
of 6–30–1 and 5–5–1 are employed for the Q-function esti-
mate and for the controller estimate, respectively. T = 50
gradient descent steps (24) are repeated with each major
iteration of the Algorithm 5. Each state component xi,k from
xk is normalized xi,k ∈ [−1; 1], i = 1, 5, k = 1, |M1|

by dividing each sample with its greatest modulus max
k

∣∣xi,k ∣∣
over the recorded history.

The rest of the parameters in Algorithm 5 are j̄ = 500, α =
0.005,B = 128,1π = 10−5. After the maximum number of
500 elapsed iterations, the optimal controller and the optimal
Q-function estimates result.

For comparison, on the same test scenario, the control
obtained with the upper-optimal controller and with the
SFOC are shown in Fig. 3.

The Fig. 3 is interpreted as follows. The black line in all
subplots correspond to open-loop (uk = 0) and the profile
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FIGURE 3. The response obtained with the optimal upper controller
(blue), with the SFOC (red) and in open-loop with uk = 0 (black).

of x1,k (the ‘‘car body’’) is the same as the profile of x3,k
(‘‘the wheel’’ as the unsprung mass). It means that the wheel
follows the road profile obtained as the discrete-time integral
of dk from Fig. 3. Therefore, x1,k − x3,k = 0 in Fig. 3A in
black line. On the other hand, the blue line x1,k in Fig. 3B
means that the car body is insensitive to the road disturbance
and the active suspension control manages to absorb the
road profile via the unsprung mass x3,k using the control
input in blue line from Fig. 3D. The SFOC control (red
line x1,k in Fig. 3B) does not reject the disturbance as the
upper-optimal controller, since it was not learned having in
mind the disturbance rejection goal. After measuring the
attenuation obtained with both the upper-optimal controller
and with the SFOC controller, it results that JOptUppContrtest =

6.6 · 10−3, JSFOCtest = 34.5 · 10−3, clearly indicating the
effective attenuation attained by the former. This is despite
the SFOC using the full state information directly, which may
be considered an advantage.

On another hand, the virtual state used for learning
the upper-optimal and lower-optimal controllers incorpo-
rates the measured disturbance which is the road profile
derivative. This may not be acceptable in practice since
it is difficult to measure the road profile disturbance. The
learned upper-optimal controller is tested next, by setting
zk = [yk , . . . , yk−6, uk−1, . . . , uk−6, dk−1 = 0, . . . , dk−6 =
0]T ∈ R19 with null disturbance in the virtual state. The
actual disturbance dk affects the controlled system, and the
closed-loop is tested under the same scenario as before, under
both the upper-optimal controller and under the SFOC. The
results are shown again in Fig. 4.

The conclusion from Fig. 4 is obvious. Even in the case
when a null disturbance is fed to the virtual state, the dis-
turbance rejection is better with the upper-optimal controller
than with the SFOC, in terms of x1,k in Fig. 4B being closer

FIGURE 4. The response obtained with the upper-optimal controller
(blue), with the SFOC (red) and in open-loop with uk = 0 (black). This
time, the virtual state is fed with dk = 0.

FIGURE 5. Transmissibility in open-loop (uk = 0), with the SFOC and with
the upper-optimal controller. In the left, the virtual state zk is fed by the
actual disturbance input values dk ; on the right, dk = 0 in zk .

to zero than the same x1,k obtained with the SFOC. Meaning
that effective disturbance attenuation is still obtained, without
measuring the road profile derivative.

The transmissibility from the disturbance input dk to the
output yk = x1,k is also measured in the frequency domain,
assuming an approximate linear model both for the open-loop
suspension system and for the closed-loop suspension control
system. The frequency response function estimator is identi-
fied in three cases: a) in open-loop setting (uk = 0); b) the
loop closed with the upper-optimal controller, with the virtual
state zk fed by the disturbance input dk and c) the loop closed
with the upper-optimal controller with zk fed by dk = 0.
The results captured by Fig. 5 were obtained after exciting
either of the open-loop system or the closed-loop control
system with a zero-mean sine-stream signal dk of amplitude
0.5, for 100 logarithmically-spaced frequencies in the range
of 0.01–1000 Hz. Then the magnitudes of the ratio between
the Fast Fourier Transform (FFT) of the output yk = x1,k

VOLUME 8, 2020 214163



M.-B. Radac, T. Lala: Robust Control of Unknown Observable Nonlinear Systems Solved as a ZS Game

and the FFT of the input dk obtained at each particular fre-
quency, are calculated. Even in the active suspension provides
natural attenuation in open-loop, it is observed that in the
case b) (corresponding to measured disturbance in the virtual
state), the low-frequency attenuation is significantly stronger
than that obtained with the SFOC (Fig. 5, left). Still, better
low-frequency attenuation obtained with the upper-optimal
controller is measured in the case c) (Fig. 5, right), when the
disturbance is not measured and it enters as a null value in the
virtual state.

The learned upper-optimal and lower-optimal controllers
for the active suspension observable system was shown
feasible. For the active suspension system, the proposed
ZS-TP-G robust control learning approach is highly attractive
since it takes place in a fixed test rig where artificial distur-
bances that emulate the road conditions are easily generated.
Afterwards, the disturbance controller is discarded and the
control loop is closed by either the upper-optimal controller
or the lower-optimal controller. Subsequently, the active sus-
pension can then be used in real-world road conditions. The
learned attenuation was shown efficient even in the case
when the virtual state is constructed from a null measured
disturbance. This aspect expands the applicability range of
the approach. All features above may stimulate industrial
implementation owing to the reduced number of sensors and
to the on-site learning ability.

V. CONCLUSION
The approach presented in this article proposes several fea-
tures, enumerated next. It learns an optimal robust con-
troller using ADP formulated as a ZS-TP-G for systems with
unknown dynamics. The learned controller is the saddle-point
of the ZS-TP-G when the solution is feasible, otherwise it can
be any of the upper-optimal or lower-optimal controllers that
solve the game. The learning process consisting of the opera-
tions that are specific to the upper-optimal and lower-optimal
controllers’ calculations, was shown to converge by theoreti-
cal analysis.

NNs approximators were used for the practical learning
implementation. This is advantageous for general nonlinear
systems since it enables automatic feature selection in the
Q-function and controller parameterization. The proposed
framework deals with observable systems perceived from IO
data, therefore solving the partial observability problem that
can prevent successful learning. It relies on the virtual state
built from present and past values of the input and output
samples. Learning a robust control for the virtual state space
system is shown equivalent to learning a robust control for the
underlying system. Since the virtual state construction leads
to a higher-order virtual state-space system, NNs ensure the
scalability of the learning problem in all aspects, except for
the efficient exploration problem which is one of the major
issues with ADP and reinforcement learning.

The approach presented here is believed to handle many
practical systems (such as Markov jump systems and non-
linear multiagent systems [54]–[57]), therefore it is a further

goal to validate it on observable systems of even higher order
who, similarly to the active suspension, show significant
practical interest.
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