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ABSTRACT The field of optical nanoscopy, a paradigm referring to the recent cutting-edge developments
aimed at surpassing the widely acknowledged 200nm-diffraction limit in traditional optical microscopy,
has gained recent prominence & traction in the 21st century. Numerous optical implementations allowing
for a new frontier in traditional confocal laser scanning fluorescence microscopy to be explored (termed
super-resolution fluorescence microscopy) have been realized through the development of techniques such
as stimulated emission and depletion (STED) microscopy, photoactivated localization microscopy (PALM)
and stochastic optical reconstruction microscopy (STORM), amongst others. Nonetheless, it would be apt
to mention at this juncture that optical nanoscopy has been explored since the mid-late 20th century, through
several computational techniques such as deblurring and deconvolution algorithms. In this review, we take
a step back in the field, evaluating the various in silico methods used to achieve optical nanoscopy today,
ranging from traditional deconvolution algorithms (such as the Nearest Neighbors algorithm) to the latest
developments in the field of computational nanoscopy, founded on artificial intelligence (AI). An insight is
provided into some of the commercial applications of AI-based super-resolution imaging, prior to delving
into the potentially promising future implications of computational nanoscopy. This is facilitated by recent
advancements in the field of AI, deep learning (DL) and convolutional neural network (CNN) architectures,
coupled with the growing size of data sources and rapid improvements in computing hardware, such as
multi-core CPUs & GPUs, low-latency RAM and hard-drive capacities.

INDEX TERMS Super-resolution microscopy, computational nanoscopy, high-resolution microscopical
imaging, optical microscopy, deep learning.

I. INTRODUCTION
Optical microscopy has proven to be a ubiquitous tool and
a gold standard for biological, geological and materials sci-
ence research, as well as industrial quality control pro-
cesses. Nonetheless, traditional optical microscopy suffers
from numerous limitations, including (but not being restricted
to) blurring/haze, lateral and axial resolution limitations [1],
poor signal-noise ratio (SNR) and poor contrast at higher
magnifications. In particular, an oft-cited equation describing
the inherent resolution limitation faced by the compound
optical microscope is the Abbe equation (proposed by Ernst
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Abbe in 1873 [1]), which may be defined as follows:

Abbe Lateral Resolution, dx,y =
λ

2n sin θ
(1)

Abbe Axial Resolution, dz =
2λ

(n sin θ)2
(2)

where λ is the wavelength of the irradiating light, n is the
refractive index of the imaging medium and θ is the aperture
angle of the light cone [1]. The product n sin θ is also
sometimes defined as the numerical aperture (NA) of the lens.

In 1896, Rayleigh extrapolated (1) to include an addi-
tional contribution by the condenser optics, thereby contrast-
ing episcopic (traditionally epifluorescence) microscopywith
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FIGURE 1. The 3 widely-utilized formulae (i.e. Rayleigh, Sparrow and
Abbe) for resolution computation. The red and blue curves represent the
individual intensity variations at different points in a specimen where the
vertical (y-) axis is the intensity and the horizontal (x-) axis is the lateral
separation between the points. The top plots describe the said individual
contributions to the intensity distribution while the bottom plots
illustrate a super-imposed intensity profile formed by each of the
individual components in the respective top plots. The Abbe limit is
based on the full width at half maximum (FWHM) of the 2 overlapping
Airy disks, the Rayleigh limit is used when the central maximum of one
Airy disk overlaps with the first minimum of another (producing a
superimposed trough of 20-30% of the peak intensity) and the Sparrow
limit when the 2 Airy disks overlap so that there is no visible difference in
their superimposed intensities across the entire resolution distance. Airy
disk patterns are further described in Fig. 3. Figure reprinted with
permission from [5] and adapted.

conventional diascopic brightfield illumination [2]:

Rayleigh Criterion, dx,y =
0.61λ
NAobj

(for fluorescence) or

dx,y =
1.22λ

NAcond+NAobj
(for brightfield)

(3)

where NAcond and NAobj refer to the numerical apertures of
the condenser and objective optics respectively [2].

Evaluation of the Abbe and Rayleigh equations above yield
a minimum lateral resolution of ∼174nm (for Rayleigh) and
143nm (for theAbbe equation), when considering the shortest
possible wavelength of visible light (400nm) and the highest
possible NA attainable by most microscope objectives and
condenser lenses today (∼1.4) [3] (lenses havingNAs beyond
this value are known to be manufactured but are excluded
from the current context, as their applications are rather con-
strained and specialized in nature, e.g. TIRF [4]). A third
method for lateral resolution computation (the Sparrow cri-
terion) may be defined as dx,y = 0.47λ

n sin θ , which evaluates to
a value much closer to that obtained from the Abbe lateral
resolution formula [1]. A diagram illustrating each of these
3 methods of resolution computation (and their differences)
is depicted in Fig. 1:

As such, numerous researchers globally have sought to
circumvent these limitations through the development and
exposition of both optical and computational approaches,
prominently exemplified through the emergence of super-
resolution fluorescence microscopy (as an optical enhance-
ment of existing fluorescence microscopy methods) which

FIGURE 2. The 3 eras of nanoscopy (inferred from publication count as
obtained from ScienceDirect). In this aspect, the publication count may
be employed as a tentative measure to indicate the research interest in
the said area.

culminated in the Nobel Prize in Chemistry being awarded
to its developers (Moerner, Betzig and Hell) in 2014 [6].
Nonetheless, in this succinct (yet desirably impactful) review,
we seek to evaluate some of the recently-employed com-
putational advancements in the field of optical microscopy,
with the intent that researchers worldwide would be inspired
to address some of the existing limitations through fur-
ther advancements in these in silico methodologies. This
would inadvertently aid in potentially pushing the envelope
of optical microscopy into the nanoscopy domain. In doing
so, it would also be imperative to highlight the need for
exploring the principles of image deconvolution, which is
exemplified within the present review as well. In this light,
Fig. 2 depicts a general timeline plot of publications which
illustrates the advancements made in the field of nanoscopy
over the decades:

At this juncture, it would be noteworthy to mention
that optical nanoscopical procedures (such as STED [7],
GSDIM [8], dSTORM [9], Lattice SIM [10], etc) are not
discussed in the present review, as the focus of this study is to
assess the computational aspects of nanoscopy. Nonetheless,
as optical approaches are complementary to the computa-
tional aspects in most nanoscopy applications, the interested
reader is encouraged to explore the afore-mentioned refer-
ences (or [11]) for a detailed discussion on each of these tech-
niques. The review is thus structured in the followingmanner:
Section II presents an overview of some popular deconvo-
lution algorithms utilized in microscopical imaging today,
Section III discusses some commonly-used noise removal
methods, while Section IV delves into AI and its current role
in computational optical nanoscopy. The use of deep learning
for image denoising is further presented in Section V and this
is coupled with an exploration of the commercialized appli-
cations of current AI-based image enhancement approaches
in Section VI. Section VII details the present limitations and
potential future advancements in the field of computational
nanoscopy, with the study being concluded in Section VIII.

II. DECONVOLUTION IN OPTICAL MICROSCOPY
Deconvolution methods have long been a source of image
refinement and sharpening, although it would be prudent to
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FIGURE 3. Airy disk patterns and their corresponding PSFs (which
represent a Gaussian distribution). PSFs are widely used in the optics
domain to refer to the blurring kernel (imposed by the limitation of the
imaging optics, mismatch between the exact specifications of the
objective and the mountant, deviations from ideal imaging conditions,
etc). A higher resolution is attained by using a lens having a higher
numerical aperture [11], as the FWHM of the PSF (and consequently the
diameter of the centroid maximum of the Airy disk) is reduced.

mention that deconvolution differs from sharpening, in that
the former is intended to increase the resolution of an image,
while the latter enhances edges in an image. Nonetheless (in
some instances), the consequence of a resolution enhance-
ment may very well be a sharpened image. Initially devel-
oped for temporal analysis byWiener [12], deconvolution has
gained prominence in the field of optical microscopy due to
its ability to reassign out-of-focus light spots to their centroid
maxima – made plausible due to the symmetric nature of
the point spread function (PSF) of the light rays, as shown
in Fig. 3:

Generally, the emergence of light rays through the opti-
cal train may be expressed by the mathematical convolution
operation (~) as described in (4):

(h~ x)+ ε = y (4)

where h refers to the PSF (convolved with x as a consequence
of the optical limitations of the system in question), x is the
actual signal to be recovered, y is the detected signal/impulse
response of the system and ε is the noise which has interacted
with the convolved signal (h~ x) (adapted from [13]).

Notably, the convolution operator would be translated to
multiplication in Fourier space, hence deconvolution may be
perceived as division following a Fourier transform (FT) of
the acquired impulse response y, where the FT of the PSF is
known as the Optical Transfer Function (OTF) [1]. Nonethe-
less (and as expected in most instances), the introduction of
noise ε makes it exceedingly difficult to accurately obtain
the unaltered signal x, although numerous techniques (both
optical and computational) have been proposed to counter and
mitigate the effects of ε on the detected impulse response y.

FIGURE 4. A micrograph of an ovary section blurred with a Gaussian
kernel and subsequently deconvolved (using Wiener filtering) in MATLAB
(The MathWorks, Inc.) Notice the computed difference between the
deconvolved and raw image (the image on the bottom right) which is
almost negligible, implying the high restorative efficiency of Wiener
filtering in this context.

In this regard, optimal performance in deconvolution has been
reported for thin (<50µm) sections, or optically-transparent
material with little fluorescence, posing a challenge for
live cell imaging applications due to motion blurring and
enhanced spherical aberration effects [14]. Fig. 4 illustrates
an image subjected to a Gaussian blur kernel/PSF and its
corresponding deconvolved image, while Fig. 5 shows the
diffraction limitations imposed by the OTF (referred to as the
Abbe limiting frequency) [1]:

As such, it would be noteworthy to explore the various
current computational approaches to resolving this dilemma,
although one should be aware that none of these methods
provide a perfect solution in reality. Moreover, the prob-
lem is further exacerbated by spatiotemporally-variant PSFs
(partially elucidated in [15] which describes a non-linear
variation in the PSF across different axial planes), coupled
with complications such as the variable optical density of
the specimen and mountant at different locations. In this
regard, it would be essential to holistically evaluate the var-
ious deconvolution and denoising algorithms being utilized
today, emphasizing on their underlying principles, advan-
tages and shortcomings (where appropriate). Past studies
(such as [16]) have attempted to assay and categorize the
numerous deconvolution algorithms presently available into
3 main classes, namely (i) deblurring, (ii) inverse filtering
and (iii) constrained iterative protocols, with both (ii) and
(iii) being regarded as image restoration algorithms [14]. Fur-
ther details on each of these algorithms and their respective
classes are as depicted in Table 1 below (information adapted
from [14] and [17]):
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FIGURE 5. A simplified diagram illustrating the conversion of spatial
displacements in real space into spatial frequency variations in Fourier
space (the PSF in real space is translated into the OTF in Fourier space).
The low frequency (blue) wave in real space corresponds to large
features, while the high frequency (yellow) and max frequency (magenta)
waves correspond to much smaller features (interference caused by
super-positioning of these waves result in the final image as observed
through the microscope eyepiece). In the Fourier space, waves having
frequencies beyond the Abbe limiting frequency (fAb) are not captured by
the lens, implying that features smaller than the Abbe diffraction limit
(dAb) cannot be effectively resolved. The diagram in the middle depicts
how the light rays enter the objective lens – as the frequency of the
incident light ray increases, its angle of deviation from the optical axis of
the objective lens increases as well, since higher frequency waves are
refracted more than their lower frequency counterparts when traversing
the boundary between 2 optically different media. Figure adapted
from [1].

TABLE 1. Categorization of current image deconvolution procedures
(Adapted from [14] and [17]).

A deeper insight into the various deconvolution method-
ologies highlighted above is provided in the subsequent
sections (to cater to the reader’s interest), although greater
emphasis is placed on the constrained iterative methods
in light of their current popularity and enhanced capabil-
ities (as compared to the deblurring or inverse filtering
protocols).

A. DEBLURRING
Deblurring algorithms (as the precursor to deconvolution)
seek to remove haze (or blurring) in the image, although
this might not result in a significant improvement in image
resolution. Hence, such algorithms are often utilized for
quick image inspections (e.g. defect identification), rather
than in-depth analysis. Common deblurring approaches
include the No Neighbors or Nearest Neighbors algo-
rithms [18] – the former referring to the projection of the blur
kernel from the image plane itself, while the latter utilizes the
impulse response from a point source above and below the
image plane as a reference to predict the extent of blurring
introduced in the image. In addition, the Unsharp mask [19]
(an image sharpening tool) also represents a popular dehazing
tool employed in professional photography and image-editing
applications, such as Adobe Photoshop. Further details on the
mathematical principles underpinning each of these methods
are discussed in the paragraphs which follow.

The No Neighbors deconvolution algorithm assumes that
the blurring is caused by out-of-focus light originating from
the same image plane as the object being imaged and is
described by lower spatial frequencies [18]. Hence, the No
Neighbors deconvolution algorithm seeks to eliminate this
out-of-focus light by implementing high-pass filters, thereby
amplifying the proportion of high spatial frequencies in the
image. Mathematically, this may be expressed as follows
(adapted from [18]):

〉

Im = Im
(
Im ~ Hg

)
(5)

where

〉

Im is the sharpened image, Im is the original blurred
image, Hg is the Gaussian blur kernel (derived from the PSF)
and ~ is the 2D convolution operator.

In addition, [18] also states how the afore-mentioned equa-
tionmay be improved through the incorporation of aweighted
factor (herein represented by β) so that the above equation
becomes:

〉

Im = β · Im
[
(1− β) ·

(
Im ~ Hg

)]
(6)

where the range of β = [0.6, 0.85] to yield optimal results
for

〉

Im in most instances [18].
In contrast, the Nearest Neighbors algorithm utilizes the

impulse response from the optical planes both immediately
before and after the image plane in an acquired Z-stack to
be convolved with a suitable blur kernel and the result sub-
tracted from the blurred image plane to obtain the sharpened
image [18]. In this respect, the Nearest Neighbors algorithm
is based on the premise that the out-of-focus blur in the
image plane is primarily generated from the optical planes
both immediately above and below the image plane, so that
elimination of the defocused optical planes from the image
plane would yield the sharpened image. As previously, this
may be expressed mathematically by the following equation
(adapted from [18]):

〉

Im = Imγ · [(Im
−1 ~ Hg)+ (Im

+1 ~ Hg)] (7)
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FIGURE 6. A Raw image of an anther. B Unsharp mask applied to the raw
image in A using Adobe PhotoShop CS5 (
 1990-2010 Adobe Systems
Inc.). Notice the highlighted structural details evident upon application of
the Unsharp mask algorithm. Filter parameters used are 200% (Amount),
33.6 pixels (Radius), 2 levels (Threshold).

where Im
−1 and Im

+1 are the images acquired in the optical
planes immediately before and after the evaluated image
plane within a Z-stack and γ is the additional weighting
factor. In this respect, an apparent drawback of the Nearest
Neighbors algorithm refers to the step-size in the acquired
Z-stack, which may be perceived as a modulated function
of the depth-of-field (DoF) of the microscope objective lens
being used. An axial step-size greater than the DoF would
result in an inaccurate approximation of the blur introduced
by the image matrices Im

−1 and Im
−1, which would conse-

quentially result in the computation of a non-optimal raw
image Im.
A third deblurring algorithm often utilized in image

processing is the Unsharp mask (which is akin to the No
Neighbors deconvolution algorithm). However, in Unsharp
masking, the edge-enhancing kernel is obtained by subtract-
ing a smoothed/blurred version of the original image from the
original image [19]. This kernel is then added to the original
image to obtain a sharpened image [19]. Mathematically,
this may be illustrated by the following matrix computation
(adapted from [19]):

M = Im − (Im ~ H ) = Im − Ĩm (8)

whereH is the smoothing kernel, Ĩm is the smoothed (blurred)
version of Im, M is the mask image and

〉

Im = min[(Im + α ·M ), 255] (9)

where

〉

Im is the sharpened image of Im and α is the weight
controlling the extent of sharpening by the maskM .
Visually, an image deblurred through implementation of

the Unsharp mask algorithm is presented in Fig. 6 below:

B. INVERSE FILTERING
Inverse filtering represents another set of frequently
employed image deconvolution algorithms. However, as the
principle of inverse filtering is simple (to introduce a decon-
volution kernel h−1 which restores the blurred impulse
response y to its original state x, where h ~ x = y, ~ repre-
senting the convolution operator), the effective use of inverse
filtering is determined by the level of noise (both photon and
detector noise) in the image – the higher the noise, the less
effective the deconvolution. Commonly used inverse filters
include Naïve inverse filtering (NIF), the Tikhonov-Miller
filter (an example of a linear inverse filter) and the Wiener

filter (a regularized inverse filter). An additional approach
couples Tikhonov regularization with NIF, minimizing the
latter’s contribution of noise [20]. The specific details on
each of these inverse filtering algorithms are outlines in the
following sub-sections for the interested reader.

1) NAÏVE INVERSE FILTERING (NIF)
NIF represents one of themost basic deconvolution protocols,
which seeks to minimize a least-squares cost function [20].
However, in so doing, NIF also accentuates measurement
noise, resulting in an increased number of high-frequency
waveforms detected in the impulse response of the system.
Mathematically, NIF may be represented by the following
equation:

x̃ = argmin
x
ξ (x) (10)

where ξ (x) = ‖y-Hx‖2, y is the observed data, H is the PSF
matrix and x is the underlying fluorescence signal [20].

When Gaussian noise is present, NIF reduces to the con-
cept of maximum-likelihood estimation, which may be deter-
mined via a quotient of coefficients in Fourier space as
follows:

̂̃x = ŷ

max(̂h, ε)
(11)

where ̂̃x, ŷ and ĥ represent the discrete FT coefficients of x̃, y
and the PSF, max represents the element-wise maximum and
ε is a constant term, included to circumvent divisions by zero
(adapted from [20]).

Subsequently, the inverse FT of ̂̃x is used to obtain the
final solution, where a regularization parameter defined as the
squared Euclidean norm of x (‖x‖22) may be added to ξ (x)
to accord large values with a penalty (a procedure known as
Tikhonov-regularized NIF/TRNIF) as follows [20]:

ξ (x) = ‖y-Hx‖2 + λ ‖x‖22 (12)

where λ is a weighting factor determining the contribution of
the 2 terms in the equation [20].

The above equation may then be minimized by applying
the following relation, which may be considered as a maxi-
mum a posteriori (MAP) model, since λ is used to introduce
prior information about x to facilitate its estimation:

x =
(
HTH + λI

)−1
HTy (13)

where I is the identity matrix [20].

2) TIKHONOV-MILLER (TM) AND ITERATIVELY
CONSTRAINED TIKHONOV-MILLER (ICTM) FILTER
Tikhonov-Miller (TM) filtering (as an example of linear
inverse filtering) is often utilized as a preliminary strategy
for image deconvolution prior to iterative deconvolution. This
may be attributed to it being computationally economical and
rapid, although TM filtering is simultaneously susceptible to
artifact generation, allowing noisy effects to be effectively
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transferred and thus unsuited for enhancing an image’s res-
olution [14]. The TM algorithm uses an iterative gradient
descent approach to minimize the regularized inverse filter
cost, allowing the implementation of a positivity constraint at
each iteration [17]. An alternative form of the TM filter refers
to the iteratively constrained Tikhonov–Miller (ICTM) filter,
which is formed with repeated incremental projections of TM
onto the set

(
R+
)K , whereK represents the dimensionality of

the fluorescence signal x (i.e. x ∈ RK ) [20]. Mathematically,
the iterative construct of ICTM may be expressed by the
following equation from [20]:

x(k+1) = P
(R+)K

{
x(k) + γ

(
HTy−

(
HTH + λLTL

)
x(k)

)}
(14)

where P
(R+)K {a} = max(a, 0) and indicates the

component-wise projection of a onto the set
(
R+
)K , γ is a

weighting factor and L represents the matrix corresponding
to the discretization of a differential operator [20].

3) REGULARIZED INVERSE FILTERING (RIF) AND WIENER
FILTERS
Yet another regularized approach to inverse filtering (other
than TRNIF) involves subjecting x to a smoothness con-
straint through reducing the impact of its derivative – a
procedure known as regularized inverse filtering (RIF). The
cost function for RIF may be described by the following
expression [20]:

ξ (x) =

∥∥∥∥y− H (HTH + λLTL
)−1

HTy

∥∥∥∥2
+λ

∥∥∥(HTH + λLTL)
−1
HTy

∥∥∥2
2

(15)

The above expression may also be effectively reduced
to (12) when the explicit minimizer x = (HTH +
λLTL)−1HTy [20], thereby proving (15) to be a reformulation
of TRNIF.

According to [20], defining λ as the inverse of the noise
variance and coupling it with LTL filtering poses a whitening
effect on x, thereby effectively converting RIF to Wiener
filtering. Wiener filtering shall be discussed in greater detail
in a subsequent section in this review (Noise removal), where
it is being used to both deconvolve and restore a blurred, noisy
image. Nonetheless, [21] has also represented the Wiener
filter via the mathematical relationship below and regarded
it as the ‘‘golden linear deconvolution trade-off’’:

y =
H∗ |x|

|H |2 · |x| + |ε|
(16)

where H∗ is the complex conjugate of H and |H | refers to the
magnitude of H (adapted from [21]).
For illustration purposes, a single image deconvolved using

ICTM and RIF is depicted in Fig. 7 below:

FIGURE 7. A Raw image of an oesophagus section; B The raw image in
Adeconvolved using ICTM (N = 20, y-step = 0.7, λ = 1.000E-05); C The
same image in A processed using RIF (λ = 5). All deconvolution processes
were performed using DeconvolutionLab2 (
 2018 EPFL) [17].

FIGURE 8. A The image of a sub-diffraction-sized bead (corresponding to
the PSF) determined for both blue and red channels. Notice the PSF shift
in the red channel circled above, potentially due to chromatic aberration.
B Raw image of a dividing cell’s chromosomes (left) and following
application of a NBD algorithm over 1000 iterations (right).
Figures adapted with permission from [22].

C. NON-BLIND DECONVOLUTION
Non-blind deconvolution (NBD) algorithms utilize an empir-
ically determined PSF to deconvolve an image [22]. Most
suited for constant blurring across a specified region of inter-
est, NBD algorithms require the user to image a sample con-
taining sub-diffraction-sized beads [22] (often≈80-150nm in
diameter, or 0.61λ/3 NA, where λ = 550nm) to compute the
PSF of the optical train and subsequently factor the FT of this
value (as a divisor) into the FT of the impulse response to
obtain the FT of the deconvolved image. Ideally, the sample
containing the beads should be the same sample imaged under
identical conditions to minimize deviations in the acquired
PSF caused by differences in refractive index, optical density
and spherical aberration [22]. A sample image of the PSF
measured using this mode of deconvolution (as well as the
associated images generated via application of the NBD algo-
rithm) is shown in Fig. 8 as follows:

NBD algorithms (generally) have a number of con-
straints, including the need for sample clarity and absence
of dirt, the axial focal range used for acquiring the Z-stack,
the objective type and matching mountant being used,
the temperature of the sample being imaged, etc [22]. Despite
satisfying these conditions, one may still encounter setbacks
through the employment of a NBD algorithm, due to the
varying PSF caused by sample-coverslip distance deviations,
noise or inherent differences between the imaging conditions
of the beads and the sample [22]. However, NBD algo-
rithms are still widely utilized today in popular scientific
imaging application suites such as Huygens Professional
(
 Scientific Volume Imaging B.V.) [23] and AutoQuant X3
(
 Media Cybernetics, Inc.) [24], as they minimize the num-
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ber of iterations required to attain an optimally-deconvolved
image while accounting for individual setup-specific devi-
ations/aberrations [22]. In this regard, NBD algorithms are
particularly suited for imaging fixed samples, where most of
the confounders, such as varying sample-coverslip distances
due to the movement of the sample (for live cell imaging) are
generally absent.

D. BLIND DECONVOLUTION
Blind deconvolution (as its name implies) refers to the decon-
volution of an image without an exact understanding of
the blur kernel/PSF employed. Sporadically, this problem
may be further amplified with the introduction of noise
in the blurred image. Blind deconvolution (BD) may be
performed in either an iterative or a non-iterative manner
(as expounded in [25]), with non-iterative methods such
as SeDDaRA [26] estimating the PSF through a compar-
ison of the spatial frequency of the blurred vs the target
image. In contrast, a common iterative approach adopted by
numerous researchers ([3], [4], [5]) refers to the maximum
a posteriori (MAP) distribution as described mathematically
in [27] below (expectation-maximization algorithms are also
exploited as iterative BD methods):

argmax
u,k

p (u, k | f ) = argmax
u,k

p (f | u, k) p (u) p (k) (17)

where p(f |u, k) refers to the noise distribution in the blurred
image, while p(u) and p(k) refer to the original (unblurred)
image and the blur kernel respectively (Equation adapted
from [27]).

In addition, according to [27], although BD has been con-
ceived several decades ago, it has garnered recent mounting
interest particularly in resolving the issue of motion blur-
ring (caused by mobile image acquisition devices [28]) with
significant progress being illustrated in numerous studies
conducted in this domain (see [29]–[31] and [32] for details).
BD has also been described in [27] to often utilize priors,
the most common of which refer to total variation (TV) ([33],
[34]) due to its ability to resolve sparse signals [35], although
a recent study ([36]) indicated the preferential implementa-
tion of an alternative approach – the joint optimization of the
image and the blur kernel which depicts convergence when
initialized with the typical (no-blur) solution (i.e. the blurry
image and its Dirac delta pair) [27]. [27] then proceeds to
investigate this anomaly, leading them to discover that total
variation should not be utilized as a prior for deriving a
sharp image since it never actually converges to the global
minimum. The authors of [27] further propose an alternative
methodology to circumvent this issue – the Alternating Min-
imization (AM) and the Projected AM (PAM) Algorithms.

AM seeks to resolve both (18) and (19), which involve an
unconstrained convex problem in u and a constrained convex
problem in k (adapted from [27]) as follows:

ut+1 ← argmin
u

∑
x∈F

((
k t ◦ u

)
[x]− f [x]

)2
+

∑
x∈U
‖∇u [x]‖2 (18)

k t+1 ← argmin
k

∑
x∈F

((
k ◦ ut+1

)
[x]− f [x]

)2
(19)

where k � 0, ‖k‖1 = 1
Here, the authors of [27] have defined ◦ to be the valid

convolution (which is also employed in MATLAB), with
k ◦ u 6= u ◦ k (u ◦ k being undefined if the support of k is
large) [27].

By doing so and utilizing the findings of [37], [38] and [39]
through implementation of the AM algorithm for a 1D signal
domain, [27] has derived an expression for λ based on a clear
(but linearly-transformed) u0 as the solution of the following
denoising problem expressed mathematically:

û [x] = argmin
u

1
2

∑L2−1

x=−L1+1
(u [x]− f [x])2

+ λ
∑L2−1

x=−L1
|u [x + 1]− u [x]| (20)

Nonetheless, the scaling of u0 (induced by the use of
the total variation regularizer) was claimed by [27] to be
the primary factor accounting for the non-convergence of the
AM algorithm towards a global minimum, resulting in the
postulation of PAM (an iterative construct similar to AM in
u, but alternating with an unconstrained convex problem in k)
being described by the following equations:

k t+
1
3 ← argmin

k

∑
x∈F

((k ◦ u) [x]− f [x])2 (21)

k t+
2
3 ← max

{
k t+

1
3 , 0

}
, k t+1←

k t+
2
3∥∥∥k t+ 2
3

∥∥∥
1

(22)

PAM implementation (based on the following protocol
from [27]) and its results are depicted in Fig. 9:

The significant improvement of images deconvolved using
PAM (over traditional TV-based regularizers in blind decon-
volution) may thus hold promise in the utilization (and poten-
tial further development) of PAM to achieve nanoscopic
super-resolution in the field of optical microscopy.

E. RICHARDSON-LUCY (RL) DECONVOLUTION
In 1972 and 1974, 2 researchers ([40], [41]) independently
proposed an approach to address the issue of deblur-
ring images captured off the sensing plane with the addi-
tion of noise. This approach came to be known as the
Richardson-Lucy (RL) model for image deconvolution,
which is still being widely used today.

Fundamentally, the RL deconvolution algorithm seeks to
solve for x given the values of h and y in (4) previously.
Elucidation of x is made possible through an understanding
of the Poissonian nature of photoelectron distribution and
image formation [42] exemplified by the Poisson probability
mass function P(n) as follows (adapted from [43] for non-
mathematically-inclined readers):

P (n) =
vne−v

n!
(23)

where P(n) (in the current context) refers to the probability of
a single pixel receiving n photoelectrons and v is the expected
(average) number of photoelectrons collected per pixel.
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FIGURE 9. A The algorithm pseudocode describing the iterative
procedure of PAM. B A comparison of PAM deblurring with 2 other
methods (highlighted in separate studies) referenced in [27]. Notice the
significantly higher PSNR of PAM (28.572) as compared to the other
2 approaches, with more examples being provided in [27] (including
motion de-blurring) but which are not included here. Figure A is based on
the algorithm described in [27] (further details are expounded therein),
while Figure B is reprinted from [27], 
 2015 IEEE.

From [42], one can thus deduce the probability of the
collected photoelectrons contributing to the formation of the
entire image Im as follows (adapted from [42]):

p
(
Im|o

)
=

∏
a

(
[(h~ x)]y e−(h~x)

y!

)
(24)

where an object o is projected as an image Im through an
optical system having a PSF h and subject to Poisson noise.
Notice that the Poisson parameter v in (23) has been replaced
by the convolution (~) of x with h, so that p(Im|o) =∏
a
[Pa (n)], where Pa(n) refers to P(n) at pixel a {a being a

2-D or a 3-D vector, represented as (X,Y) or (X,Y,Z) respec-
tively [42]}.

In order to maximize the value of p(Im|o) [a process known
as maximum likelihood estimation (MLE) which represents
a common paradigm employed in machine learning] so that
the image Im closely resembles o, we may reduce (24) to the
following (also from [42]) which we seek to minimize:

J1 (o) = − ln
[
p
(
Im | o

)]
=

∫
x
[(h~ x)− y · ln (h~ x)+ ln (y!)] dx

⇔

∫
x
[(h~ x)− y · ln (h~ x)] dx (25)

FIGURE 10. A The original image; B The image blurred with Gaussian PSF
(hsize = 12, sigma = 6) and subjected to Gaussian noise (mean = 0;
variance = 0.0021); C The post-processed image following RL
deconvolution (with damping) in MATLAB (NUMIT = number of iterations
of the RL algorithm) (Script source: [44]).

where J1(o) is the first-order Bessel function while ln(y!) is a
constant (with respect to o).

[43] then further proceeds to elaborate on how (25) may be
converted (through a series of steps not described here) to the
following final equation, which defines the RL deconvolution
algorithm:

xk+1 = xk

[
ḣ~

y
(h~ xk)

]
(26)

where k is the iteration count, xk+1xk
= 1 at convergence and

ḣ represents the PSF h at a complementary point about the
origin.

Notably, (26) above represents the multiplicative form
of the RL deconvolution algorithm. [42] also provides an
additive gradient-descent variant of the RL deconvolution
algorithm as follows:

ok+1 = ok + δt
(
1− ḣ~

y
(h~ xk)

)
(27)

where δt represents the gradient descent step size.
Nonetheless, [42] has observed that the vanilla RL algo-

rithm may not always converge to a particular solution, as no
prior information on o has been supplied to it, highlighting
the need for a prior model to be constructed on o (a process
termed regularization) [42]. [42] further described 2 com-
mon regularizers commonly-utilized in conjunction with RL
deconvolution – (i) TM regularization [indicated in (28)
below] and (ii) Total Variation (TV) regularization [indicated
in (29) below], both of which are sourced from [42]:

xk+1 =
{[

y
(xk ~ h)

]
~ ḣ

}
·

xk
1+ 2λTM1xk

(28)

where λTM is the TM regularization parameter.

xk+1 =
xk

1− λ · div
(
∇ok
|∇ok |

) [ḣ~ y
(h~ xk)

]
(29)

where λ is the TV regularization parameter and div(F) is the
divergence of F.
A sample image implementing the RL deconvolution algo-

rithm is depicted in Fig. 10 below:
Aswith PAM [27] discussed in the previous section, further

improvements made in the RL deconvolution algorithm seem
promising for achieving nanoscopic resolution in optical
microscopy in the near future.
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FIGURE 11. The JVD algorithm schema. Adapted from [45].

FIGURE 12. Lunar neutron maps implementing the JVCD algorithm. The
maps A1 and B1 depict the implementation of the JVCD algorithm with a
small p17psf on OA and OB respectively, while A2 and B2 depict the
implementation of the JVCD algorithm with a large p31psf on OA and OB
respectively. p17 = [17◦ × 17◦, N(8,2.8), fwhm = 6.6◦]; p31 = [31◦ × 31◦,
N(15, 4), fwhm = 9.4◦]. Figures reprinted with permission (and adapted)
from [46], copyright Lunar and Planetary Institute.

F. JANSSON-VAN CITTERT DECONVOLUTION
The Jansson-Van Cittert deconvolution (JVCD) algorithm
was well-described by Sastry [45] and illustrated in the flow
diagram (adapted from [45]) as follows:

Generally, an initial guess x0 is first provided of the actual
signal x and subjected to the convolution kernel h, yielding
a convolved signal y0. This is then compared with the actual
acquired signal y and the difference between these 2 impulse
responses computed [45]. If this difference evaluates to 0,
the prior used (x0) is the desired ‘deconvolved’ signal, else the
difference (y – y0) is evaluated and a weight α applied to this
difference to be added to the input signal x0 to produce x1 (the
first iteration) [45]. This process repeats itself, until (y – yi)
approaches 0 for the ith iteration. A sample of an image
(though not a photomicrograph) implementing the JVCD
algorithm [46] is shown in the following figure (Fig. 12):

Despite the relative popularity of the JVCD algorithm,
numerous studies (including [45] and [47]) have sought to
improve it, through increasing its resilience to noise and
infusing other constraints in the algorithm, while minimizing
potential errors in deriving the convolution (blur) kernel (as
compared to other non-iterative deconvolution protocols).

G. ARTIFACT-FREE DECONVOLUTION
Artifact-free deconvolution was proposed by [48] for use
with the light field microscope (LFM) – an imaging

FIGURE 13. The USAF 1951 target imaged using a light field microscope
(left), a comparative deconvolution method discussed in [58] and used
for image reconstruction (center), the anti-aliased image following
application of the presently reviewed approach (right). Notice the image
produced in [48] depicting reduced aliasing (increased smoothing)
between neighboring pixels. Figures adapted with permission from [48],

 The Optical Society.

modality developed by [49] which has been utilized in
numerous biomedical and cellular imaging applications
(see [50], [51], [52], [53] for details). Here, the authors
of [48] claim that the LFM has a depth-dependent sampling
pattern, resulting in variable lateral resolution at different
optical planes across the sample. According to [48], the LFM
utilizes micro-lenses for 3D fluorescent microscopical imag-
ing, thereby eliminating the inherent scanning present in
traditional confocal laser-scanning fluorescence microscopy,
while allowing the vectorial light field to be acquired in
a single exposure for topographical reconstruction of the
imaged sample [48]. The LFM was thus conceived by [48]
to belong to a family of plenoptic devices [54] which allow
3D imaging [49] and refocusing of the acquired images
([55], [56], [57]). In this respect, [48] highlights the numerous
past studies seeking to improve the LFM resolution (namely
via multi-view reconstruction, ray-based and wave-based
methods), with a particular study [58] depicting laterally
well-resolved images. Nonetheless, [58] also reported that the
improvement rate was inconsistent at different imaged depths
– a phenomenon attributed to the variable sampling patterns at
different axial planes coupled with aliasing effects. As such,
[48] sought to resolve these artifacts by proposing ‘‘depth-
dependent anti-aliasing filters’’ [48, p. 31645] applied to an
iterative ‘‘aliasing-aware deconvolution method for artifact-
free 3D reconstruction’’ [48, p. 31645] via an expectation
maximization protocol. A sample image of the USAF 1951
resolution target imaged via raw LFM, the method described
by [48] and a comparative approach are depicted in Fig. 13:

In deriving the afore-mentioned algorithms, the authors
of [48] first investigated the relationship between the image
size at the microlens array with respect to that under a
microlens, before considering the depth-dependent variation
in the blur radius, leading them to derive the following
equations:

γz =
d sensmla

dmlatl

∣∣∣∣∣ z′′

dmlatl − z
′′

∣∣∣∣∣ (30)

bz = rml

∣∣∣∣ 1z′′′ − 1
d sensmla

∣∣∣∣ (31)

where γz is the scaling factor expressing the relationship
between the image size at the microlens array (MLA) with
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FIGURE 14. A comparison between the 3D reconstruction of a
cardiomyocyte organoid via the comparative approach (as proposed
in [58]) (left) and that of the presently-reviewed study (right). Figures
adapted with permission from [48], 
 The Optical Society.

that under a microlens, d sensmla is the distance between the
sensor and the MLA planes, dmlatl is the distance between
the tube lens and the MLA planes, z′′ is the conjugate image
plane formed by the tube lens, z′′′ is the conjugate image plane
formed by the MLA, rml is the micro-lens radius and bz is the
blur radius (Adapted from [48]).

Subsequently, the authors of [48] proceeded to evaluate a
probable radius of the ideal filter kernel, wobjz =

wsensz s
pml

, prior
to subsequently proposing the depth-dependent ideal filter
hfwz , with individual kernels at different depths (defined by
wobjz as previously) and the use of a Lanczos2-constrained
sinc kernel as a non-ideal anti-aliasing filter (further details
of these are expounded in [48] for the interested reader).
Following this, the authors of [48] then derived an equa-
tion describing a 3D aliasing deconvolution schema (based
on an expectation-maximization-smoothing approach) which
depicted significant improvement in artifact removal when
compared with a different study [58] as shown in Fig. 14:
3D Aliasing Schema (From [48]):

vq+1 = hfw,z ~
vq

AT1

[
AT m

Avq

]
(32)

where v refers to the imaging volume to be constructed, q is
the iteration count, hfw,z is the axially-based anti-aliasing fil-
ter, A defines the forward operation of the LFM andm refers
to the noisy measurements acquired through the LFM [48].

H. LEAST SQUARES DECONVOLUTION
The Least squares deconvolution algorithms category
comprises of 3 main classes, namely (i) Linear Least
Squares (Landweber), (ii) Non-Negative Least Squares and
(iii) Bounded-Variable Least Squares deconvolution. In this
regard, we seek to evaluate each of these 3 algorithms in
greater depth as follows:

The Landweber deconvolution (LD) approach utilizes sim-
ilar principles as NIF, i.e. it seeks to minimize the same least
squares cost function C(x) = ‖y−Hx‖2 (adapted from [20]),
although unlike the latter, it does this in an iterative fashion
using gradient descent ([59] from [20]). Specifically, [20]
utilizes the iterative feature of LD as a means of ensuring
each iteration yields positive results, which may be expressed
mathematically as follows (sourced from [20]):

x(k+1) = P
(R+)K

{
x(k) + γHT

(
y− Hx(k)

)}
(33)

where γ is the step size, k is the iteration count, y is the
observed volume, H is the PSF matrix and P

(R+)K {x} =
max (x, 0), which represents the projection of x onto the
domain

(
R+
)K in a component-wise fashion.

Notably, [20] mentions that the number of iterations is only
suggestive – iterative convergence of the computed solution
results in over-fitting of the noise in the input data, while an
optimal SNR may be achieved through premature truncation
of the algorithm. Additionally, [20] highlights that the num-
ber of iterations is a pseudo regularizer common to all MLE
algorithms, of which the LD is an example. Other studies
([60] and [61]) have also sought to encapsulate the Landwe-
ber algorithm with Shannon wavelets [60] or Shannon shear-
lets [61], the former demonstrating an accelerated algorithmic
convergence (by a single order of magnitude) while the latter
exhibited improvements for motion deblurring.

The Non-Negative Least Squares (NNLS) algorithm
extends the LD algorithm to include a constraint of non-
negativity, while seeking to minimize C(x) [17]. Similarly,
the Bounded Variable Least Squares (BVLS), also known as
the Stark-Parker (SP) [17], algorithm represents an alterna-
tive approach to NNLS, by imposing limits (both an upper-
and a lower-bound active set) as an additional constraint on
C(x) [62]. Mathematically, the problem which the BVLS
algorithm seeks to solve may be expressed as follows:

min
l≤x≤u

‖Ax-b‖2 (34)

where A is a 2-dimensional (m × n) matrix, l, x, u ∈ Rn,
b ∈ Rm and ‖x‖2 refers to the Euclidean (`2) norm of x.
It would be prudent to highlight at this juncture that BVLS

incorporates some differences from NNLS, including (but
unrestricted to) a re-computation of the QR decomposition
each time the following calculation is performed (in order to
improve numerical stability) [62]:

z = argmin
∣∣∣∣A′z− b′∣∣∣∣22 (35)

for some variable z, where A′ is a matrix of the columns
in A whose indices are ‘free’ components of x between l
and u and b′ is a data vector excluding the bound variable
predictions [62]. By doing so, the BVLS algorithm allows
a return of the last free and bound sets in a sequence of
relations (where the upper and lower limits are well-defined)
in a computationally-efficient manner.

Visually, image deconvolution performed using LD, NNLS
and BVLS in DeconvolutionLab2 may be described by
Fig. 15:

I. WAVELET DECONVOLUTION
Wavelet deconvolution refers to a field of image processing
which primarily involves the use of wave kernels (often a
single oscillation) to convolve with the detected impulse
response of a system so as to identify the presence of a
frequency corresponding to the mother wavelet in the said
impulse response. The popularity of wavelets has resulted in
the development of a large family of wavelets, which may
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FIGURE 15. A The original image (T.S. of cartilaginous tissue); B The
image in A deconvolved using the LD algorithm; C The image in A
processed using the NNLS algorithm; D The image in A deblurred using
the BVLS algorithm. In B, C and D, a total of 9 iterations with a y-step of 1
was used.

FIGURE 16. The Haar wavelet as a basic waveform kernel belonging to
the family of discrete wavelets.

be classified as either discrete wavelets (a popular member
of which refers to the Haar wavelet) or continuous wavelets
(a popular example of which is the Spline wavelet). Haar
wavelets [63] refer to a square wave kernel, having a mother
wavelet ψ(t) defined mathematically in (36) and graphically
(in Fig. 16):

ψ (t) =


1 0 ≤ t < 1

2

−1
1
2
≤ t < 1

0 otherwise

(36)

In contrast, the spline wavelet is based on a spline func-
tion [64], with some spline wavelets (as discussed in [65])
being orthogonal and having an unbound (non-compact) sup-
port. Nonetheless, the term ‘spline wavelets’ has been popu-
larly characterized (in most instances) to refer to a specific
class of B-spline wavelets which have a compact support
and are not orthogonal, termed B-spline wavelets or cardinal
B-spline wavelets ([66], [67]). Cardinal B-spline wavelets
have numerous properties, although they all seek to solve
the following mathematical equation (where Nm refers to

FIGURE 17. A plot of the real component of a complex frequency B-spline
wavelet (m = 3, FB = 0.5, FC = 1). The figure was plotted in MATLAB
(
 1994-2020 The MathWorks, Inc.)

the B-spline wavelets of order m having knots in the set Z)
from [66]:

N1 (x) =
{
1 0 ≤ x < 1
0 otherwise

(37)

Nm (x) =
∫ 1

0
Nm−1 (x-t) dt, for m > 1,m ∈ Z+ (38)

Essentially, such cardinal B-splines may span multiple
orders, from m = 1 (for constant B-splines) to m = 5 (for
quintic B-splines), as an example.

Conversely, compactly supported B-spline wavelets hav-
ing a support of [0,m] are based on the following generalized
scaling and B-spline wavelet functions [represented as ϕm (x)
and ψm (x) in (39) – (40) respectively], exhibiting up (but not
being restricted) to the sextic order [68]:

ϕm (x) =
∑m

k=0
pkϕm (2x − k) (39)

where the two-scale sequence pk = 21−m
(
m
k

)
(for 0 ≤ k <

m), and

ψm (x) =
∑3m−2

k=0
qkϕm (2x − k) (40)

where qk = (−1)k 21−m
∑m

l=0

(
m
l

)
ϕ2m (k − l + 1).

Here, [68] defines the order m of a B-spline wavelet as
being 1 more than the highest exponent variable in its scaling
function ϕm(x). The interested reader would henceforth be
encouraged to refer to [68] for a further detailedmathematical
treatment of the decomposition function ϕm(2x – k).
On a separate note, a visual representation of the real part of

a complex frequency B-Spline wavelet having orderm = 3, a
bandwidth FB of 0.5 and center frequency FC of 1 is depicted
in the following diagram (Fig. 17):

A third class of B-spline wavelets is the Battle-Lemarie
(BL) wavelets [69] which is defined from the cardinal
B-spline wavelets, but have their expressions derived in the
Fourier (i.e. frequency) domain of the mother wavelet. Here,
the BL wavelet of mth order {ψBL,m(t)} has the following FT
(denoted as ψ̂BL,m (ω) and adapted from [69]):

ψ̂BL,m (ω) = −
e−iω/2ϕ̂m (ω + 2π)ϕ̂m

(
ω
2

)
ϕ̂m
(
ω
2 + π

) (41)
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where ϕ̂m(ω) is the FT of the scaling function ofψBL,m(t) (i.e.
ϕm(t)) and x̄ represents the complex conjugate of x [69]. Here
too, the interested reader is encouraged to refer to [69] for a
complete treatment and proof of the BL wavelets through a
series of fast FT (FFT) computations.

1) ITERATIVE SHRINKAGE THRESHOLDING
ALGORITHM (ISTA) AND FAST ISTA (FISTA)
The ISTA and FISTA algorithms represent 2 other meth-
ods employing wavelets which are coupled with an
expectation-maximization (EM) algorithm that is founded on
a likelihood penalization approach in the wavelet domain for
the derivation of a maximum penalized likelihood estimator
(MPLE) [70]. Here, both ISTA and FISTA utilize the property
of sparsity for wavelets to preserve image details and discon-
tinuities [20], being particularly adapted to evaluating linear
inverse problems [71]. Nonetheless, the use of a non-smooth
Manhattan (l1) norm for FISTA allows efficient solving of the
cost function up to several orders of magnitude faster than
ISTA [71]. Mathematically, the equations defining ISTA are
indicated as follows (adapted from [70]):

Expectation (E)-Step:

Q
(
θ, θ̂ (t)

)
= E

[
log p (y, z | θ) |y, θ̂ (t)

]
(42)

Maximization (M)-Step:

θ̂ (t+1) = argmin
θ

{
Q
(
θ, θ̂ (t)

)
− pen (θ)

}
(43)

where pen(θ ) refers to the penalized value of θ .
Essentially, the EM algorithm in ISTA alternates between

an FFT-derived E-step and a M-step centered on the Discrete
Wavelet Transform (DWT), thereby increasing the opera-
tional efficiency of the iteration to achieve a linear logarith-
mic complexity, i.e. O(N logN ) [70]. In addition, [70] has also
shown ISTA to be convergent towards a global maximum
under suitable conditions, while potentially out-performing
other leading deconvolution methods in benchmark tests.
Conversely, FISTA may be employed with a (i) constant
or (ii) backtracking step-size, the former of which utilizes
an iterative shrinkage operator pL(·) on yk (a linear combi-
nation of the previous 2 points xk−1 and xk−2) [71]. In this
regard, FISTA is able to achieve an improved computational
complexity of O(1/k2) as opposed to O(1/k) attainable by
ISTA [71]. Further details underlying the FISTA algorithm
may be accessed from [71], for the interested reader.

A photomicrograph of a copepod, individually subjected
to each of these wavelet deconvolution algorithms (ISTA
and FISTA) as implemented within DeconvolutionLab2
(
 EPFL) [17], is shown in Fig. 18:

2) MULTI-WIENER SURE-LET AND PURE-LET
DECONVOLUTION
In 2013, Multi-Wiener SURE-LET Deconvolution was
proposed by [72] as a new approach to image deconvolution
integrating Wiener filters with undecimated Haar-wavelet

FIGURE 18. A The original raw acquired image (a copepod); B The image
from A deblurred using ISTA (λ: 0.1) in DeconvolutionLab2 (
 EPFL) [17];
C The same image from A deblurred using FISTA (λ: 1.00E-06) in
DeconvolutionLab2 (
 EPFL) [17]. Images B and C were artificially
brightened in Microsoft Word (
 Microsoft Corporation), with the input
parameters used in DeconvolutionLab2 (
 EPFL) [17] being 12 iterations,
y-step = 1, Haar wavelets with Scale = 3, and convolved with the default
simulated Airy PSF.

thresholding so as to minimize the regularized Stein’s unbi-
ased risk estimate (SURE) as an unbiased mean squared
error (MSE) estimate (assuming Gaussian noise), was pro-
posed by [72] and named [72]. Here, SURE (being solely
dependent on empirical data) has been noted by [72] as a
feasible parameter for solving linear problems, with poten-
tial use-cases including (i) parameter optimization (as in
Tikhonov regularization [73], (ii) non-local means (NLM)
denoising [74], (iii) monitoring PSNR increments during IST
iterations [72], or (iv) being utilized as a minimization mea-
sure for denoising algorithms implementing the linear expan-
sion of thresholds (LET) approach, leading to the integrated
procedure named SURE-LET ([75], [76]).

Mathematically, SURE may be expressed by ε in (44) as
follows:

ε=
1
N

(
‖f (y)‖2−2yTH−Tf (y)+2divy

{
CH−T f (y)

}
+‖x‖2

)
(44)

where N is the number of pixels in the image, y is the
convolved impulse response of the system, H is a square
matrix representing a linear distortion, x is the uncorrupted
and unknown signal, C is the covariance matrix and divy
is the divergence of y [72]. Here, ε represents the unbiased
estimate of the MSE= 1

N E
{
‖f (y)− x‖2

}
where E(x) refers

to the expectation of x, which translates into the following
expression:

ε=
1
N

(
‖f (y)‖2−2yTH−Tf (y)+2σ 2divy

{
H−T f (y)

}
+‖x‖2

)
(45)

with variance σ 2 and C = σ 2I (where I is the identity
matrix).

Further details underlying the mathematical proof for
SURE, as well as visual representations of images decon-
volved using SURE-LET are discussed in [72], although
generally, a significant improvement was noted in the
results obtained from SURE (as expressed in [72]). Notably,
the average PSNR (over 10 cycles) of the 256 × 256 House
image deconvolved via SUER-LET was 25.20, as compared
to other leading deconvolution methods such as ForWaRD,
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which exhibited an average PSNR of 24.27 (Gaussian blurred
image with variance, σ = 30) [72].
An alternative approach (named PURE-LET) was pro-

posed by [77] in 2017 to resolve 3D epifluorescence
microscopy images, which sought to extend SURE-LET
to Poisson and mixed Poisson-Gaussian noise cases. Here,
PURE-LET utilizes a Poisson unbiased risk estimate (hence
its name, PURE) to solve a set of linear equations both rapidly
and accurately, with promising results reported for different
convolution kernels and noise levels [78].Mathematically, the
PURE-LET model is based on the following equation [78]:

y = αP
(
Hx
α

)
+ N

(
0, σ 2Id

)
(46)

where y represents the distorted representation of the true

d-dimensional image x, N =
d∏
i=1

Ni, H∈ RN 2
represents a

convolution matrix of the PSF h (whereHx is used to impose
a positivity constraint on the Poisson noise intensities), P(·)
represents the effect of Poisson noise, α is the scaling factor
controlling the strength of the noise and σ 2 is the variance of
the additive-white-Gaussian-noise (AWGN) [78].

PURE-LET seeks to resolve this problem by considering
2 cases – (i) the Poisson Noise case and (ii) the mixed
Poisson-Gaussian Noise case (full mathematical details are
discussed in [78]). In so doing, [78] proposed defining
the fundamental deconvolution functions using Wiener fil-
tering followed by transform-domain denoising. The Haar
wavelet transform was also employed by [78] following
prior studies confirming its efficacy in minimizing numerous
types of noise degradations [78]. Visual realization of the
improvements garnered through the utilization of PURE-LET
for image deconvolution (as compared to other techniques,
e.g. PIDAL or GILAM) are depicted in [78], where (for
instance) a 256 × 256 Galaxy image deconvolved with
PURE-LET had a PSNR of 27.74 (for α = 4) while
PIDAL and GILAM facilitated deconvolutions reported a
PSNR of 27.38 and 26.97 respectively. Separately, [77] has
demonstrated a further use case of PURE-LET for decon-
volving autofluorescence microscopical images of mature
pollen grains, with a similar stellar performance reported
for PURE-LET as compared to other techniques (such as
ParallterDecon and MitivDecon) [PSNRPURE−LET = 28.77,
PSNRParalIterDecon = 26.11, PSNRMitivDecon = 27.56 for
α = 0.5], while being significantly faster than these meth-
ods as well (tPURE−LET = 11.01s, tParalIterDecon = 67.39s,
tMitivDecon = 27.29s) [77]. An image deconvolved using
PURE-LET (from [77]) is indicated in Fig. 19 below:

III. NOISE REMOVAL
Noise in microscopical imaging represents an inherent prob-
lem faced by most algorithm developers today in the
never-ending quest to push the envelope of optical resolution
to greater heights. Noise may arise from numerous optical
components (such as the field lens, condenser and objective
optics, the tube lens, the slide on which the specimen is

FIGURE 19. A comparison of epifluorescence micrographs of
microtubules in a Drosophila S2 cell imaged under (a) widefield, (b) SIM
and (c) deconvolved using PURE-LET, as according to [76]. (d) – (f): the x-z
sections for (a) – (c) respectively. Figures adapted from [77], 
 2017 IEEE.

mounted, etc), although primary sources of noise are stray
background light, delaminated microscope optics (for older
scopes), as well as dark current of the sensor or camera.
Hence, it would be prudent to mention that out-of-focus blur
(generated by optical planes other than image plane) is not
considered as noise in this context, although the blurring
contributes to the background signal to be removed in the
deconvolution of an acquired image. A prior in-depth analysis
on numerous popular cutting-edge denoising algorithms was
conducted by [79], and is as highlighted in Table 2 below:

Despite the wide array of denoising algorithms holistically
described in Table 2, a key emphasis in the current context
is placed on other image denoising algorithms which are
not surfaced in Table 2 (but commonly utilized in optical
microscopy), as follows:

A. WIENER FILTERING
The Wiener filter remains one of the most popular denois-
ing algorithms employed in the image processing workspace
today, having been developed and proposed over 7 decades
ago by [12]. Mathematically, the Wiener filter may be repre-
sented (in the frequency domain and assuming standard white
Gaussian noise having variance σ 2) by the following equation
(from [92]):

W =
R (ω) · Spp (ω)

|R (ω)|2 Spp (ω)+ σ 2
n

(47)

where R(ω) is the FT of the convolved input signal and Spp(ω)
is the power spectrum of the input projection [92].

Nonetheless, this indicates that the input projection Spp
is unknown, necessitating a viable estimate of Spp to be
used instead. Here, [92] proposes the use of the relation
Sss(ω) = Spp(ω) · |R(ω)|2, allowing (47) to be simplified into
the following:

W =
Sss (ω)

Sss (ω)+ σ 2
n
·
1
R

(48)

which represents 2 filters (denoising and inverse filtering)
operating in tandem in the Fourier domain [92].

Wiener filtering is often employed when noise (high
frequency signals) is present in the image and seeks
to silence/attenuate these frequencies based on their
signal-noise ratio (SNR), while simultaneously implement-
ing image deconvolution [92]. A single image subjected
to motion-blurring (linear motion: 12, angle of camera
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TABLE 2. Categorization of Current Image Denoising Procedures
(Adapted from [79]).

shake: 11o) and Gaussian noise (filter size: 4, σ = 0.75) in
MATLAB (
 1984-2019 The MathWorks, Inc.), followed by
Wiener deconvolution is portrayed in Fig. 20 below:

B. MEDIAN FILTERING
The median filter is well-adapted to removing salt-and-
pepper/granular noise in images, which often results from
the amplification of dark current/background caused by using
high gain settings to compensate for poor S/N ratios. Median
filtering involves replacing the RGB values of a pixel with
the median RGB values of its neighboring pixels, following
the ranking of their intensities [93]. Fundamentally based

FIGURE 20. AThe original image (bone marrow smear); B the
motion-blurred and noisy image; C the Wiener-deconvolved image. Image
processing was done in MATLAB (
 1984-2019 The MathWorks, Inc.).

FIGURE 21. AThe original image (neuronal tissue); B The noisy image,
ingrained with ‘salt-and-pepper’ noise; C The median-filtered image.
Image processing was done in MATLAB (
 1984-2019 The MathWorks,
Inc.).

FIGURE 22. AThe original image (mammalian adrenal gland section);
B The noisy image (exhibiting a periodic signal artifact); C the
FFT-denoised image. Image processing was done in MATLAB
(
 1984-2019 The MathWorks, Inc.).

on the intensity distribution of the neighboring pixels (rather
than a single pixel), median filtering is resilient to statistical
outliers, while also being relatively easy to implement with
a reduced probability of blurring (which is dependent on the
size of the filter kernel used) [93]. An image denoised using
median filtering is shown in Fig. 21:

C. FFT FILTERING
FFT filtering for denoising is another approach often uti-
lized when the noise present in the image is relatively
well-distributed across the image and can be reduced through
the use of a low pass filter to exclude the high frequency
components corresponding to the noise [93]. In addition, FFT
is also commonly employed for removing a periodic signal
(contributing to an artifact) in the image [94]. The latter
implementation of the FFT denoising filter MATLAB code
(as discussed in [94]) on a single noisy image and its output
is described by Fig. 22:

IV. ARTIFICIAL INTELLIGENCE (AI) AND ITS ROLE IN
OPTICAL NANOSCOPY
Artificial Intelligence (AI) represents a relatively new
domain to have its concepts infused into the realm of
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optical microscopy. Although AI is an encompassing con-
cept which incorporates numerous machine learning (ML)
and deep learning (DL) algorithms which may be fur-
ther sub-classed into supervised, semi-supervised, unsuper-
vised and reinforcement learning algorithms [95] and [96],
a particular class of DL algorithms known as convo-
lutional neural networks (CNNs) has been successfully
deployed in computational imaging and object detec-
tion applications. Some examples of research studies and
applications utilizing CNNs in this respect include [97]
and [98].

In the employment of deep neural networks (DNNs) for
computer vision and image processing, several factors play
an essential role in the configuration and fine-tuning of such
a network. These include the loss function [99], the num-
ber of epochs [100], the convolution kernel used ([101]
and [102]), backpropagation, etc. Further details pertaining
to each of these aspects and their roles in DNN-training for
image analysis are discussed in [103], with some additional
contributors (as a complement to [103]) being described
in Table 3:

As DNNs represent an emerging field with an ever-
increasing utility in image analytics, numerous current stud-
ies are focused on developing DNN models which seek
to extend the current functionality of deconvolution algo-
rithms for image processing. Notably, a similar trend has
been observed in optical microscopical imaging, with some
prominent research efforts in this respect being exempli-
fied in [117], [118] and [119]. This is in addition to other
recent in silico (albeit non-DNN) approaches (such as [120]
and [121]) to achieve super-resolution nanoscopy. It would be
prudent at this juncture to emphasize the potential relevance
of AI-based approaches in breaching the Abbe diffraction
limit (as opposed to the traditional deconvolution algorithms
as discussed in Section 1 previously) since the PSF is often
a variable function across the image volume, hence DNNs
trained to recognize these variations would be better adapted
in resolving an image. In this context, we evaluate 3 recent
research efforts in the present review, with particular empha-
sis on their employed DNN architectures, as well as the
efficacy of their proposed models in extrapolating the bounds
of optical microscopy into the nanoscopy domain. Further
details on each of these approaches are provided in the fol-
lowing sub-sections.

A. ANNA-PALM [122]
An eminent study in smart nanoscopy refers toANNA-PALM
[122] which (as its name implies) refers to the utilization of
AI-based approaches to achieve super-resolution (SR) fluo-
rescence microscopical imaging akin to that of the empiri-
cal technique known as PALM [123]. According to [122],
the developers of ANNA-PALM utilized a special condi-
tional GAN (cGAN) named A-net which was based on the
pix2pix architecture and comprised of 3 ANNs as follows
(from [122]):

TABLE 3. Hyperparameters often associated with DNN training (adapted
from [112]).
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TABLE 3. (Continued.) Hyperparameters often associated with DNN
training (adapted from [112]).

TABLE 3. (Continued.) Hyperparameters often associated with DNN
training (adapted from [112]).

i) A generator network G (principled on U-net with skip
connections [124] and 16 convolutional layers) respon-
sible for creating the SR image,

ii) A ‘‘low-resolution estimator’’ network Q (having 4 con-
volutional layers) responsible for generating the error
map for low-resolution images (reducing the input image
resolution by a factor of 4 in each dimension), and

214816 VOLUME 8, 2020



S. S. Kaderuppan et al.: Smart Nanoscopy: A Review of Computational Approaches to Achieve Super-Resolved Optical Microscopy

FIGURE 23. The A-net architecture developed by [122] and employed in
ANNA-PALM [122]. A The generator network G; B The ‘‘low-resolution
estimator’’ network Q; C The cGAN network D [122]. All figures are drawn
by the authors of the current review and are based on the original A-net
architecture as described in [122].

iii) A cGAN adversarial network D (with 5 convolutional
layers) which produces the loss and decides if the input
image is obtained empirically or artificially-generated
by G

Training of the A-net was conducted using randomly
undersampled (sparse) PALM images (having resolutions
of 256m× 256m, with m ∈ Z) (as an input), and their associ-
ated dense PALM variants (for the desired output) [122]. The
G network also contains a computational selector (switch)
allowing for different structures (e.g. nuclear pores or micro-
tubules) to be resolved [122], while the error map may be
defined by the following equation:

EQ(A,W ) = (1MS_SSIM (Q(A),W ))× (Q(A)+W ) (57)

where EQ refers to the error generated by the network Q, A
is the reconstructed SR image and W is the widefield input
image [122].

The DNN architecture of the A-net (further details of
which are elaborated in [122]) is illustrated in Fig. 23:

According to the authors of [122], the convolutional layers
in the ANN are coupled with batch normalization proce-
dures, while the dropout layers (dropout rate = 50%) are
only utilized during training but disabled during image infer-
ence [122]. The activation functions used are ReLUs [f (x)
→ sup(x,0)] or ‘leaky’ ReLUs [f (x) → sup(x, 0) + inf(εx,
0), where ε = 0.2], except the final layer of G (which
uses a tanh function) and the last layer of Q (which uses a
sigmoid function) [122]. The cGAN network in (iii) utilized
least squares loss functions (being empirically superior to the
log loss functions often employed in GANs [122]), which are
defined mathematically as follows:

LD (G,D) = E(c,x)∼pdata(c,x) [D (c, x)− 1]2

+Ec∼pdata(c),z∼pz(z) [D (c,G (c, z))]
2 (58)

LcGAN (G,D) = Ec∼pdata(c),z∼pz(z) [1− D (c,G (c, z))]
2 (59)

Visually, a comparison of the results derived from
ANNA-PALM with empirical PALM suggests a high degree
of correlation between these 2 image sets (as indicated

FIGURE 24. A comparison of microtubule images obtained using
Widefield, PALM and ANNA-PALM. Notice the agreement between images
using ANNA-PALM with both widefield (a) and sparse PALM (b) inputs,
as well as with the ground truth/dense PALM output (c). Adapted
from [122].

in Fig. 24), implicating the evident capability of the A-net in
performing in silico nanoscopy. Nonetheless, a potential lim-
itation of this approach refers to its mapping of learnt features
to unknown images (as surfaced by [125]), thereby obscuring
the detection of otherwise present anomalies, which might
occur at a relatively low percentage in endogenous tissue.

B. DEEP-STORM [126]
Deep-STORM represents a then-novel approach in pro-
viding a rapid, precise way to obtain SR images from
randomly-emitting fluorophores without the need to acquire
any additional data inputs (e.g. the convolution PSF
of an optical system, etc) [126]. As its name implies,
Deep-STORM utilizes a DNN coupled with widefield
epifluorescent microscopy to directly generate SR images
without localizing individual emitters, unlike traditional
empirical approaches (such as STORM or PALM) [126]. The
CNN-based architecture of Deep-STORM comprises of an
encoder (convolution) and a decoder (deconvolution) seg-
ment, the former composed of three 3×3 convolutional layers
(with increasing depth) alternated with 2 × 2 max pooling
layers, while the latter consists of 2 × 2 upsampling layers
alternated with 3 × 3 convolutional layers (with decreas-
ing depth) [126]. Batch normalization and ReLU were also
incorporated within the CNN architecture (with 1.3 million
nodes for training), appended with a 1 × 1 depth-reducing
convolutional filter (having a linear activation function) for
the final SR image generation [126]. Visually, the architecture
of Deep-STORM may be described by Fig. 25 (from [126]):

Deep-STORM was trained using 10k pairs of simulated
data points, first generated as twenty 64 × 64 pixel frames
using the ThunderSTORM plugin [127] within ImageJ ([128]
and [129]). This was subsequently processed by extracting
500 random 26 × 26 pixel ROIs from each image, which
are then up-sampled by 8-fold, forming 208 × 208 pixel
regions [126]. The training was done over 100 epochs (having
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FIGURE 25. The CNN architecture as utilized in Deep-STORM [126].
Figures reprinted with permission from [126], 
 The Optical Society.

a batch size of 16 frames) with an Adam optimizer (Gaussian
kernel, σ = 1, learning rate ε = 0.001) [126]. The loss
function used for training was based on regression analy-
sis, utilizing the squared Euclidean distance between the 2D
Gaussian-convolved network’s predicted points and its cor-
responding ground truth, while having an l1 penalizer [126].
A mathematical representation of the loss function is indi-
cated as follows (adapted from [126]):

` (x, x̂) =
1
N

∑N

i=1

∥∥̂xi ~ hg − xi ~ hg
∥∥2
2 + ‖̂xi‖1 (60)

where x̂i refers to the predicted values, xi refers to the ground
truth, hg is the Gaussian kernel, N is the size of the training
dataset, and ~ refers to the convolution operator (adapted
from [126]).

Verification of the network accuracy was performed using
both empirically-obtained datasets and simulated data points
{as (i) samples of quantum dots imaged under different
laser powers and composited and (ii) obtained from [130]
respectively}. In all instances, Deep-STORM exhibited
significantly-reduced run-times while maintaining the overall
integrity of the SR image. A visual representation compar-
ing the output from (and runtimes of) Deep-STORM with
CEL0 [131] is shown in Fig. 26:

From the results gleaned from [126], the authors have
emphasized the key strengths of Deep-STORM as being able
to generate SR videos of fluorescently-labelled structures
(without much intervention from the user), although they
have also acknowledged that it did not provide localization-
specific information of the resolved molecules, despite using
this information for creating the SR image [126].

C. ISONET-1 AND ISONET-2 [132]
In 2017, a couple of DNN architectures (named IsoNet-1 and
IsoNet-2) were proposed by [132] for restoring isotropic
resolution in the axial plane (induced primarily by the severe
anisotropy exhibited by the oblique PSF in the z-axis). Both
IsoNet-1 and IsoNet-2 are based on a CNN architecture,
with the main difference between the two being that IsoNet-
1 utilizes a traditional CNN kernel-downsampling approach
(with a ReLU activation function) while IsoNet-2 is based
off a U-Net architecture with skip connections [124]. In the

FIGURE 26. A visual comparison on the performance of Deep-STORM (the
last image) against the raw input image (the first image) and CEL0 (the
middle image) algorithms, using A a simulated image set, and empirical
images of B quantum dots and C fluorescently-labelled microtubules.
In all 3 comparisons, Deep-STORM surpasses that of CEL0, being closer to
the ground truth. D The runtimes for each method. Here (too)
Deep-STORM clearly surpasses the other methods. Figures adapted with
permission from [126], 
 The Optical Society.

development of IsoNet, the authors of [132] considered 2 pri-
mary factors – (i) the process of formation of a stereographic
volume in fluorescence microscopy and (ii) the anisotropic
PSF volume, leading them to propose a DNNmodel based on
sparsity-induced super-resolution coupled with image decon-
volution. Nonetheless, [132] has also highlighted the absence
of ground truth data for training their DNN, leading them to
utilize the same dataset for training (a concept described as
self super-resolution). In this regard, [132] has emphasized
a key difference between conventional methods of image
restoration and their proposed approach – the former uti-
lizes generalized iterative signal-decoding procedures (with-
out any information on the sample) while the latter seeks
to understand the formation of the observed blurred image
from its actual uncorrupted impulse response and potentially
achieve the resolution attainable in the xy image plane for
the z-axis, from the equation y = Sσ

(̃
h∗x

)
(where h̃ is the

3d rotated PSF and Sσ is the downsampling function in the
z-axis for a defined factor σ ). This, according to [132], was
done through inverse mapping from assembled lateral image
ROIs, with the authors of [132] choosing to deconvolve the
orthogonally-rotated PSF (in the xy-plane) by the average
PSF volume (assuming a spherically-bounded PSF), which
they referred to as hiso. This method has a clear advantage
of minimizing the PSNR loss as opposed to directly decon-
volving the observed impulse response with a standardized
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function, although one may surmise that it is founded on the
assumption of a uniform PSF being distributed across the
observed volume, which (in most instances) would be untrue.
The results obtained by [132] seem promising, with relatively
high PSNR values reported for both IsoNet-1 and IsoNet-2
– PSNRIsoNet−1: 32.47, PSNRIsoNet−2: 35.61 for simulated
nuclei samples with a gaussian split PSF, as compared to tra-
ditional RL deconvolution (PSNR: 27.48), SRCNN (PSNR:
25.89) or the original blurred input image (PSNR: 25.84).
To further verify the efficacy of their approach, [132] applied
a 3D watershed algorithm on cellular boundaries, with a
reported SEG of 0.913 (for IsoNet-2) as opposed to 0.742
(for the blurred input image) and 0.923 (assuming an isotropic
PSF). With real data, equally promising results are depicted
in [132], leading the developers of IsoNet to propose how uti-
lization of their approach would aid in eliminating phototoxic
cell damage. However, the authors of [132] acknowledged (as
well) a key limitation of their approach – that a sampling rate
greater than the Shannon limit is required for effective axial
super-resolution.

D. DEEP-Z [133]
As a putative successor to IsoNet-1 and IsoNet-2 [132], Deep-
Z was conceived by [133] as a way to generate 3D optical
microscopical stacks from a 2D optical image plane. Deep-Z
uses a conditional GAN (cGAN) trained with a Z-stack of 2D
fluoromicrographs [each coupled with a digital propagation
matrix (DPM) specifying the Z-distance between the target
surface and the input image plane] and their corresponding
ground-truth fluoromicrographs acquired at the target plane
as specified by the DPM [133]. Architecturally, the least-
square GAN employed in Deep-Z is composed of the follow-
ing parts:
i) A U-Net-based generator G consisting of 5 downsam-

pling blocks in its descending arm and 4 upsampling
blocks in its ascending arm, with each block containing
2 convolutional layers. The mathematical equations gov-
erning the blocks in each of these arms are described as
follows:

xk+1=xk+ReLU
[
CONVk2

{
ReLU

[
CONVk1 {xk}

]}]
(61)

where CONV refers to the convolution operator (with
bias), ‘+’ indicates a residual connection, k1 and k2 (as
subscripts of the CONV operator) refer to the number of
channels {where

km =

 25, when m, n = 1
6 (2+ m) (2n) , where m = 1or2, n ∈ Z,

1 ≤ n ≤ 5

[133]}. According to [133], mismatches between chan-
nel numbers of input and output tensors were rectified
through zero padding, with a 2 × 2 max pooling layer
having a stride of 2 × 2 (for a 2× downsampling)
between 2 adjacent downsampling blocks [133]. The

5th downsampling block is connected to the upsampling
path [133].

yk = ReLU
[
CONVk4

{
ReLU

[
CONVk3

{CAT (xk+1, yk+1)}
]}]

(62)

where CAT is used to join the tensors along the channel
direction, i.e. CAT(xk+1, yk+1) joins tensor xk+1 to ten-
sor yk+1. Here, km = 12(6 – m)(2n) for m = 3 or 4, n ∈
Z, 1 ≤ n ≤ 4] [133]. An up-convolution (convolution
transpose) block connects adjacent upsampling blocks,
upsampling the image by 2×, with the last block (a
convolutional layer) combining the 48 channels into a
single output channel [133].

ii) A 6-block CNN for the discriminator D, with each block
expressing the following mathematical transformation:

zi+1 = LReLU
[
CONVi2

{
LReLU

[
CONVi1 {zi}

]}]
(63)

where zi refers to the input value, zi+1 refers to the output
value (for some level i), LReLU (leaky ReLU) has a
slope of 0.01, i1 and i2 (as subscripts of the CONV
operator) refer to the number of channels [where im =
3(2m+n+2) for m = 1 or 2, n ∈ Z, 1 ≤ n ≤ 6] [133].

Following the discriminator, mean pooling is used to down-
scale the parameter set size to 3072, appended with fully
connected (FC) layers (size: 3072 × 3072) employing leaky
ReLU functions, and a single FC layer (size: 3072×1) using a
sigmoid activation function [133]. The convolutional kernels
used are 3×3matriceswith a 1-pixel stride in each dimension,
except for the second CONV in (63) which has a 2-pixel stride
in each dimension (for a resolution reduction factor of 2).
Xavier initialization was used for the weights, with bias set
to 0.1. The output (a discriminator score) lies in the range
[0, 1] with ‘0’ being false and ‘1’ being true. A detailed visual
representation of the Deep-Z architecture is provided in [133]
and demonstrated in Fig. 27 below:
Deep-Z was trained in 2 phases – input images to G were

256×256×2 (the second channel corresponding to the DPM)
while those to D were either (i) outputs from the generator
(256×256) or (ii) the target z(i). The loss functions employed
for the generator LG and the discriminator LD are as follows
(from [133]):

LG =
1
2N

∑N

i=1

[
D
(
G
(
x(i)
))
− 1

]2
+α

1
2N

∑N

i=1
MAE

(
x(i), z(i)

)
(64)

LD =
1
2N

∑N

i=1

[
D
(
G
(
x(i)
))]2

+
1
2N

∑N

i=1

[
D
(
z(i)
)
− 1

]2
(65)

whereN is the batch size,G(x(i)) refers to the generator output
for x(i), z(i) is the target label, MAE refers to mean absolute
error, α (the regularization parameter for the GAN and MAE
loss in LG) = 0.02 [133].
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FIGURE 27. The CNN architecture as utilized in Deep-Z [133]. All
figures are drawn by the authors of the current review and are based on
the original Deep-Z architecture as described in [133].

FIGURE 28. Digitally refocused C. elegans fluoromicrographs. Notice the
improved SSIM and RMSE of the Z = −5µm and Z = 4µm layers
elucidated through Deep-Z (when compared with the GT images at these
positions), as opposed to the original input image (panel a).
Figure adapted from [133].

AnAdam optimizer was utilized during the training (learn-
ing rate, εLD = 3 × 10−5, εLG = 10−4), with validation
performed every 50 iterations and the optimal network cho-
sen based on minimizing MAE loss. The DPM values were
rescaled by a factor of 0.1, due to the refocusing distance
spanning from −10µm to 10µm. On testing, the results
obtained from Deep-Z bear a significantly close resemblance
to the ground truth (GT) image with the difference between
these 2 sets of images exhibiting a much higher structural
similarity index (SSIM) and lower root mean square error
(RMSE) as compared to the input image, implicating the
high predictive accuracy of Deep-Z as an in silico refocusing
method. Sample images indicating this correlation (obtained
from [133]) are described in the following figure (Fig. 28):

According to [133], Deep-Z may be putatively extended in
future applications as an initial module for neuronal imaging
(reducing the need to acquire multiple image stacks), while
also potentially incorporating additional acquired informa-
tion at different optical sections. The advantages of Deep-Z
(from our perspective) are clear and represent a well-planned
step in achieving computational nanoscopy – axial resolution

limitations (which are more severe than lateral resolution lim-
its for widefield microscopy) coupled with haze (generated
from out-of-focus image planes) place a severe limitation and
obstacle in breaching the Abbe diffraction limit (as defined
in (2) previously). Nonetheless, we also believe that Deep-
Z exhibits further growth potential, especially where image
corruption by noise is evident (particularly in the presence of
low fluorescence signals).

V. DEEP LEARNING FOR IMAGE DENOISING
The use of DL algorithms has long found a niche for solving
an ill-posed problem in image denoising, yielding compar-
atively better results than traditional denoising algorithms
(such as Wiener or median filtering as discussed previously).
Through developments in the use of ANNs for denoising (as
expounded in [134] and [135]), other studies (such as [136])
have proceeded to explore using DNNs for image denois-
ing with promising results – [136] illustrated the use of
a 4 hidden-layer CNN (each layer comprising 24 nodes)
coupled with a 5 × 5 convolution kernel to denoise images
subjected to Gaussian noise with an unknown variance, pro-
ducing results which surpassed traditional non-blind denois-
ing algorithms then (CN1/CN2 PSNR = 24.12/24.25 vs
BLS-GSMPSNR = 23.78, FoE PSNR = 23.02) and atmuch
higher rates (∼42 times quicker than FoE and between 68%
– 133% of BLS-GSM). Elemental in this context is that [136]
highlighted the need for (i) an extremely small learning rate
for the final layer of the CNN (0.001) as opposed to a larger
learning rate for all other layers (r = 0.1) and (ii) the
utilization of a gradient learning algorithm to tune multi-
ple parameters based on the input images. Similarly, [137]
proposed a smart denoising algorithm termed content-aware
image restoration (CARE), which seeks to denoise fluores-
cence microscopical images while simultaneously achieving
axial super-resolution with 20-fold faster image acquisition
and at 60-fold lower light intensities, although [137] also
indicated CARE as being constrained by its image-specific
training dataset. In this regard, it would be prudent to further
evaluate the utility of other DNNmodels for image denoising,
of which 3 such architectures are described in greater detail
in the following sections. For a more elaborate discussion
on the various denoising approaches, the interested reader is
also encouraged to refer to [138], which seeks to provide a
holistic overview of the image denoising algorithms currently
available (the following 3 algorithms not being discussed in
this survey).

A. MULTI-LEVEL WAVELET-CNN (MWCNN) [139]
Multi-level Wavelet-CNN (MWCNN) is based on an integra-
tion of 2D Haar wavelets with a traditional CNN architecture,
as a means of optimizing the size of the receptive field
while potentially reducing computational complexity [139].
Here, the MW packet transform (as the skeletal frame-
work of MWCNN) is alternated with a convolutional block,
the former involving the use of 2D DWT for splitting of
the sub-band images xi into in images for a n-level MW
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FIGURE 29. The U-Net architecture used as a skeletal framework for
development of the MWCNN algorithm (as discussed in [139]). The
figure shown here describes a 3-level wavelet-CNN architecture. The
yellow-filled box implements the convolution kernel followed by a batch
normalization (BN) and ReLU activation for 4 times in all layers, except
for the penultimate layer, where only convolution is applied.
Figure adapted from [139].

transform. Downsampling (as a component of the DWT) is
then used to pool the responses/outputs from each layer (prior
to its upsampling and recombination) followed by an inverse
wavelet transform (IWT) for image reconstruction [139].
A generalized visual map of theMWCNN architecture (based
on the U-Net structure [124] and as deployed in [139]) is
shown in Fig. 29:

Each of the 4 CNN layers in a single block is comprised
of a 3× 3 convolution kernel, batch normalization and ReLU
activation, except for the penultimate CNN layer (where only
a convolution operation is employed) [139]. Variations made
in the U-Net framework (for this MWCNN model) are as
follows: (i) using a DWT and IWT instead of max-pooling
and up-convolution respectively, (ii) an increase in the num-
ber of feature map channels caused by downsampling and
(iii) combining feature maps through element-wise addition
in MWCNN, as opposed to concatenation for U-Net [139].
The authors of [139] utilized the ADAM optimizer for train-
ing the MWCNN with the following loss function:

L (2) =
1
2N

∑N

i=1
‖F (yi,2)− xi‖2F (66)

where {(yi, xi)}Ni=1 is the training set having xi as the ith

ground truth image and yi as the corresponding input image.
2 and F(y,2) refer to the network parameters and the output
of the MWCNN model respectively [139].

According to [139], application of the MWCNN algorithm
reported significantly high PSNR (dB) / SSIM results for
almost all assayed datasets when compared with other algo-
rithms (e.g. 33.17/0.9357 for MWCNN vs 32.49/0.9244 for
IRCNN on the Urban100 image having noise level σ = 15,
or 32.23/0.8999 for MWCNN vs 31.85/0.8942 for DnCNN
on the BSD100 image with a scale factor, S of 2) [139].
This clearly demonstrated the efficacy of MWCNN in image
denoising, single image SR (SISR) and removal of JPEG
image artifacts. Nonetheless, [139] also noted that the image
denoising was only performed on grayscale (and not color)
images, while only the luminance (Y) channel (in a YCbCr
model) was processed with SISR. The measured computa-
tional efficiency of MWCNN however was comparable to

other in-class algorithms, exhibiting a run-time of 0.3575s
for denoising a 1024 × 1024-pixel image, as compared to
15.77s for a similar image denoised by RED30, although
DnCNN and TNRD depicted run-times of 0.1688s and 0.116s
respectively [139]. A similar trend was observed for SISR
(0.3167s for MWCNN vs 25.23s for DRRN or 0.1411s for
LapSRN) and JPG artifacts removal (0.2931s forMWCNN vs
14.69s for MemNet or 0.095s for TNRD), all of which were
performed on 1024 × 1024-pixel images [139]. In all these
instances, non-bulk image processing pointed to the potential
usage of MWCNN for optimal post-processed image qual-
ity, although batch processing may favor other comparable
alternatives.

In addition to the above, [139] had also compared the
use of different wavelets [traditional Haar, Daubechies-2
(DB2) as well as an amalgamation of Haar in the contract-
ing arm and DB2 in the expanding arm] embedded within
their proposedMWCNN framework, coupled with additional
frameworks such as WaveResNet and deep convolutional
framelets (DCF). The findings from these experiments indi-
cate (i) the significant impact of mismatched pixel informa-
tion caused by binning of incongruent pixels (termed ‘the
gridding effect’ [139]) on image restoration, (ii) that a sum
(rather than a concatenation) operator should be deployed in
theU-Net architecture of theMWCNNand (iii) the preferable
use of Haar wavelets throughout the U-Net architecture (as
compared to DB2 or Haar/DB2) for optimal image qual-
ity (denoted by the PSNR) and efficiency (run-time) of the
MWCNN model [139].

B. EDGE-PRESERVING DNN FOR IMAGE DENOISING [140]
In 2018, [140] proposed a DNN/CNN incorporating a
Canny filter for edge-preservation as a means of achieving
image denoising. The rationale of doing this was (according
to [140]) (i) ensuring that detailed morphological variations
detected in the specimen are maintained, (ii) discriminating
between features and noise in areas where there is a low sig-
nal/noise (S/N) ratio, (iii) flexibility afforded through the use
of CNNs for region-specific denoising (as opposed to tradi-
tional algorithms) and (iv) automated identification and char-
acterization of features by the convolution kernel employed
in the DNN. In their DNN, [140] utilized a non-subsampled
shearlet transform (NSST) as it is able to effectively map out
variations in structural features while incurring less compu-
tational cost than the non-subsampled contourlet transform
(NSCT), and (ii) resolve sparse signals without requiring
additional filters for determining the direction to be resolved
(unlike NSCT). Training of the CNN was performed using
Canny-determined noiseless edge maps, with noise subse-
quently introduced and the maps stacked to form a noisy 3D
image volume. The resolved edges were used to discriminate
between signal and noise, with pixels contributing to edge
formation considered as the impulse response signal (the
converse being regarded as noise). The CNN architecture of
the proposed method comprised a total of 6 layers (2 FC
layers, 1 subsampling layer and 3 convolutional layers), with
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FIGURE 30. 3D block construction for training the DNN (J = 3, 2 = 4).
NSST decomposition is applied to the noisy image, followed by stacking
of 2D blocks (Ba

m,n) into a 3D block (F a
m,n) having Ha

m,n as its central
vector (a = 1 in this figure). Figure adapted from [140].

the convolutional layer and the sub-sampling layer equations
(the former incorporating a 3D convolution function nested
within a traditional ReLU activation) denoted as follows:

qj = max
(
0, bj +

∑
i
kij ~ pi

)
(67)

qr,ci = max
0≤m,n<s

{
pr .s+m,c.s+ni

}
(68)

where bj is the bias term, kij is the convolution kernel (~
represents the 2D convolution operator), qr,ci is the (r , c) pixel
in the ith output subsampled feature map, pi is the ith input
feature map (having a size of s× s) (adapted from [140]).

A visual description of the DNN architecture is portrayed
in Fig. 30 below:

Subsequently, a softmax activation function coupled with
SGD having an update rule zi+1 = 0.9zi − 0.0005bwi − β ·(
δL
δwi

)
, wherewi+1 = wi+zi+1 was used to refine the weights

at each node, allowing the DNN to distinguish noise from
signal impulses with the proposed method demonstrating
significant improvement in image denoising – for e.g., in the
House (256 × 256) image, the proposed method exhibited a
PSNRσn=10 = 37.53 and a PSNRσn=70 = 28.96, as com-
pared to NLFMT (PSNRσn=10 = 34.87 and PSNRσn=70 =
25.62), although [140] acknowledged that NLFMT did not
generate artifacts. Another assayed method (BM3D) was also
unable to surpass the performance achieved by the proposed
method (BM3D: PSNRσn=10 = 36.71 and PSNRσn=70 =
27.91), although BM3D reportedly executed ∼4 times more
rapidly than the proposed method for the Lena and Barbara
images (tLena = 6.54s and tBarbara = 6.12s for BM3D,
as compared to tLena = 28.79s and tBarbara = 26.49s for the
proposed algorithm) respectively. Nonetheless, the authors
of [140] highlighted the inability of the presently-proposed
algorithm for denoising ultrasound and color images, which
they intend to incorporate in future versions of their method.

C. MP-DCNN [141]
Developed by the authors of [141], MP-DCNN represents a
means of achieving image denoising without edge-induced
artifacts in a substantially noisy environment through the
employment of a joint loss function in a CNN [141]. Here,
MP-DCNNutilizes a 3×3 convolution kernel in order tomax-
imize the dimensions of the receptive field to (2f +1)2, where
f refers to the CNN depth [141]. This serves to optimize
the chances of recovering pixels which have a significantly
low S/N ratio. Visually, the architecture of the MP-DCNN
network may be described by Fig. 31 below:

FIGURE 31. The generalized architecture of MP-DCNN. The
figure incorporates CNN layers from the MP-DCNN model, as well as the
loss functions used to tune the network [141].

The MP-DCNN architecture consists of 10 convolution
layers (and an output layer), the first 5 of which utilize the
leaky ReLU activation function and have feature map outputs
numbering (32, 32, 64, 64, 128) respectively, while the next
4 convolutional layers use a ReLU activation function, with
feature maps numbering (64, 64, 32, 32) respectively [141].
The final convolution layer uses a 1 × 1 convolution kernel
to generate c feature maps, with an added residual unit being
employed to speed up the process while improving the overall
network performance [141].

The authors of [141] have utilized a couple of loss func-
tions within their developedMP-DCNN network architecture
(namely MSE and perceptual loss) combined into a joint loss
function (i.e. Ljoint = LMSE + λLSegNet ), with each of these
component losses (LMSE and LSegNet ) being defined in (69)
and (70) as follows (from [141]):

LMSE=
1
n

∑n

i=1

(
1

w×h

∑w

j=1

∑h

k=1
‖fi (j, k)−Xi(j, k)‖2

)
(69)

LSegNet =
1
wihi
‖Ci (Y − R (Y )− Ci (X))‖2 (70)

where f is the denoised output image, X is the input image,
n is the sample size, w and h are the dimensions (width and
height) of the sample image respectively [141].

The results of implementation of MP-DCNN proved
promising, with the former depicting relatively supe-
rior results when compared to other image denoising
algorithms such as WNNM, TNRD and BM3D, amongst
others (PSNR values for the BSD68 dataset when utiliz-
ing MP-DCNNσ=15 = 32.05 vs BM3Dσ=15 = 31.07
or TNRDσ=15 = 31.42, MP-DCNNσ=50 = 26.68
vs WNNMσ=50 = 25.87 or DnCNNσ=50 = 26.23,
etc) [141]. In addition, structural similarity (SSIM) com-
parisons between MP-DCNN with other image denoising
algorithms reveal a similar trend – MP-DCNN clearly out-
performs even its closest assayed predecessor (DnCNN)
with more significant improvement margins for noisier
datasets – SSIM values for the BSD68 dataset when utilizing
MP-DCNNσ=15 = 0.8829 vs DnCNNσ=15 = 0.8826, while
MP-DCNNσ=50 = 0.7104 vs DnCNNσ=50 = 0.7076, with
a similar stellar performance reported for MP-DCNN when
using other test images [141]. In addition, the developers of
MP-DCNN have also found their proposed algorithm to be
much more efficient than most other tested algorithms – the
run-time of MP-DCNN for a 1024× 1024 image was 10.9±
0.18 s, as compared to 12.1±0.2s for DnCNN [141]. All these
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results reported by [141] seemingly suggest the superiority
of MP-DCNN over other tested algorithms (such as DnCNN,
etc), especially in denoising highly noisy images, although
the authors of [141] also acknowledged potential areas for
development of their proposed framework (i.e. MP-DCNN)
by addressing non-Gaussian noise models, denoising large
image datasets, as well as color images and videos [141].
In our perspective, one may also consider evaluating how
different activation functions (such as leaky ReLU or sig-
moid) may also be utilized in the MP-DCNN framework
(particularly in its 6th–9th convolutional layers) rather than
the traditional ReLU presently expounded in [141].

VI. COMMERCIAL APPLICATIONS OF AI-BASED
DEHAZING / DEBLURRING ALGORITHMS
Although traditional deconvolution algorithms (e.g. Nearest
Neighbors, Richardson-Lucy deconvolution, etc) have long
been harnessed in the commercial sector within applications
such as Huygens Professional (Scientific Volume Imaging
B.V.) [23], Imaris 9.3 (
 Oxford Instruments 2019) [142]
and AutoQuant X3 (
 Media Cybernetics, Inc.) [24] amongst
others, the recent emphasis on the infusion of AI in optical
nanoscopy has spurred some organizations to develop imag-
ing applications utilizing such intelligent nanoscopy tech-
niques, which are the subject of this review and discussed in
the subsequent sub-sections. Hence, although the commercial
implementation of conventional deconvolution algorithms is
not being discussed here, the interested reader is encouraged
to explore the widespread uses of these algorithms by visiting
these manufacturer websites directly.

A. ADAPTIVE DECONVOLUTION AND LIGHTNING
Adaptive deconvolution (AD) represents a novel approach
in computational super-resolution and image deconvolution,
through utilizing a decision mask to automatically extract
deconvolution parameters for individual voxels within the
imaging volume [143]. This eliminates the need for the
user to provide a PSF/blurring kernel manually, either by
computation or determined empirically through supplying
images of sub-diffraction-sized beads (as is utilized in NBD
algorithms). AD is integrated as an optional deconvolution
method within LIGHTNING (
 Leica Microsystems), com-
bining the speed and efficiency derived from parallel GPU
processing with the decision mask (used in AD) to provide a
fully automated, voxel-specific super-resolved image [143]
with near-real-time efficiency, thereby seeking to extend
4 of the 6 vertices of the imaging octahedron exemplified
in Fig. 32:

A comparison between AD and traditional/classical decon-
volution is depicted in Fig. 33 (adapted from [143]):

The initial pre-processing step of AD involves determining
the background (Bg) where the signal-noise ratio (SNR) is
computed by approximating the grayscale values g (x, y) for
each pixel based on its neighborhood and a smoothing kernel
fb as follows:

SNR = S [g (x, y) , fb(x, y)]
/
N (71)

FIGURE 32. The imaging octahedron of optical microscopy. LIGHTNING (

Leica Microsystems) seeks to extend 4 of the 6 vertices (namely
Resolution, Sensitivity, Speed and Spectrum).

FIGURE 33. A Traditional deconvolution; B LIGHTNING workflows. Notice
the additional decision mask present in LIGHTNING, which is absent in
classical deconvolution processes. Figures adapted with permission
from [143], 
 Leica Microsystems, 2018.

where N = N[g (x, y)] and Bg = b(x, y) ∝

max[bglobal(SNR)] [143].
A general assumption here is that the signal is minimally

impacted upon by noise, agreeing with well-defined image
processing algorithms [143]. In the next stage a decisionmask
is created from individual voxels using the SNR andBg values
obtained for each voxel and an image quality map generated
for the entire image as shown in Fig. 34 (from [143]):

The image quality is then used to compute the adaptation
coefficient (regularization parameter) in an inverse fashion
for use in deconvolution in the following step [143].

The third (and final) stage in AD involves actual decon-
volution of the image using the regularization parameters
obtained from the decision mask previously and the MAP
(maximum a posteriori)-based deconvolution algorithmmod-
ified according to the imaging method used (e.g. STED,
multiphoton, etc) and fine-tuned to the optics used by Leica
Microsystems [143]. The iteration count for the MAP-based
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FIGURE 34. An image quality map depicting the SNR for different voxels
in the decision mask. Figure reprinted with permission from [143], 
 Leica
Microsystems, 2018.

FIGURE 35. Differences exhibited between LIGHTNING & traditional
deconvolution algorithms. LIGHTNING utilizes an adaptive mask to locally
adapt the deconvolution parameters, while classical deconvolution uses a
globally-defined set of parameters for the entire image. The image shown
here is that of p24-YFP (a protein that cycles between the Endoplasmic
Reticulum and the Golgi). Sample courtesy of Dr. Juan Jung, Pepperkok
group, European Molecular Biology Laboratory, Heidelberg, Germany.
Reproduced with permission from Leica Microsystems and the Pepperkok
Team, 
 LIGHTNING White paper, 2018 [143].

deconvolution algorithm is also determined automatically,
with the iterations being ceased when there is no significant
differences between the key features of the images at the
(n + 1)th iteration as compared to the nth iteration. As such,
this automation uniquely characterizes LIGHTNING from
traditional deconvolution, with the differences between the
outputs of these procedures distinctly visualized in Fig. 35:

For the accustomed user, LIGHTNING also incorpo-
rates non-AD (i.e. traditional) deconvolution algorithms,
which utilize a globally determined set of parameters for
image deconvolution as compared to AD (which computes
local voxel-based parameters) [143]. Nonetheless, [143] has
demonstrated LIGHTNING to be able to achieve a resolution
of up to 120nm (accurate as of Sep 2018, with improved algo-
rithms being able to further enhance the effective resolution
of the image) as shown in Fig. 36 below:

B. COMPUTATIONAL CLEARING AND THE THUNDER
IMAGER BY LEICA MICROSYSTEMS GMBH
An alternative contrast-enhancement methodology also
developed by Leica Microsystems, computational

FIGURE 36. Molecular nanorulers (separated by a distance of 120nm) are
resolved via LIGHTNING (but not confocal) demonstrating the superior
resolution of LIGHTNING over traditional confocal microscopy. According
to the author of [143], the results obtained here are accurate as of Sep
2018, while recent improvements in the algorithm are capable of
increasing the effective resolution of the image. Figure reprinted with
permission from [143], 
 Leica Microsystems, 2018.

FIGURE 37. Differences in the optical train of A a widefield
epifluorescent (WE) and B a confocal laser scanning microscope (CLSM).
Notice the presence of an excitation and an emission pinhole in the
CLSM, which is absent in the WE microscope. The detected beam in the
WE microscope thus incorporates both the in-focus & out-of-focus
impulse responses (from multiple axial/Z-sections), while in the CLSM,
only the in-focus signals are present in the detected beam.

clearing (CC) is utilized in Leica’s THUNDER Imagers to
remove haze (originating from out-of-focus optical planes)
while preserving focused features of interest [144] in the
image plane. In this respect, CC is particularly adapted to
dehazing widefield microscopical images (particularly wide-
field epifluorescence (WE) microscopy), where the absence
of a pinhole allows light rays emerging from different opti-
cal sections to interfere with the image plane as described
in Fig. 37:

Here, [144] describes a widefield epifluorescent image I (r)
to be estimated mathematically as follows:

I (r) ≈ psf of (r)~ f (r)+ psf if (r)~ f (r) (72)

where f (r) is the fluorophore intensity distribution and
psfof /if (r) refers to the PSF of the in-focus (if) and out-of-
focus (of) light rays [144].

However (and as specifically mentioned in [144]), the PSF
of the out-of-focus blur has a wider lateral spread and
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FIGURE 38. An image of Beta III Tubulin Rat Neurons labelled with Cy5.
Notice the removal of haze in the CC image. Figure sourced from [144], 

Leica Microsystems, 2015.

Full Width at Half Maximum (FWHM) than the PSF of
the in-focus signal, allowing scale discriminating operations
(such as wavelet transforms) to be effectively utilized in this
context. This formed the basis for an iterative algorithm to
be constructed, which may be expressed mathematically as
follows (from [144]):

Iout = argmin̂Iout

[∥∥I − Îout∥∥2] (73)

where the structural length scale (i.e. the lateral (full-width)
distance at ∼13.5% of the maximum (peak) intensity) of the
predicted out-of-focus blur Iout ) (referred to as S

[̂
Iout

]
) > r0

(the LAS X-defined ‘‘feature’’ scale) [144].
In this respect, CC is used to reveal (rather than generate)

a deblurred image, allowing the original relative intensities
of the key features in the image to be preserved [144].
A CC-processed image is thus depicted in Fig. 38 as follows:

Due to their intensity conservation of the individual fea-
tures, CC-processed images may be further utilized for quan-
titative analysis (e.g. in colocalization microscopy) although
proper calibration protocols and care has to be exercisedwhen
attempting such procedures. Further details on quantifying
CC-images are discussed in [144], which cites relatively
close correlations between the signal intensity distributions
of the fluorescent sample and its background both before and
after application of CC (also termed Instant CC/ICC), with
a Kolgomorov-Smirnov distance of 0.05 ± 0.02 [144]. This
clearly depicts the ability of CC to allow direct fluorescent
quantitation without the need for implementation of addi-
tional background removal algorithms [144].

An alternative mode of CC in THUNDER, termed Large
Volume CC (LVCC) which combines Adaptive Deconvolu-
tion (AD) with CC, has also been noted in [144] to allow
imaging up to a depth of 140 to 150 µm, as compared to
traditional widefield imaging experiments (which can only
resolve up to a depth of 50µm). Such deep field imaging
allows LVCC to be used with thicker samples (negating the
need for microtomy in some instances) although it should be
emphasized that the maximum imaging depth depends very
much on the refractive index of the sample and its light-
scattering ability [144]. Further details on LVCC imaging
are discussed in [144], with a figure extracted from [144]
(indicating the utility of LVCC in neuronal imaging) being
depicted in Fig. 39:

FIGURE 39. Imaging at depths of 140 to 150 µm. Figure sourced
from [144], 
 Leica Microsystems, 2015.

FIGURE 40. A Original image. Images processed using B Adjust AI
(Structured setting); C Sharpen AI (Mode: Focus, Remove Blur: 0.53,
Suppress Noise: 0.59); D Gigapixel AI (Scale: 4x).

Finally, a third implementation of CC in THUNDER
named Small Volume CC (or SVCC) is similar to LVCC,
but which is intended for imaging thin (∼80µm) samples.
Here, [144] has indicated how SVCCmay be used to improve
the resolution of an acquired image, by utilizing a single
40nm-diameter bead and achieving resolution improvements
of up to ∼2 times laterally (FWHMRaw/SVCC = 1.961)
and >2.5 times axially (FWHMRaw/SVCC = 2.5641) [144].
Nonetheless, [144] highlights that these improvements in
resolution were measured using the size of the spot corre-
sponding to the image bead, instead of the actual distance
between 2 structures separated by these distances (which was
deemed by [144] to be not empirically possible).

C. TOPAZ LABS AI-BASED IMAGE ENHANCEMENT
The Topaz Labs AI Bundle (comprising of Topaz Sharpen
AI, Topaz DeNoise AI, Topaz JPEG to Raw AI, Topaz
Gigapixel AI, Topaz Mask AI, Topaz Studio 2 and Topaz
Adjust AI) (
 Topaz Labs) [145] represents a recent commer-
cial software innovation in the macrophotography domain
which has garnered significant interest due to its ability to
produce eye-catching and vibrant images. For comparison
purposes, a single image processed using Adjust AI, Sharpen
AI and Gigapixel AI is being shown in the following diagram
(Fig. 40):

From the above, it can be observed that Adjust AI (
 Topaz
Labs) is particularly adept at dehazing an acquired image,
coupled with hue and contrast enhancement of the deblurred
image. This may be presumed to be akin to traditional deblur-
ring and deconvolution algorithms, such as Wiener filtering.
Similarly, Gigapixel AI (
 Topaz Labs) seeks to recover
lost signal information caused by zooming into an image
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(an aspect of digital magnification) allowing a more highly
resolved image to be generated. On a different note, Sharpen
AI (
 Topaz Labs) [146] utilizes an ANN trained with mil-
lions of images to recall and generate a sharpened image
from an out-of-focus image [147]. Each of these approaches
represent novel conceptions in the field of AI-mediated image
processing, which may (upon further improvements) find
some relevance in biomedical and geological research in the
near future. In particular, the DNN within Sharpen AI could
be subjected to transfer learning for the infusion of new
learnt features (potentially from inherent optical aberrations
in the Fourier domain) to enhance its capability in facilitating
biomedical research.

VII. CURRENT LIMITATIONS AND POTENTIAL FUTURE
ADVANCEMENTS IN COMPUTATIONAL NANOSCOPY
Despite there having been numerous recent developments in
the field of optical nanoscopy, extensive unexplored terrains
in this respect exist, being mediated through the utilization
of in silico-based approaches combined with existing optical
microscopical techniques and enhancements. In particular,
one such dilemma refers to noise coupled with haze, and
while significant progress has been made with the intro-
duction of AI-based concepts and DNN architectures in
microscopical imaging, the road towards a total recovery
of the spatial information contained in the image remains
relatively unexplored. Imperatively, it would be crucial to
understand the basis of signal impulses constituting noise
– that of ultra-high frequencies unresolvable by the micro-
scope objective lens amalgamating to form a blurred signal.
Resolution of the individual components of noise (and thus
their discernment) for elimination of ‘true noise’ (arising
from aberrations in the optical train) as opposed to pseudo-
noise (due to sub-resolved structures in the image) would
thus be crucial in fueling the drive towards super-resolved
diascopic nanoscopy. In this respect, the reader would be
encouraged to pursue a true definition of image noise and its
causative factors, developing potential filters to discern and
selectively eliminate ‘true noise’, while attempting to resolve
pseudo-noise.

Another aspect worthy of further investigation refers to the
resolution of Fourier transform waveforms (when coupled
with AI) as a means of minimizing the mapping of learnt
features from previous super-resolved images (during the
training of the DNN) to novel images during deployment.
This would be particularly favorable in light of the fact that
DNNs have been found to be computationally superior to
ANNs [148] due to the multiple paths to the output layer
(mathematically represented by the exponential growth factor∏
ni, where n refers to the number of nodes in the layer

i) which consequentially permit higher resolutions of input
feature deviations to be realized in output actualization while
also accounting for spatiotemporal variations in the PSF dur-
ing live-cell imaging. An exemplification of this aspect is cur-
rently being investigated by our research team as a potential
approach to achieving true super-resolution microscopy via

in silico methods. It would be prudent to mention that this
may also be supplemented through existing studies conducted
in digital holographic microscopy (DHM) [149] and tomog-
raphy [150], which are seeking to explore the potential of
phase-shifted tomograms to reveal previously-unidentifiable
information.

A third possibility for future research in this domain
refers to how super-resolution nanoscopic approaches may be
integrated into coherent Raman spectroscopy (CRS), as high-
lighted by [151]. Here, [151] states that current Raman scat-
tering detection capabilities are less sensitive than those of
fluorescence, even when utilizing coherent laser sources,
posing a major hurdle to be overcome in this respect.
Other avenues currently being explored in this domain (with
promising future advancements) include super-resolved mag-
netic resonance imaging (MRI) microscopy [152], nanoscale
image resolution via defocused Z-stack acquisition [153],
in-situ PSF retrieval for 3D single-molecule localization
microscopy (SMLM) imaging [154] and 3D super-resolution
time-lapse microscopy [155], all of which represent a push
towards computational super-resolution in advanced medical
imaging processes. Complementarily (& although not being
the subject of this review), optical (non-computational) super-
resolution microscopy has experienced a leap ahead as well,
with the introduction of microspheres for non-fluorescence
nanoscopy applications (see [156] for details).

On the andragogical front, a merger of augmented real-
ity (AR) or virtual reality (VR) with nanoscopy would bridge
the nanoscopy-immunology gap while being particularly rel-
evant in scientific education (as discussed in [157] and [158]).
Here, researchers (both new and experienced) would find
such immersive experiences particularly helpful in under-
standing key processes with the potential to even uncover
insights (such as biomolecular interactions) that were previ-
ously unfathomed.

Computational nanoscopy would also find a niche (which
is in fact being currently explored) in pathological examina-
tions and diagnostics, especially in the detection of cancerous
tissue or diseased cells (which would often necessitate human
expertise). Some studies expounding research conducted in
this field include [159], [160] and [161]. This would poten-
tially also lead to the future (presently unexplored) terrain
of non-fluorescent in vivo optical nanoscopy and molec-
ular imaging, for the visualization (and potentially nano-
manipulations) of molecular motions, metabolic pathways
and dynamics of biochemical reactions in real-time and in
situ.

In the manufacturing sector too, computational nanoscopy
also holds promise in nanomanufacturing processes and
their corresponding quality analysis procedures (especially
for silicon wafers and chipsets utilized in the semiconduc-
tor industry). With rapid advancements made in comput-
ing hardware and future CPU fabrication processes reaching
single-digit nm dimensions (such as Intel’s Meteor Lake
architecture using 7nm chips [162]), it would be sensible
to explore the utilization of computational nanoscopy in
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FIGURE 41. Potential future advancements which can be realized in the
field of computational nanoscopy within the coming decades. Some of
these are currently being explored, while others remain relatively
out-of-reach with present day technology. It would be prudent to note
that these are only some of the potential areas for exploration of the
reach of computational nanoscopy within the next few decades, while the
authors of the present review surmise numerous other unexplored areas
in this respect.

this sector and how it may facilitate the execution of such
processes.

The following infographic (Fig. 41) summarizes some of
these aspects for easier identification:

Nonetheless, most of these algorithms are plagued with
numerous limitations arising as a consequence of imper-
fections in the optical train. A prominent problem surfaced
by [163] refers to what [163] deemed as the ‘‘hallucina-
tion problem’’, although we presume that this may not be
a significant concern in computational nanoscopy, espe-
cially where an extensive dataset (comprising varied samples
which addresses the issue being investigated) is utilized,
except where highly specific post-acquisition image process-
ing and analysis protocols (such as feature detection and
object tracking) are desired, in which instance, an over-fitted
DNN (prone to such hallucination issues) may be utilized.
In addition, fuzzy logic approaches (such as that employed
in [164], [165] & [166]) may also contribute to network
hallucination (despite outperforming even the state-of-the-
art super-resolution methods as mentioned in [166]), since
fuzzy logic approximates the mapping of image patches to
highly-resolved images, while this approximation may (at
times) result in incorrect image mappings. In this respect,
it would also be noteworthy to mention that future approaches
in computational super-resolution microscopy should seek
to integrate both deconvolution and deep learning princi-
ples, by using deep learning to accurately discern the optical
PSF and noise of an optical system, which may vary spa-
tiotemporally across the sample, especially in living cells.

The elucidated PSF may then be coupled to a deconvolu-
tion method for obtaining the impulse response at individual
locations in the sample, with pixel-wise accuracy. Only by
doing so, can one achieve true super-resolution computa-
tional nanoscopy, which would be immune to network hallu-
cinations and optical aberrations, amidst a variable PSF. This
may also be fueled through the advent and recent on-going
developments in the field of quantum computing (QC) [167],
which utilizes advanced future-cutting edge hardware to drive
computational nanoscopy to unprecedented heights.

VIII. CONCLUSION
Although we have sought to holistically evaluate the recent
developments in the field of computational nanoscopy in
the present review, recent developments spurred by ongo-
ing research (particularly in artificial intelligence and deep
neural networks) are resulting in new findings in the field
of computational nanoscopy even at the time of authoring
this review. Hence, the field of intelligent computational
nanoscopy represents an exciting new phase in the future of
optical microscopy, as we enter an era merging traditional
microscopical imaging modalities with recent advancements
in machine learning and computing, such as QC. It is desired
(through the readership of this review) that one would be
inspired to further explore and potentially contribute to future
advancements in this sector, spurring the advancement of
optical nanoscopy to greater (and previously unfathomed)
heights in scientific research and visualization.
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