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ABSTRACT The availability of commercial UAVs and low-cost imaging devices has made the airborne
imagery popular and widely available. The aerial images are now extensively used for many applications,
especially in the area of intelligent transportation systems. In this work, we present a new aerial image
dataset, VAID (Vehicle Aerial Imaging fromDrone), for the development and evaluation of vehicle detection
algorithms. It contains about 6000 images captured under different traffic conditions, and annotated with 7
common vehicle categories for network training and testing. We compare the of vehicle detection results
using the current state-of-the-art network architectures and various aerial image datasets. The experiments
have demonstrated that training the networks using our VAID dataset can provide the best vehicle detection
results. Our aerial image dataset is made available publicly at http://vision.ee.ccu.edu.tw/aerialimage/ and
the code is available at https://github.com/KaiChun-RVL/VAID_dataset.

INDEX TERMS Aerial image dataset, vehicle detection and classification, convolutional neural network.

I. INTRODUCTION
Nowadays, the availability of low-cost image acquisition
systems and easy-to-use unmanned aerial vehicles (UAVs)
has made the aerial imaging more convenient and popular.
It is now possible to acquire a large number of high-quality
aerial images without elaborate planning and a considerable
amount of time. The aerial images have been adopted in
many tasks such as cartography, precision agriculture, land-
scape archaeology and urban studies for many decades. One
specific application is to detect and classify the vehicles in
aerial images. It is gradually adopted to intelligent trans-
portation for vehicle identification, traffic flow estimation
and parking space allocation, etc. Thus, it is the future trend
to use aerial images for transportation and vehicle related
applications.

The aerial images are able to cover a variety of scenes from
the sky, consisting of forests, rivers, buildings, bridges and
roads, etc. In remote sensing applications, various kinds of
satellite imagery are used in the fields of geography, land
surveying and many earth science disciplines. They are also
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frequently used for the detection of man-made structures,
both static constructions and movable targets such as vehicles
and vessels. Due to the recent progress on machine learning
techniques, we are now able to achieve high object detection
rates in cluttered scenes. The detection and classification of
vehicles using aerial images have become more feasible with
deep neural networks.

The techniques for vehicle detection using aerial
images can be classified into two categories, the conven-
tional machine learning methods and the deep learning
approaches [1]. For the machine learning methods, low-
level image features such as edge, corner, shape, texture and
color are extracted for training and classification. Shao et al.
propose a vehicle detection framework which use local
binary patterns combined with histograms of oriented gra-
dient for vehicle detection [2]. The differences in color
are used for detection with the blob-like areas extracted
from prominent color and grayscale features [3]. There
also exist traditional computer vision techniques which use
frame difference [4] and optical flow [5] for moving vehicle
detection.

For the deep learning approaches, convolutional neural
networks (CNNs) have significant improvement on object
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FIGURE 1. A system flowchart of the proposed method for vehicle
detection and classification in aerial images. It consists of creating the
aerial image dataset and testing the network architecture for vehicle
detection.

detection and classification in the past few years [6].
Liu et al. adopt the Single Shot MultiBox Detector
(SSD) [7] with the network trained using DLR Vehicle
Aerial dataset (DLR-MVDA) and Vehicle Detection in Aerial
Imagery dataset (VEDAI) for vehicle detection [8]. In [9],
Sommer et al. use these two aerial image datasets to evaluate
the performance of Fast R-CNN [10] and Faster R-CNN [11]
networks. Lu et al. [12] evaluate the performance of YOLO,
YOLOv2 and YOLOv3 [13]–[15] using COWC, VEDAI
and DOTA datasets for training and testing. Similarly, the
performance comparison of Faster R-CNN and YOLOv3 for
vehicle detection is carried out by Benjdira et al. using their
aerial image dataset [16].

Compared to the general object detection tasks, there are
additional issues for the vehicle detection in aerial images as
follows.
• The target size is usually much smaller.
• The targets tend to have monotonic appearance.
• The images are easily affected by illumination changes.
• There might be a large number of vehicles in an image.
• The target aspect ratio could be large.

In this paper, we introduce a new aerial image dataset,VAID
(Vehicle Aerial Imaging from Drone), for vehicle detection
and classification. Extended from the previous work using
modified Faster R-CNN [17], we compare the advantages,
disadvantages and results of vehicle detection in aerial images
with several well-known network architectures. Figure 1
shows the system flowchart of the proposed framework for
the evaluation of vehicle detection algorithms. It consists of
creating our VAID image dataset, and training and testing
on the aerial images using various network structures for
comparison.

II. RELATED WORKS
Due to the applications in traffic control, parking manage-
ment, and security purposes, the detection of vehicles in
aerial images has been studied for many decades [18]–[20].
Compared with the vehicle detection from close range or
ground viewpoints, the technical requirements are very dif-
ferent since the targets are much smaller and contain less
features to distinguish from the environment [21], [22]. The
image quality is also degraded in general due to the long range
acquisition in the atmosphere. To detect and recognize objects
from the air, remote sensing is one of the earliest research
fields which adopt the image-based approach [1]. Many tech-
niques have been developed for a variety of applications, and
are not restricted to the detection of ground objects. It is then
followed by the computer vision community to investigate the
object detection or specifically vehicle detection algorithms
in airborne images.

Prior to the popularity and success of deep neural networks
adopted for object detection and recognition, conventional
machine learning methods heavily rely on hand-crafted fea-
ture extraction for image classification. When applied to
the vehicle detection from aerial images, commonly used
features including shape, color, corner, texture, disparity, as
well as histogram of oriented gradient (HOG) and scale-
invariant feature transform (SIFT). They are combined with
various classifiers such as support vector machine (SVM),
random forest (RF), AdaBoost, and bag-of-words (BoW) for
detection and recognition [23]–[25]. Although more recent
works on aerial image analysis have gradually moved to
deep learning based approaches, there still exist newly pro-
posed conventional methods because of the low complexity
and computational cost. Nevertheless, these techniques are
designed for some specific uses rather than general purposes.

Among the few noticeable improvement for traditional
methods, Chen et al. present a fast classification algorithm
using a set of sparse representation dictionaries [26]. Amulti-
order descriptor is proposed to extract the vehicle feature
in aerial images. By introducing the superpixel segmenta-
tion and patch orientation, their results on high-resolution
images are superior to those obtained from commonly used
HOG+SVM, LBP+PLS (Local Binary Patterns and Partial
Least Squares), and sparse representation methods. Xu et al.
proposed an enhanced Viola-Jones detector for vehicle iden-
tification from aerial imagery [27]. A road orientation adjust-
ment stage is adopted to improve the original isotropic
detection results. The method is further applied to improve
the accuracy of vehicle tracking. Liu et al. also start the
design of a vehicle detector from the orientation issue [28].
They develop a fast oriented region search algorithm to
detect the position, size, and orientation of an object. A
modified vector of locally aggregated descriptors is used to
represent an object and distinguish the proposals from the
background. The experiments carried out on public datasets,
VEDAI and Munich 3K, have shown some significant results
compared to the existing approaches. For training data
collecting and labeling, Cao et al. propose an efficient
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TABLE 1. A summary of the aerial image datasets currently available and used for our evaluation and comparison of vehicle detection and classification
algorithms. It shows the number of images in the dataset, the image resolution, the actual scale of a pixel, and the typical size of a vehicle in pixel. Some
images from the datasets are shown in Figure 2.

and labor-light scheme which only works on region-level
group annotation [29]. A weakly supervised, multi-instance
learning algorithm is developed to learn the weak labels.
A multi-instance SVM is then trained to classify from
the density map derived from the positive regions. To
deal with the scale and orientation variations, shadow,
and partial occlusion, Cao et al. present an affine-function
transformation-based object matching framework [30]. Sim-
ilar to the previous approach, superpixel segmentation is
adopted to generate non-redundant patches, followed by
detection and localization with a threshold matching cost.
Their results obtained from two UAV image datasets demon-
strate that good performance can be derived comparable to
Faster R-CNN.

With the recent success of convolutional neural networks
for object recognition, they have also been applied to aerial
images for vehicle detection. Since the target size is one
major issue for aerial imagery, the algorithms often need to
emphasize the capability of small object detection. In [31],
Zhong et al. propose a method which cascades two con-
volutional neural networks to improve the detection accu-
racy without decreasing the speed. The first network is used
to generate a set of vehicle-like regions, followed by the
second network for feature extraction and decision making.
They adopt multi-feature maps with different hierarchies and
scales, and achieve high recall rates and low computation
costs on two public aerial image datasets. Mandal et al. pro-
pose a single-stage detector, AVDNet, specifically designed
for small-size vehicle detection in aerial images [32]. The
feature vanishing problem for small objects is mitigated by
the use of residual blocks at multiple scales. Their algorithms
are evaluated on four datasets, and a better performance
compared to the well-known frameworks such as YOLOv3,
Faster R-CNN and RetinaNet is reported. For the applications
which require in situ real-time processing, He et al. present
a compressed MobileNet capable of 110 fps processing
speed [33]. It is built on the light weight network MobileNet
and considers the tradeoff between accuracy and computa-
tion. Their algorithm is also implemented on a mobile phone
with acceptable 15 fps inference speed. With the similar
objective to reduce the hardware requirement, Ringwald et al.
evaluate several popular detection frameworks for best accu-
racy/speed trade-off [34]. They build upon SSD to construct
a network, UAV-Net, for aerial imagery. The impressive 0.4

MB model size makes it suitable for real-time operations on
an embedded platform such as Jetson TX2.

III. VAID AND AERIAL IMAGES DATASETS
Currently, there are not many public datasets available for
vehicle detection in aerial images. Some datasets, such as
VIRAT video dataset, are designed for video surveillance
and action recognition [35]. For the existing aerial image
datasets, there are also some problems such as containing
only a very limited number of categories, imprecise bounding
boxes, small image sizes, etc. Several popular datasets for
vehicle detection in aerial images include VEDAI, COWC,
DLR-MVDA, DOTA and KIT-AIS. The description of these
datasets are shown in Table 1. VEDAI (Vehicle Detection in
Aerial Imagery) dataset is made available by Razakarivony
and Jurie [36], and originated from the public Utah AGRC
database.1 It contains a total of 1,250 RGB and NIR images
with the resolution of 512 × 512 and 1024 × 1024 captured
at about the same height. The dataset is manually annotated
with 9 classes of objects (‘plane’, ‘boat’, ‘camping car’, ‘car’,
‘pick-up truck’, ‘tractor’, ‘truck’, ‘van’, and others) and a
total of 2,950 samples. Each image consists of 5 vehicles
in average, and the vehicle size is about 0.7% of an image.
The annotation of each sample includes the sample class, the
center point coordinates, direction and the four corner point
coordinates of the ground-truth. The targets in VEDAI are
relatively easy to identify. Most of the vehicles in the images
are sparsely distributed with simple backgrounds, and the
vehicles in the densely distributed places such as parking lots
are excluded.

COWC (Cars Overhead With Context) dataset created at
LLNL contains the overhead imagery collected from six
major cities [37]. All images are standardized to 15 cm per
pixel at ground level, so the vehicles span about 24 to 48
pixels. The objective of this dataset is mainly for vehicle
counting, so the annotation is different from the datasets for
vehicle detection and classification. The labeled images in
COWC dataset only mark the center point of a vehicle with
a red dot. It does not provide the category or bounding box
information. There are totally 32,716 annotated vehicles in
the dataset, with additional 58,247 negative samples.

1https://gis.utah.gov/data/
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FIGURE 2. Some images from our VAID dataset and four other datasets for comparison and evaluation: VEDAI, DLR-MVDA, COWC and KIT-AIS. The
vehicles in aerial images usually appear much smaller than most objects in general image recognition and classification datasets.

In DOTA (Dataset for Object deTection in Aerial images)
dataset, 2,806 aerial images from different sensors and plat-
forms are collected at the resolution of 4000 × 4000 [38].
It contains more than 188k instances with different scales,
orientations, shapes, and labeled by quadrilaterals instead
of commonly used bounding boxes. Although the dataset
is large in terms of the number of images and instances
per image, it aims to provide for general purpose use with

only two vehicle classes (large and small) out of the total
15 categories. This makes it unsuitable for object detection
on vehicle specific applications.

DLR-MVDA dataset contains 20 large scale-aerial
images [39]. The images are captured with more realistic road
scenes and the vehicle detection is more challenging. KIT-
AIS is a dataset with the images taken from an airplane at
about 330 m above the ground [40]. It has 228 high resolution
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FIGURE 3. In our VAID dataset, the common vehicles are classified to 7 categories, namely (a) sedan, (b) minibus, (c) truck, (d) pickup truck, (e) bus,
(f) cement truck and (g) trailer. The sample images are shown in the figure from the left to the right accordingly.

FIGURE 4. Some aerial images in our VAID dataset captured using a drone. It consists of different road types and traffic scenes.

images (5161×3744), but there is only one annotated vehicle
category for network training.

This paper introduces a new vehicle detection dataset,
VAID (Vehicle Aerial Imaging from Drone), with the aerial
images captured by a drone.2 We collect about 6,000 aerial
images under different illumination conditions and viewing
angles from different places in Taiwan. The images are taken
with the resolution of 1137 × 640 pixels in JPG format.
Our VAID dataset contains seven classes of vehicles, namely
‘sedan’, ‘minibus’, ‘truck’, ‘pickup truck’, ‘bus’, ‘cement
truck’ and ‘trailer’. Figure 2 shows some example images
from our VAID dataset as well as four other datasets, VEDAI,
DLR-MVDA, KIT-AIS and COWC. It can be seen that the
vehicles are much smaller compared to the objects in general
recognition and classification datasets.

Although the vehicles are divided into the seven categories
according to the popularity in Taiwan’s road scenes, it is
sometimes very tricky to annotate. The characteristics of
small sedans viewing from the above are less obvious, and
the types are more diverse, including two-door and four-door
sedans, five-door hatchbacks, recreational vehicles and nine-
seat vans. There are a few differences in the definition of a
truck and a pickup truck for annotation. A truck is defined
as a vehicle with a shelter in the cargo area or a vehicle
with its own cargo area as a container, and the body and the
front of the vehicle are completely disconnected. However,
a pickup truck is not covered by the canopy. A minibus is a
21-seat medium size bus, while a bus includes passenger and
big buses. The trailer category includes tank trucks, gravel
trucks, tow trucks, container trucks with detachable tailgates.
The images in the dataset are annotated using the labeling
tool LabelImg in the format of PASCAL VOC, including

2VAID Dataset: http://vision.ee.ccu.edu.tw/aerialimage/

FIGURE 5. The distribution of the object’s aspect ratio.

the names of the classes and the bounding box coordinates.
Figure 3 shows several cropped vehicle images from different
categories.

The images in the dataset are taken by a drone (DJI’s
Mavic Pro). To keep the sizes of the vehicles consistent in
all images, the altitude of the drone is maintained at about
90 – 95 meters from the ground during video recording. The
output resolution is 2720 × 1530 at 2.7K and the frame rate
is about 23.98 fps. For an average sedan with the length of 5
meters and the width of 2.6 meters, the apparent size in the
image is about 110 × 45 pixels. In the VAID dataset, the
images are scaled to the resolution of 1137×640, and a sedan
in the images is about the size of 40× 20 pixels.
The dataset covers ten geographic locations in southern

Taiwan, and contains various traffic and road conditions.
The images are taken on the sunny days when the light is
sufficient, the interference caused by the shadow of the house
in the afternoon, and the darker imaging condition in the
evening. Figure 4 shows some of the dataset images with
various road and traffic scenes. There are totally 7 categories
for vehicle classification in our VAID dataset. The images
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TABLE 2. Some statistics of our VAID dataset. It shows the number of images and the number of vehicles in each category for three different types of
image acquisition locations: university campus, urban area, suburb.

FIGURE 6. The modified Faster R-CNN architecture for vehicle detection and classification proposed in this paper. It also
serves as the baseline for the comparison with other network models.

TABLE 3. The number of vehicles in different class used for training, validation and testing for each class in the VAID dataset.

are divided into 3 regions, namely, urban area, suburb and
university campus. Some statistics are shown in Table 2.
Another important statistic regarding the distribution of the
object’s aspect ratio is shown in Figure 5.

IV. EXPERIMENTS AND EVALUATION
To evaluate the effectiveness of the proposed VAID dataset,
two experiments are carried out with different object detec-
tion techniques and several aerial image datasets. First,
our VAID dataset is used to train five popular object
detection architectures, including Faster R-CNN, YOLOv4,
MobileNetv3, RefineDet and U-Net, for performance com-
parison. The network architecture with the best performance
for vehicle detection and classification in this experiment
is considered for further evaluation. Second, the selected
network structure is trained separately using different aerial
image datasets, including VEDAI, DLR-MVDA, COWC,
KIT-AIS and VAID. The trained neural network models are
then tested on a new dataset for performance evaluation. It
provides the comparison on the effectiveness of the training
sets. The hardware used for the evaluation is a PC with an
Intel i7-8700k CPU, 16GB RAM and Nvidia GTX1080Ti
GPU. The software tools for the development include Ubuntu
16.04, cuda 10.0, cudnn 7.4.2, tensorflow-gpu 1.4, pytorch
1.4.0, Keras 2.2.4 and opencv-python 4.2.0.

In our VAID dataset, there are totally 5,985 aerial images
with the vehicles classified into seven categories. It is split
into three parts, with 1,512 images for training, 1,534 images
for validation, and 2,939 images for testing. Table 3 shows the
detailed information for each class in training, validation, and

testing sets. It can be seen that the number of training samples
is unbalanced among the classes. Thus, training the network
with fewer samples is an important issue to achieve better
classification results. We use our modified Faster R-CNN
model as the baseline for benchmarking. First, the ReLU
(Rectified Linear Unit) activation function is used on the RPN
(Region Proposal Network) layer. As shown in Table 4, this
provides slightly better results compared to the original net-
work and the modifications with other activation functions.
Second, we replace the feature extractionmodel with ResNet-
101. Finally, the aspect ratio is changed from [0.5, 1, 2] to
[0.2, 0.5, 1, 1.2, 2]. Our modified Faster R-CNN architecture
is illustrated in Figure 6. For the evaluation of other network
models (YOLOv4, MobileNetv3, RefineDet, U-Net), we use
the default settings without further changes.

The network model evaluation on the VAID dataset is tabu-
lated in Table 5. It shows the mAP (mean average precision),
precision, recall and F-1 score for Modified Faster R-CNN,
YOLOv4, MobileNetv3, RefineDet and U-Net.3 Figure 7
shows the vehicle detection results of a parking lot image
using different network models. There are several impor-
tant observations from the network outputs and evaluation
results. First, Modified Faster R-CNN has 90.12% mAP but
with very low precision. This is due to a large number of
incorrect predictions of the 300 anchor boxes in the network
model. Second, U-Net reports very high precision but only
with a relatively low mAP (at 85.38%). It is caused by the
use of pixel-level segmentation to define the bounding box

3The code is available at https://github.com/KaiChun-RVL/VAID_dataset

212214 VOLUME 8, 2020



H.-Y. Lin et al.: VAID: An Aerial Image Dataset for Vehicle Detection and Classification

TABLE 4. Several different activation functions used in the modified Faster R-CNN for comparison (mAP).

FIGURE 7. The results and comparison of vehicle detection in a parking lot view aerial image using the different network models, modified Faster
R-CNN, YOLOv4, RefineDet, MobileNetv3 and U-Net.

TABLE 5. The network model evaluation on the VAID dataset. It shows the mAP, precision, recall and F-1 score for Modified Faster R-CNN, YOLOv4,
MobileNetv3, RefineDet and U-Net.

for U-Net, which reduces the number of false detection.
However, if the objects are very close to each other, they
tend to be considered as a single large target as shown in
Figure 7(e). Third, MobileNetv3 has the lowest mAP among
all network models. As indicated in Figure 7(d), it cannot
deal with the nearby objects very well. The main problem
is the feature map extraction. For other models, including
YOLOv4, RefineDet and U-Net, the next higher dimension
feature map is used to regenerate the feature map. However,
the use of the raw feature map makes MobileNet hard to
distinguish the object features, and have the bounding box

regression perform well. Finally, YOLOv4 provides the best
performance in terms of mAP, precision, F1 score (and with
the recall slightly worse than Modified Faster R-CNN), and
is selected for the experiments on the dataset evaluation. In
general, all networkmodels perform fairlywell for the vehicle
detection. However, if the viewing angle of the camera with
respect to the ground is too large, all models cannot provide
good results.

In the second experiment, we evaluate the aerial image
datasets DLR-MVDA, VEDAI, COWC, KIT-AIS and VAID
using YOLOv4 for vehicle detection. The network is trained
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FIGURE 8. The image data used for testing. (a) Scene A consists of the images recorded from two locations in a city. (b) Scene B contains a YouTube
video recorded with a highway. (c) Scene C contains a YouTube video recorded with an expressway. (d) Scene D is a YouTube video recorded with a
crossroad in Belarus.

using the individual image datasets separately and tested on
a new dataset (with the aerial images acquired from differ-
ent places) for performance evaluation. Because COWC and
KIT-AIS provide only one category (‘vehicle’), we modify
the labels of all datasets to a single vehicle class as a basis
for comparison. If an image is larger than 1137 × 640, it is
cut to several 1137 × 640 sub-images for processing. Some
classes which are not vehicle related such as ‘boat’,‘plane’
and ‘other’ in VEDAI are removed from the dataset.
The annotation in COWC only provides a dot on the center
of a target, so we set a 20× 20 bounding box on each object
for IoU (Intersection over Union) computation.

The new testing data for the evaluation of different net-
work models are selected from four other image acquisition
scenarios. Figure 8 shows some example images in the testing
dataset. Scene A consists of the aerial images acquired from
two different locations in a city (see Figure 8(a)). Scenes
B, C, D are the airborne traffic scene videos obtained from
YouTube, which are recorded above two highways and one
expressway in Taiwan, and a crossroad in Belarus. As shown
in Figure 8(b), the highway images in Scene B contain sev-
eral roads in different altitudes, and the objects may have
different scales even belong to the same category. In Scene C,

TABLE 6. The evaluation results (mAPs) of different scenes (A, B, C and
D) using VEDAI, DLR-MVDA, COWC, KIT-AIS and our VAID datasets for
network training. VEDAI, DLR-MVDA, COWC, KIT-AIS and VAID in the
training set contain 967, 3,046, 86, 912, 113 and 967 images, respectively.
The image sizes used in the training data are 1, 024 × 1, 024, 1, 137 × 640,
1, 137 × 649, 767 × 669 and 1, 024 × 1, 024, respectively. Scenes A, B, C
and D in the testing set contain 99, 17, 31 and 35 images, respectively. The
sizes of the images in Scene A, B, C and D are 1, 137 × 640, 1, 280 × 720,
1, 280 × 720 and 1, 920 × 1, 080, respectively.

as illustrated in Figure 8(c), there are some vehicles park-
ing on the roads with different orientations. The images in
Scene D consist of the road scenes acquired in Belarus,
with the vehicle size larger than those in the training dataset
(see Figure 8(d)).

Table 6 shows the evaluation results of different scenes
(A, B, C and D) using VAID, VEDAI, DLR-MVDA, COWC
and KIT-AIS as training datasets. The details and specifi-
cations of the training and testing data are also provided.
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FIGURE 9. The vehicle detection results using YOLOv4 trained on different aerial image datasets, (a) VEDAI, (b) DLR-MVDA, (c) COWC, (d) KIT-AIS, and
(e) VAID. The images from left to right correspond to Scene A, B, C and D, respectively. Scenes A, B and C contain the road images acquired in Taiwan,
and the vehicles such as trucks and trailers are rare in other datasets.

Although the IoU threshold for VAID, VEDAI and KIT-
AIS is 0.5, it is set as 0.25 for DLR-MVDA and COWC.
This is due to the imprecise ground-truth bounding boxes
for DLR-MVDA (too small) and COWC (too large), and the
mAPs will be close 0 if the IoU of 0.5 is used. Figure 9
shows some example images of the detection results using
different training datasets. Scenes A, B and C contain the
road images acquired in Taiwan, and the vehicles such as
trucks and trailers are rare in other datasets. This causes
the classification problem for certain types of vehicles, and
results in low mAP for VEDAI, DLR-MVDA and COWC.
Using our VAID dataset for network training, high accuracy
results are obtained for Scenes A, C and D. Our low mAP
result of Scene B is mainly due to the much smaller vehicle
size (about 20 × 10) compared to those in VAID (about

40×20) for training. In Scene B, the vehicles in the images are
at different elevations (on the viaducts). Our dataset images
are collected at approximately the same height, while other
datasets including KIT-AIS, MVDA, and VEDAI contain
images taken at different heights. Moreover, KIT-AIS has
the images not only acquired from multiple heights, but also
similar to Scene B, as illustrated in Figure 2(d). Consequently,
the networks trained using our dataset perform not as good
as using VEDAI, DLR-MVDA and KIT-AIS in Scene B.
Nevertheless, the overall accuracy for the network trained on
our dataset provides much better performance.

V. CONCLUSION
In this paper, we present a new aerial image dataset for the
development and evaluation of vehicle detection algorithms.
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The dataset contains 6,000 images captured under different
illumination conditions, and are available for public access.
To illustrate the effectiveness of our dataset, the performance
evaluation of vehicle detection techniques is carried out on
widely used network architectures and training datasets. The
experimental results have demonstrated that training the deep
neural networks using our VAID dataset can provide the best
vehicle detection rate on an independent testing dataset. In
the future, the aerial image dataset will be extended with
diverse imaging conditions and maintained for public access
and benchmarking.
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