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ABSTRACT Optimization on the basis of sustainability brings important benefits to manufacturing process
as sustainable productions constitute a crucial aspect in modern manufacturing. This paper presents a
new formalized framework for optimizing the sustainability of manufacturing processes. Unlike previous
approaches, the proposed technique combines a methodology for selecting the sustainability indicators
and a multi-objective optimization for improving the three sustainability pillars (economy, environment
and society). While selecting the significant sustainability indicators in the considered manufacturing
process relies on the ABC judgment method, the Saaty’s method enables weighting the chosen indicators
in order to combine them into suitable economic, environmental and social sustainability indexes. Other
technological aspects, usually taken as objectives in previous works, are considered constraints in the
proposed approach. The optimization is performed by using nature inspired heuristics, which return the
set of non-dominated solutions (also known as Pareto front), from which the most convenient alternative is
chosen by the decision maker, depending on the specific conditions of the process. For illustrating the usage
of the proposed framework, it is applied to the optimization of a submerged arc welding process. Compared
with currently used welding parameters, the computed optimal solution outperforms the economic and
environmental sustainability while keeps equal the social impact. The results show not only the effectiveness
of the proposed approach, but also its flexibility by giving a set of possible solutions which can be chosen
depending on how are ranked the sustainability pillars.

INDEX TERMS Manufacturing systems, optimized production technology, Pareto optimization, sustain-
ability.

NOMENCLATURE
A Set of predefined environmental indicators

a;  i-th predefined environmental indicator
B Joint width [mm)]

i-th predefined economic indicator
Set of predefined social indicators
i-th predefined social indicator
Vessel diameter [mm]

Electric power [kW.h]

Wasted flux [g]
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Generated slag [g]

Wasted wire [g]

Set of inequality constraints

i-th inequality constraint

Set of equality constraints

i-th equality constraint

Welding current [A]

Joint length [mm]

Joint penetration [mm]

Joint reinforcement height [mm)]

Welding speed [m/h]

Welding voltage [V]

Set of weights of the environmental indicators
Weight of the i-th environmental indicator
Set of weights of the economic indicators
Weight of the i-th economic indicator

Set of weights of the social indicators
Weight of the i-th social indicator

Subset of manufacturing process parameters
Vector of manufacturing process parameters
i-th manufacturing process parameter

ST HRI =25 <E CQVJ%%PNST‘Z@‘”?U@

Ya Environmental sustainability index
Ys Economic sustainability index

Yr Social sustainability index

ZE Electric power cost [$]

ZF Flux cost [$]

7L Labor cost [$]
Zw Wire cost [$]

A Set of environmental indicators

o i-th environmental indicator

o:? Reference value of the i-th environmental indicator

a; Normalized value of the i-th environmental
indicator

B Set of economic indicators

Bi i-th economic indicator

,Bio Reference value of the i-th economic indicator

,51- Normalized value of the i-th economic indicator

r Set of social indicators

Vi i-th social indicator

yl.o Reference value of the i-th social indicator

Vi Normalized value of the i-th social indicator

€co, Carbon dioxide emission [g]

Iq5) Unit electric power cost [$/kW.h]
CR Unit flux cost [$/kg]

lL Unit labor cost [$/h]

ow Unit wire cost [$/kg]

T Total production time [min]
cos¢ Phase factor

I. INTRODUCTION

Nowadays, the digital transformation of the manufacturing
industry is paving the way to face new challenges but also par-
tially solved problems [1]-[3]. One strategic goal in current
researches on industrial production is reducing the impact
caused by manufacturing processes. The so-called Triple
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TABLE 1. Main sustainability indicators used as optimization objectives.

[ Dimension [ Indicator | Reference |
Energy [12]-[21]
Environmental consumption

Carbon emission
Material and/or

[16]-[18], [20]-[22]
[19], [21], [23]

tool waste
Cost [17], [21], [22]
Economic Productivity [12]1-[14], [20]-[22], [24]
Quality [12]-[15], [19], [21], [23]-
[26]
Health and [18]
Social safety

Labor and work- [21]
force training

Bottom Line (TBL) [4] aims to consider the three main
aspects (usually also known as pillars or dimensions) of the
sustainability: environment, economy and society [5]. The
final goal should be a fully sustainable process, which accom-
plishes all the dimensions. In spite of some criticism, such as
difficulties in measurement (specially in social issues), lack
of holistic point of view, and shortcomings as compliance
mechanics [6], TBL allows enterprises redefine value to not
only focus on the end product or service but also to include
the systemic cost of delivering goods [7], and remains being
a useful approach, which is widely applied for evaluating
manufacturing processes sustainability [8].

For designing actual sustainable manufacturing pro-
cesses, evaluating the environmental, economic and/or social
impacts is not enough. These impacts must be mini-
mized through selecting the optimal process parameters and
setup [9]. Table 1 shows the sustainability indicators used
as manufacturing optimization objectives, from a review.
A significant amount of these researches, used either a single
objective optimization or several objectives combined into
a unique target by using some kind of aggregation (which
is known as a priori approach [10]). These methods, which
actually transform a multi-objective optimization problem
into a single-objective one, have shown some drawbacks,
including the subjectivity in the supplied preference infor-
mation and the inability for finding solutions in non-convex
regions [11].

On the contrary, the a posteriori approach, firstly, brings
the set of non-dominated solutions (which are optimal in the
wide sense that no other solution in the considered search
space, can improve one of the objectives without worsening,
at least, another one), which is known as the Pareto front
and, after that, allows choosing the most convenient alterna-
tive from these solutions [27]. Pareto-based techniques have
become the most suitable choice for solving multi-objective
optimization problems [28] and has been widely applied
for practical manufacturing cases [29]. Furthermore, due to
the complex nature of multi-objective optimization [30] the
so-called gradient-free heuristics, which are stochastic tech-
niques, usually inspired in natural processes or systems, have
become the most popular choices for obtaining the Pareto
fronts [31].
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Although some works [32]-[37] have reported the a poste-
riori multi-objective optimization of sustainability of man-
ufacturing processes, based on existing studies, only two
[21], [38] includes the three pillars of the sustainability as
objectives. Nevertheless, none of these papers have presented
a systematic approach which combines the evaluation of
sustainability by following the principles of the TBL and the
optimization of this sustainability by using the TBL dimen-
sions as targets.

Among the different manufacturing processes, automatic
or robotic welding is widely used in industry. A brief analysis
of reported optimization approaches for these processes in the
last years is summarized in Table 2.

Two main facts arise from this summary. In the first
place, multi-objective optimization through metaheuristic
algorithms is the most used strategy in recent reports on
welding processes optimization. As a second fact, no studies
have been found which simultaneously optimizes a automatic
welding process by considering the TBL concepts and, also
using the technical requirements as constraints.

It can be noted that optimization, on the before-mentioned
works, has been mostly targeted to technical or economical
goals, such as dilution, mechanical properties, bead geometry,
weight of the deposited metal, or heat affected zone size.
Nevertheless, some works were based on sustainability points
of view. Consequently, a SAW process can be a suitable
choice for validating any sustainability-based optimization
methodology.

This study aims to formalize a methodology for optimizing
the sustainability of manufacturing processes, by following
an a posteriori approach, which use the three dimensions
of the TBL as optimization objective. Important components
of the proposed technique are not only the optimization and
decision-making processes themselves, but also the identifi-
cation of the significant indicators, which allow to character-
ize the sustainability from the environmental, economic and
social points of view and to model the relationships between
these indicators and the process parameters that are used as
decision variables in the optimization. A case study, on a
submerged arc welding process, is also presented in order to
exemplify and validate the methodology.

Il. SUSTAINABILITY INDICATORS FOR MANUFACTURING
PROCESSES

The optimization of the sustainability in manufacturing pro-
cesses is based on quantification their negative impacts [21].
Quantification of these impacts is commonly carried out
by using a set of indicators, which can be defined as “‘the
operational representation of an attribute of a given system,
by a quantitative or qualitative variable, including its value,
related to a reference value” [54]. A variable selected as
indicator should fulfill some requirements such as measur-
able, relevant, understandable, usable, data accessible, timely
manner and long-term oriented [55]. Reliability of sensor
data is another key issue to be considered [56]. Furthermore
key performance indicators (KPI) should have some critical
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TABLE 2. Summarized review on automatic or robotic-based welding

optimization.

Reference | Objective func- | Decision Optimization
tions variables method
[39] Hardness Voltage, current, | Taguchi
feed, and speed
[40] Width of bead, | Voltage, current, | Response
and height of | and speed surface
bead methodology
[25] Bead width, re- | Voltage, feed, | Genetic
inforcement, and | speed, nozzle to | algorithm
penetration plate distance, | JAYA algorithm
flux  condition | and desirability
and plate | approach
thickness
[24] UTS, hardness, | Current, voltage, | Taguchi-
deposition rate, | speed and heat | desirability
reinforcement input function
height, bead
width
[41] Welding Current, speed, | Response
strength, Weld | root gap and | surface
deposition rate electrode angle and genetic
algorithm
[42] UTS and Hard- | Voltage, feed, | Taguchi
ness speed and nozzle
to plate distance
[43] Bead height Voltage, current, | Genetic
speed, nozzle to | algorithm
plate distance
[44] Dilution, Voltage, feed | ANOVA
reinforcement and nozzle to
and reinforce- | plate distance
ment/bead width
ratio
[45] Bead Current, voltage, | Jaya, QO-
width, weld | speed and feed Jaya, genetic
reinforcement, algorithm,
weld particle  swarm
penetration, optimization,
tensile strength imperialist
and weld competitive
hardness algorithm
[46] UTS and hard- | Current, voltage, | Taguchi-fuzzy
ness speed inference system
[47] Productivity and | Welding path Genetic
cost algorithm,
particle swarm
optimization
[48] Joint dimensions | Voltage, speed, | Generalized re-
and dilution wire feed rate, | duced gradient
contact distance
[49] Cost Torch angle Modified article
swarm optimiza-
tion
[50] Joint geometry Current, speed, | Ratio analysis
and gas flow method
[51] Pose of welding | Welding trajec- | Offline program-
torch tory ming
[52] Total  tracking | Welding path Genetic
error algorithm
[53] Strength Rotational Henry Gas Solu-
speed, welding | bility Optimiza-
speed, tilt angle, | tion
and pin profile

characteristics such as properly derived from appropriate
strategy, clearly defined with an explicit purpose, relevant
and easy to maintain, simple to understand and use, provide
fast and accurate feedback, link operations to strategic goals,
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TABLE 3. Summary of key performance indicators sets.

Reference | Dimensions Indicators | Comments
count
[55] Environmental, 212 National Institute
Economic, Social, of Standards
Technological and Technology
Advancement (NIST). Designed
and  Performance for  manufacturing
Management processes.  Higher
number of
indicators than
other approaches.
[59] Environmental, 36 Sustainable
Economic, Social, Manufacturing
Technological Indicator Repository
Advancement (SMIR).  Designed
and  Performance for  manufacturing
Management processes.
[60] Environmental, 20 Key performance
Economic and indicators of Factory
Social sustainability. Easy
to be applied.
[61] Environmental, 155 ISO standard for a
Economic and wide context.
Social
[62] Environmental, 8 Ford Co. Specifically
Economic and directed to
Social automobile
manufacturing
and services.
[63] Environmental 40 Singapore. Designed
protection, for manufacturing in-
Economic  growth, dustry.
Social  well-being
and  Performance
management
[21] Environmental, 35 Applied to a turning
Economic and process.
Social
[64] Environmental, 26 Applied to three
Economic and study cases.
Social
[65] Environmental, 13 For cement industry
Economic and in Indonesia.
Social
[66] Environmental, 43 Directed to manufac-
Economic and turing environment.
Social

and stimulate continuous improvement [57]. In the upcoming
years, the hybridization of optimization methods and machine
learning will enable new progress in this field [58].

Selecting the proper set of indicators is far from being a
simple task. Table 3 summarizes several approaches proposed
in the recent decade.

Considering its advantages (such as simplicity and adapt-
ability to different manufacturing processes), in the present
work, the indicator set proposed by [66] is adopted as a
starting point (see Fig. 1). These indicators can be formally
defined as:

A={a; eR,i =1,...,20}; (1a)
B={bjeRi=1,...,09) (1b)
C={cieRi=1,... 14} (Ic)

where A, B, and C are the sets of base indicators for the envi-
ronmental, economic and social dimensions, and a;, b;, and c;

VOLUME 8, 2020

are the corresponding individual indicators. It is important to
remark that this set of indicators is a starting point, where
those which are convenient for the analyzed manufacturing
process are chosen from, by using the ABC judgment method,
as it is explained in the next section.

Ill. OPTIMIZATION METHODOLOGY DESCRIPTION
The proposed methodology is based on six steps, which are
described in the following paragraphs.

A. FIRST STEP: PROCESS CHARACTERIZATION

The first step starts with the identification of studied manufac-
turing process parameters, X = {x{,x2,...x,} € X C R™,
which are those variables that can be freely selected (although
fulfilling some constraints) and determine the process per-
formance. For example, in a turning process, the parameters
are the cutting speed, feed and depth of cut, while in a heat
treatment, temperature, time and cooling media should be
chosen.

After selecting the parameters, the process inventory is
established, by identifying the corresponding inputs and
outputs. Inputs include raw materials, tools, energy and
labor, among others. Outputs, on the other hand, com-
prise not only the goods obtained of modified in the
process, but also other outcomes such as residuals and
emissions.

B. SECOND STEP: SUSTAINABILITY INDICATORS
SELECTION AND WEIGHTING
After defining the process inventory, the significant indica-
tors are chosen for each sustainability dimension, by using
the ABC judgment method [67]. Three aspects of each
indicator are evaluated: (i) relevance, (ii) data availability,
and (iii) strategy alignment. One of three possible levels
(A =high, B = medium, and C = low) is assigned to
each aspect. With the obtained evaluations, an order and is
obtained for each indicator. Only the indicators with orders I
(AAA) and II (AAB, ABA and AAB) are selected. This
procedure is carried out on the basis of a consensus by a group
of experts.

An indicator can be also neglected if it is not affected
by the process parameters (i.e., if it is a constant value).
Consequently, it can be stated:

A=A{aj,0,...,0,} € A; (2a)
Bz{ﬁlsﬁzs"'vﬂp}gg; (2b)
F:{VlvVZ’”qu}gCQ (20)

where A, B and I', are the sets of significant indica-
tors, in the environmental, economic, and social dimensions
(which are subsets of the proposed indicator sets, A, B
and C), and «;, B;, and y; are the corresponding significant
indicators.

Additionally, the experts weigh up all the selected indica-
tors, through the Saaty analytic hierarchy process [68]. The
weights are given such that the total sum, for a dimension,
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¢1: Sustainability reports publishing
¢,: Sustainability awards

¢3: Customer complaints

Community &

ay: Greenhouse gas emissions

é@é‘
¢y Lost workdays

¢s: Employee attrition/turnover

c¢: Personal protective and safety equipment
c7: Line stops due to safety concerns

a,: Water waste discharge g cg: Labor productivity
az_ Sl sosie i duce%i = § 8 cy: Average hours of sustainability training
s L 23 2 ¢1: Employee trained in sustainability
a,: Waste energy emission Z g 2 " X
. £ =3 cyy: Absenteeism
as: Harmful gases release st £ : :
. . g 1 o ¢1»: Accident rate
ag: Waste segregation percentage Z -l N
o< CUS c3: Noise level
& E SU STAIN: c¢y4: Labor relationship
> = ABILITY
ay: Reused/recycled material in products E =
ag: Packaging material discarded
ag: Packaging material reused o g
ayo: Material saved £ ‘g-
ay;: Electric power consumption % 3 Financial by: Net profit margin
ay,: Energy intensity &~ g . by: Return on investment
a;3: Energy saved ° by: Costs saved
a,4: Energy generated from by-products
ays: Energy efficiency Manufacturin ;
: . . 2 Delivery . .
ay: Water intensity P bttty by Product delivery

ay;: Water reused
ayg: Vehicle fuel consumption saved

a,9: Percent of defective products

ang:

bs: Material costs
bg: Energy costs
b;: Labor costs

Percent of green raw material used

bg: Operational and capital costs
by: Inventory/stock cost

FIGURE 1. Selected sustainability key performance indicators.

be equal to one:

n
U= {urug, .ot} Y up=1; (3a)
i=1
p
V:{vl,vz,...,vp}:Zvizl; (3b)
i=1
q
W= (wi,wa, ... wg}: Y wi=1; (3¢)
i=1

where u;, v;, and w; are the weights given for environmental,
economic, and social indicators, and U, V, and W, are corre-
sponding sets.

C. THIRD STEP: MODELING OF INDICATORS AND
CONSTRAINTS

In order to carry out the optimization process, the models
relating the process parameters (as independent variables)
and the sustainability indicators must be obtained. These
models have a functional form:

o =oix), i=1,2,...,m (4a)
Bi=Bix), i=12,...,p; (4b)
vi=yix), i=1,2,...,q; (4¢c)

which can be obtained either by analytical modeling or by
using some empirical relationship, depending on the nature
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of the considered process. Some of the most frequently used
modeling techniques include linear and nonlinear regression
models, artificial neural networks, and fuzzy and neurofuzzy
inferences systems. Other tools, such as digital twins [69],
[70] and cyber-physical systems [71], can be used.

For making compatible the dimensions of the indicators,
they are normalized by using the equations:

G =29 i_12. n (5a)
@

A i(x .

Bi(x) = ﬂﬁo . i=12,p; (5b)

. i(x) .

Pix) = yy—o i=1.2.....q (5¢)
i

where &;, Bi, and y;, are the normalized environmental, eco-
nomic, and social indicators, and a?, ,BI.O, and yl.O are the
reference values for each indicator, which correspond to the
mean values of the independent variables.

Additionally, constraints that are based on technical or
legal considerations, and which are also functions of the
selected parameters, are established for the process, either in
form of inequality:

g={5ix)=0,i=12,...,s} (6)
or in form of equality:
h={nx)=0,i=1,2,...,t}. @)
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D. FOURTH STEP: OPTIMIZATION

The optimization step aims to select the process parameters
for minimizing the impact of the three sustainability dimen-
sions, given by:

n

YA() = ) wid(x); (8a)
i=1
p A

Ye(x) = Y vifi(x); (8b)
i=1
q

Yrx) =Y widi(x). (8¢)
i=1

where Y, Y, and Y1 are the environmental, economic, and
social impact indexes.

The three considered objectives use to be conflicting
(i.e., improving one of them causes the worsening in another
one). Therefore, the multi-objective optimization is carried
out through the a posteriori approach, where the different
targets are not combines into a single one (which actually
transform the problem in a single-objective optimization), but
they are simultaneously optimized, for obtained the so-called
Pareto front. As there is an agreement in the literature
[72]-[74] on the convenience of using gradient-free nature-
inspired heuristics for solving a posteriori multi-objective
optimization problems, one of them should be selected for
doing this task in the proposed methodology. Some studies
have compared several heuristics for solving some practical
problems [75], [76]. The heuristic performance evaluation
was done by using the hypervolume, which takes into account
not only how close is the obtained Pareto front to the actual
one (convergence) but also how uniform is the distribution of
the obtained non-dominated solutions (diversity) [77]. How-
ever, as the so-called No Free Lunch theorems state that there
is no an algorithm that outperforms all the other ones for any
class of problems [78]. Consequently, no theoretical founda-
tion can be used for choosing the most proper heuristic for any
particular problem and, therefore, it is strongly recommended
to perform the optimization by using several heuristics and
to compare the outcomes for choosing the most convenient
alternative.

E. FIFTH STEP: DECISION-MAKING

As the Pareto front is almost always composed by multiple
points, the solution that will be actually used must be selected
from them. In order to make this decision, the relative impor-
tance of each sustainability dimension must be evaluated.
For example (see Fig. 2 if the environmental issues play
a key role, in the considered process, the point A is the
most convenient. On the contrary, if economic impact must
be prioritized, point B offers the most convenient solution.
Finally, point C represents the best choice from the social
point of view. All the other points are trade-off solutions,
which can be selected depending on the specific workshop
conditions.
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Point A: Best
environmental
sustainability

Point B: Best
economic
sustainability

FIGURE 2. Pareto front example.

Although choosing the most convenient solution from the
Pareto front involves some subjectivity, as it deals with opti-
mal solutions, it outperforms any a priori approach, where
the preference information is supplied before carrying out
the optimization process, which may provide an inconvenient
dominated solution.

F. SIXTH STEP: VALIDATION

An important final step is the validation of the chosen solution
through some practical experimentation. This issue plays a
key role in the proposed methodology, because the inherent
errors of fitted models may have cumulative effect on the per-
formance of the selected solution. The comparison between
the predicted and the observed values of the solution must be
compared by using the proper statistical tests.

IV. CASE STUDY ON A SUBMERGED ARC WELDING
PROCESS

A. PROCESS CHARACTERIZATION

The considered process is the submerged arc welding pro-
cess of the equatorial joint of pressured vessel for liquefied
petroleum gas. The identified process parameters are the
current, x; = I, voltage, x, = U, and welding speed,
x3 = §, which are defined, by considering the technical
characteristics of the machine and following the literature
recommendations [79], into the following intervals:

200A < I <300A; (9a)
20V < U <30V; (9b)
41m/h < S < 85m/h. 9¢)

Furthermore, the considered process inputs (see Fig. 3)
includes the parts to be welded, the electrode wire, the flux,
the electric power and the labor used in the process. On the
other hand, outputs comprises the welded parts (including the
corresponding joint), slag, fumes, heat and noise.

B. SUSTAINABILITY INDICATORS SELECTION AND
WEIGHTING

For selecting and weighing up the sustainability KPI's, eleven
experts were chosen. Seven of them came from the industry
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Welding process
(SAW)

INPUTS OUTPUTS

Welded parts
Slag

Parts

Wire
Flux Greenhouse gases
Electric power Harmful gases
Labor He'flt
Noise
s~
i ~
s ~
s ~
7
~~1 Current
| Voltage |
| Speed |

FIGURE 3. Input and output inventory of the SAW process.

TABLE 4. Outcomes of the ABC judgment method for the SAW process.

Key performance | Rele- Data Strategy| Order
index vance avail- align-

ability | ment
a1: Greenhouse | A A A I
gases emission
a3: Solid waste | A A A 1
produced
aq: Waste energy | C A C VI
emission
as: Harmful | A C A 111
gasses emission
aio: Material | A A I
saved
ail: Electric | A A A I
power
bs: Material cost A A A 1
be: Energy cost A A A I
b7: Labor cost A A A I
cg: Labor produc- | A A A I
tivity
c13: Noise level B C A \'

and five from the academia. Nine of they were mechani-
cal engineers while two, industrial engineers. Four had the
degree of Ph.D., one of M.Sc., and the other were B.Sc.
They had an average of 29.6 years of experience (in a range
from 10 to 57).

As a first action, the process inventory and proposed
KPI's were analyzed together. By consensus, indicators that
were not represented in the inventory were eliminated. For
determining the most influential of the remaining indicators,
the ABC judgment method was applied. Table 4 shows the
evaluation given by the experts to the three considered aspects
of each KPI (i.e., relevance, data availability, and strategy
alignment). From these evaluations, the order is determined
for each KPI. Finally, only KPI's belonging to order I are
considered in the optimization.

The first selected environmental KPI (greenhouse gases),
was centered on carbon dioxide emissions, &co,, correspond-
ing to the consumed electric power, because the fume amount
generated by the SAW process can be neglected [80]. There-
fore, the first environmental indicator can be formalized as:

a1 = £co,(X). (10)
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TABLE 5. Outcomes of the Saaty analytic hierarchy process.

l [ a1 [ asg [ a3 [ Qy [ as [ Weights ]
a1 | 1.0000 | 0.3333 | 3.0000 | 3.0000 | 1.0000 | 0.2308
a2 | 3.0000 | 1.0000 | 5.0000 | 5.0000 | 3.0000 | 0.3846
a3 | 0.3333 | 0.2000 | 1.0000 | 1.0000 | 0.3333 | 0.0769
ay | 03333 | 0.2000 | 1.0000 | 1.0000 | 0.3333 | 0.0769
as | 1.0000 | 0.3333 | 3.0000 | 3.0000 | 1.0000 | 0.2308

The second selected environmental KPI (solid waste) com-
prise the generated slag amount, Gg, which can be formalized
by the expression:

oy = Gs(X). (11)

The third selected environmental KPI (material saved), was
divided into two different indicators, in order to quantify the
waste of wire, Gw, and flux, Gg:

(12a)
(12b)

a3 = Gw(x);
o4 = Gp(x).

The last environmental KPI (electric power), can be cen-
tered on the electric power used in the welding process, E:

as = E(x). 13)

On the other hand, the three selected economic KPI’s
(material, labor, and energy costs) were consolidated into a
single indicator:

B1 = Zw(X) + Zi(X) + Ze(x) + Z1(x); (14)

where Zy is the wire cost, Z is the flux cost, Zg is the electric
power cost, and 7y is the labor cost.

Finally, the selected social KPI is important for employees
because, in the first place, a higher productivity allows to
obtain a better remuneration as additional payments and,
in a second place, increases the subjective satisfaction of the
workers for their labor. Labor productivity can be expressed
as units per man-hour. In this work, the selected metric was
the unit total time, t, for the considered process:

y1 = 1(X). (15)

The inverse of this metric is just the number of operations
which are carried out in a unit time, therefore, minimizing
this metric causes a maximization of the labor productivity.

After defining the indicators, the Saaty analytic hierarchy
process was used for weighing the environmental indicators
(as the economic and social pillars are described by a single
indicator, there is no need to weigh up). Table 5 shows the
judgments given, by consensus, by the experts, to the rela-
tionships between the indicators. It also show the weights
computed from these judgments, with a consistency ratio
of 0.0124, which is lower than 0.1 and, therefore, the set of
judgments is reliable.
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TABLE 6. Mean values of the measured variables in the experimental
study.

T [ U S [ Gw | Gr | Gs | B P R
A | V)| wh | (@ () | (& | (mm) | (mm) | (mm)
200 | 20 | 63 29 [ 112 ] 73 | 634 | 138 | 0.78

300 | 20 63 59 137 | 80 7.73 1.93 0.63
200 | 30 63 63 147 | 82 8.21 2.57 0.88
300 | 30 63 75 162 | 100 | 9.84 2.95 0.80
200 | 25 41 70 148 | 91 9.12 2.14 1.08
300 | 25 41 81 196 | 102 | 10.58 | 2.65 0.87
200 | 25 85 43 101 66 5.62 1.66 0.67
300 | 25 85 59 140 | 78 7.75 2.39 0.46
250 | 20 41 65 150 | 91 8.58 1.71 0.93
250 | 30 41 79 189 | 107 | 10.31 2.87 1.04
250 | 20 85 43 98 67 5.61 1.42 0.56
250 | 30 85 61 137 | 87 7.90 2.54 0.67
250 | 25 63 61 142 | 82 7.96 2.18 0.87
250 | 25 63 58 133 | 80 7.61 2.12 0.83
250 | 25 63 63 138 | 87 8.21 2.17 0.83

C. MODELING OF INDICATORS AND CONSTRAINTS
Sensoring systems and experimental procedures are still a
bottleneck for efficient modeling approaches [81]. In order to
obtain the models relating the chosen indicators and the pro-
cess parameters, an experimental study was carried out. All
the values were referred to the length of the welded joint, L,
which is computed from the vessel diameter, D = 310 mm,
through the geometric relationship:

L =naD=974mm. (16)

Experiments were designed by using a Box-Behnken
design. For each experimental point, the waste of wire, Gw,
and flux, GF, the generation of slag, Gs, and the dimensions
of the joint cross-section (i.e., the joint width, B, penetration,
P, and reinforcement height, R) were measured. Three repli-
cates were obtained for each experimental point.

For the experimental study (see Fig. 4), a KAIYUAN flux
welding machine was used (1). The welded material was
JIS 3116 sheet with 2.2 mm thickness (2). 2 mm-diameter
EMI12K (3) wire and PV60-3 flux were used in the welding
process. The distance from the wire to the sheet was fixed
at 16 mm. During the experiments the variation of current,
voltage and speed were monitored. For measuring the weld-
ing speed, a PCE-151 tachometer (7) was used. Flux and wire
waste were determined by the differential weighing method.
To determine the amount of slag generated, a collector (8) was
placed at the lower part of the machine, so that, after welding,
the slag is removed by blows and then weighed. All the
weights were carried out in a SF-400D weighing scale, with
an accuracy of 0.01 g. For obtaining the parameters of the
weld bead, a ZEISS Axio Observer Z1M optical microscope,
with a magnification of 50X, was used. Outcomes are shown
in Table 6.

By using the obtained experimental data, empirical models
were fitted by using linear regressions, giving the following

expressions:
Gw = 23.6 4+ 0.1261 + 1.54U — 0.504S; (17a)
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FIGURE 4. Welding experimental setup.

Gr = 49.6 + 03191 + 3.46U — 1.175; (17b)
Gs = 46.5 +0.120] + 1.67U — 0.527S; (17¢)
B =3.14+16.5-10731 +0.200U — 66.5 - 1073S;
(17d)
P=—149+542-10731 +0.112U — 7.771 - 10735;
(17e)
R=146—-1.66-10"1+122-1073U — 8.84-1073S.
(176)

In all these models, the determination coefficient, R2, was
higher than 0.69, meaning than the models as fitted explain
more than the 69% of the variability in the corresponding
dependent variable. In all the cases, as the probability asso-
ciated to the F-test is lower than 0.01, there is a statistically
significant relationship between dependent and independent
variables, at the 99% confidence level. Furthermore, as the
probability associated to the t-test is lower than 0.05, all the
dependent variables appearing in the models are significant
at the 95% confidence level. In all the models, no trend can
be identified in the residual-plots.

By using analytical relationships, combined with the
previously obtained models, some other expressions were
obtained. Hence, the wasted electric power, E, can be com-
puted by the expression:

_ V3LIUcos¢
~ 10008

where cos ¢ = 0.9 is the phase factor, which was calculated
using a two-channel oscilloscope to compute the apparent

(18)
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FIGURE 5. Comparison of the outcomes from the selected heuristics.

power and true power. From this value, the corresponding
generated carbon dioxide, co,, can be determined by using
the factor given by the electric utility that supplies the power
to the factory [82]:

kg
=0.8753 — E. 19
£C0, W h (19)
The total time used in the operation, 7, can be computed
by summing technological time, tT, and auxiliary time, ta:

T =17 + TaA; (20)

where technological time is defined by:

60L 21
= (2D
and the auxiliary time, for this specific welding process was
set to T4 = 3.68 min.
On the other hand, the process costs (labor cost, Z; ; wire
cost, Zw; flux cost, Zg; and energy cost, Zg) can be deter-
mined as follows:

Z;, = 4Lt (22a)
Zw = twGw; (22b)
Zp = (G, (22¢)
Zp = (gE; (22d)

where ¢ = 5.81 $/h is the unit labor cost, {w = 2.65 $/kg
is the unit wire cost, {g = 6.21 $/h is the unit flux cost, and
¢g = 0.12 $/kW.h s the unit electric power cost. All the units
costs were supplied by the accounting unit of the company
which produce the vessels.

All KPI’s (computed by equations 10... 15)) are, then,
normalized by using the values corresponding to the mean
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level of the independent variables (i.e.,/ = 250A,U =25V,
and § = 63 m/h):

Q) = «1/0.1134; (23a)
& = o /85.05; (23b)
a3 = a3/0.1506; (23¢)
QA4 = 04/61.85; (23d)
s = as5/142.14; (23e)
B = Bi/1.5118; (23f)
71 = y1/4.6175. (23g)

Finally, the sustainability indexes are computed by the
corresponding weighted sums:

Ya(x) = 0.2308&; + 0.3846&> + 0.076943

+0.076944 + 0.2308045; (24a)
Y(x) = fB1; (24b)
Yr(x) = 71. (24c)

For completing the definition of the optimization problem,
the constraints, related to the welded joint dimensions are
formalized by the following relationships:

7.0mm < B <9.0mm; (25a)

P > 2.2mm; (25b)

0.5mm <R <1.5mm; (25¢)

which can be rewritten, in a normalized form, as:

gi1(x) = 7370 —-1=<0; (26a)

000 = =~ 120, (26b)

9.0
g3(x) = 2’%2 -1<0; (26¢)
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0.5
g4(x) = x 1 <0; (26d)
R
g5(x) = 15~ 1<0 (26e)

D. OPTIMIZATION

The optimization process was carried out by using six dif-
ferent heuristics: nondominated sorting genetic algorithm II
(NSGA-II) [83] and III [84], Multi-Objective Evolution-
ary Algorithm based on Decomposition (MOEA/D) [85],
Multi-Objective Particle Swarm Optimization (MOPSO)
[86], Strength Pareto Evolutionary Algorithm (SPEA-II)
[87], and Pareto Archived Evolutionary Strategy (PESA-II)
[88]. All the optimizations were executed with population
sizes of 1000 solutions and stopped after 10° evaluations of
the objective function. For comparing the performance of the
six heuristics, 30 replicates were carried out and the mean
value and variation coefficient were computed for the hyper-
volume (because it can measure both the convergence and
diversity of the Pareto fronts [77]) and execution time of the
each one. Fig. 5 shows the results. As can be seen, MOPSO
returned the higher convergence in the obtained Pareto fronts
(the lower variation in the corresponding hypervolume) with
a low execution time. Consequently, MOPSO outcomes were
selected for the considered problem.

E. DECISION-MAKING

After an overview of the graphical representation of the
Pareto set (Fig. 6) it stands out the fact that all the values
correspond to voltages, U = 30V, while the current and
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TABLE 7. Optimal solutions.

[ Parameter | Point A | Point B | Industry |

T(A) 213 200 300
T (V) 30 30 30
S (m/h) 85 818 85
B (mm) 7.00 7.00 344
P (mm) 237 732 284
R (mm) 0.72 0.77 058
Gw (8) 538 538 64.8
Gr (g) 219 | 1215 149.6
Gs (g) T4 775 878
E(kW.h) | 0.1141 | 0.1114 | 0.1607
cco, (8) | 999 975 140.7
7 (min) 738 740 738
Z (%) 134 134 154
o 0.8899 | 0.8595 | 1.2407
oz 0.9096 | 09111 | 1.0324
s 07578 | 0.7394 | 1.0674
o 0.8698 | 0.8694 | 1.0470
s 08576 | 0.8547 | 1.0528
B 0.8845 | 0.8843 | 1.0214
1 0.9430 | 0.9534 | 0.9480
Ya 0.8763 | 0.8608 | 1.0890
s 0.8845 | 0.8843 | 1.0214
Yr 0.9430 | 0.9534 | 0.9480

LEGEND

O Solution A
& Solution B
O Industry parameters

FIGURE 8. Comparison between optimized and currently used welding
parameters.

speed move into the intervals / = (200 to 215) A and S =
(81 to 85) m/h.

In the Pareto front (see Fig. 7), two remarkable points can
be identified (denotes as A, and B). The corresponding values
of the decision variables are listed in Table 7. As can be
seen, differences on impact indexes between points A and B
are negligible (less than 1%). By considering the social sus-
tainability (based on productivity), which represents a key
aspect in employees salary (with the consequent satisfaction),
point A is preferred for the analyzed specific conditions.
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In order to evaluate the outcomes of the optimization,
they were compared with the welding parameters currently
used by the industry (/ = 300 A, U = 30 V,and § =
85 m/h). Fig. 8 shows the comparison. As can be seen,
the optimized solutions improves all the environmental and
economic indicators in a range between 10% and 30%, with-
out worsening the social sustainability.

V. CONCLUDING REMARKS

The main conclusion from this work points to the suitability
of the proposed approach for improving the sustainability
of manufacturing processes. The formalized optimization
methodology targets to the three pillars of sustainability,
as considered in the Triple Bottom Line: i.e., environment,
economy and society. The methodology includes not only
a proposed set of sustainability indicators, but also the tool
for selecting and weighting them. The optimization is car-
ried out by using an a posteriori approach, which allows,
firstly, obtaining a set of non-dominated solutions (also
known as Pareto front) and, then, selecting from them the
most convenient choice, depending on the specific indus-
trial conditions. These features allow to apply this technique
under practical industrial conditions and, on the other hand,
increase the accuracy in the results and the flexibility in the
decision-making processes.

The executed case study showed the application of the
proposed methodology to a submerged arc welding pro-
cess. The outcomes highlighted the novelty of the proposed
approach and its advantages over other previous studies.
In the first place, this method allowed to perform the opti-
mization by taking into account the main sustainability issues,
but also considering the main technical aspects of the process.
Moreover, on the contrary with regard to other approaches,
it includes a set of steps that can be applied, from scratch
to any manufacturing process, given the proper data is avail-
able for fitting the corresponding model. Finally, the Pareto-
based optimization gives a set of optimal solutions, which
represents different combinations of the goals. This approach
allows a better informed decision-making, because the other
way (i.e., the a priori approach) requires the ranking of the
objectives without knowing the actual relationships between
them. It can be also remarked that the optimized solution
significantly overcomes the parameters currently used by the
industry.

Two main shortcomings can be noted in the proposed
methodology. The first one is the need of choosing the param-
eters in the used optimization approach. These parameters
may heavily affect the optimization outcomes. Although this
is a common drawback of all the heuristics, more effort
should be done for obtaining practical guidance on how to
select these values, at least, for the most typical manufac-
turing processes optimization. The second shortcoming is
related with the decision making process which now relies
completely on the human decision-maker skills and experi-
ence. One way to address this challenge is by expert-based
systems and deep learning.

212914

Furthermore, future works will be directed to apply the pro-
posed methodology to other manufacturing processes in order
to validate the used tools and techniques. The convenience of
the proposed set of indicators should be also analyzed and,
if necessary, modified and enhanced. The integration in an
Industry 4.0 environment or in a pilot line will be another
research and technical aspect to be explored in further work.
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