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ABSTRACT We propose a novel type of minor-embedding (ME) in simulated-annealing-based Ising
machines. The Ising machines can solve combinatorial optimization problems. Many combinatorial opti-
mization problems are mapped to find the ground (lowest-energy) state of the logical Ising model. When
connectivity is restricted on Ising machines, ME is required for mapping from the logical Ising model
to a physical Ising model, which corresponds to a specific Ising machine. Herein we discuss the guiding
principle of ME design to achieve a high performance in Ising machines. We derive the proposed ME
based on a theoretical argument of statistical mechanics. The performance of the proposed ME is compared
with two existing types of MEs for different benchmarking problems. Simulated annealing shows that the
proposed ME outperforms existing MEs for all benchmarking problems, especially when the distribution of
the degree in a logical Ising model has a large standard deviation. This study validates the guiding principle of
using statistical mechanics for ME to realize fast and high-precision solvers for combinatorial optimization
problems.

INDEX TERMS Annealing machine, graph minor-embedding, Ising model, optimization method, simulated

annealing, statistical mechanics.

I. INTRODUCTION

A. MOTIVATION

Combinatorial optimization problems find the optimal com-
bination of decision variables to minimize or maximize the
objective function under given constraints. Solving a combi-
natorial optimization problem with a large number of deci-
sion variables is difficult because the number of solution
candidates increases exponentially with the number of deci-
sion variables. Typical examples of combinatorial optimiza-
tion problems found in textbooks include the satisfiability
problem, the traveling salesman problem, and the knapsack
problem. In our daily life, combinatorial optimization prob-
lems are ubiquitous. Common examples include the shift-
planning optimization, the logistics optimization, and the
traffic route optimization. Consequently, the development of
efficient solvers for combinatorial optimization problems has
attracted attention both in academia and in industry.
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Ising machines have been developed as fast and high-
precision solvers for combinatorial optimization prob-
lems [1]-[12]. They employ three phases to solve problems.
In the first phase, a combinatorial optimization problem
is mapped as an Ising problem. The Ising problem finds
the ground (lowest-energy) state of the logical Ising model,
which was originally introduced in statistical mechanics to
describe the nature of phase transition materials [13], [14].
The Ising model consists of spins with values of 41 or —1. As
described in Sec. III-A, the logical Ising model is defined on
an undirected graph with unrestricted connectivity between
vertices. The objective function and the constraints in a
combinatorial optimization problem are encoded in the Ising
model [15]-[17]. Different encoding methods have been pro-
posed: machine learning [18], portfolio optimization [17],
[19], traffic optimization [20], optimization in an integrated
design circuit [21], [22], and material design [23]. In the
second phase, the logical Ising model formulated in the first
phase is mapped onto a physical Ising model. The model cor-
responds to the Ising machine considered. Here, the physical
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Ising model is defined on an undirected graph where the
connectivity between vertices may be restricted. For Ising
machines with restricted connectivity such as D-Wave [1], [2]
and CMOS annealing machines [3], [8], the mapping called
minor-embedding (ME) [24] is necessary. In ME, a single
spin in the logical Ising model is expressed by several spins
in the physical Ising model. The set of spins is called a chain
since chains are often formed in an actual ME. In the third
phase, the Ising machine searches for the lowest-energy state
according to its operation principle.

ME can be classified into two types according to the
number of spins in each chain. In the first type, each chain
has the same number of spins (i.e., a uniform chain length).
This type of ME is often called clique ME or complete-
graph ME because the logical Ising model with all-to-all
coupling can be embedded. The algorithms for this type of
ME have been developed for D-Wave [25]-[27] and CMOS
annealing machines [28]. In the second type, each chain has
a different number of spins. The total number of spins in the
physical Ising model is usually smaller in the second type
if the logical Ising model is not fully connected. Thus, the
second type can embed a larger number of logical spins.
Heuristic algorithms for finding this type of ME have been
developed [29]-[36]. In existing MEs, the spins in a chain
interact with ferromagnetic coupling. In both types of MEs,
the chains have the same coupling strength. Here, we call the
two types of MEs ‘““uniform-length and uniform-coupling ME
(ME i)’ and “‘nonuniform-length and uniform-coupling ME
(ME ii)”, respectively.

B. SUMMARY OF CONTRIBUTIONS

Herein, we discuss the guiding principle of ME design
to achieve a higher performance in simulated-annealing
(SA)-based Ising machines. The main contributions are:

« A novel type of ME is proposed where the lengths are
nonuniform and the coupling strength of each chain
depends on the chain length. The formula between
the coupling strength and the chain length is derived
from a viewpoint of statistical mechanics. The coupling
strength increases with the chain length. This type of
ME, which is herein called “nonuniform-length and
nonuniform-coupling ME (ME iii)”’, has not been dis-
cussed in previous studies.

o The performance of our proposed ME is compared
to two existing types of ME through SA. The results
demonstrate that the proposed ME has the best perfor-
mance for all the problems. In particular, it outperforms
the others when the degree of the logical Ising model
is widely distributed. The results are general and inde-
pendent of the distribution of the coupling strengths and
biases in logical Ising models.

The rest of the paper is organized as follows. Section II
briefly introduces the SA and thermal equilibrium states.
The idea of thermal equilibrium states is necessary to derive
the proposed ME (ME iii). Section III discusses ME to fix the
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Algorithm 1 Simulated Annealing Implemented by Markov
Chain Monte Carlo

1: for each run do
initialize to a random initial state
3:  for each temperature 7" do
4 for each Monte Carlo sweep at the temperature do
5: choose a candidate site
6
7

calculate the energy difference AE given by (1)
generate a random number r such that0 < r < 1

8: if r is less than the transition probability
W(AE, T), update the state
9: end for
10: lower the temperature
11:  end for
12: end for

notation. Then a physical Ising model is presented to tune the
chain lengths and intra-chain-coupling strengths in ME. With
this model, we show the new type of ME as well as the two
existing types of ME. Section IV explains the experimental
setup. Section V demonstrates the numerical results, and
Sec. VI discusses our results. Section VII concludes with a
summary of the results and future research directions. The
Appendices give supplemental information for the derivation
of the proposed ME (Appendix A) and the experimental
results (Appendix B and Appendix C).

Il. SIMULATED ANNEALING AND THE THERMAL
EQUILIBRIUM STATE

SA is a heuristic algorithm. It is useful in a wide range
of application [37]-[39]. It has been employed to find the
optimal solution of an objective function in combinatorial
optimization problems. To explain SA as an operation princi-
ple of Ising machines in the language of statistical mechanics,
we consider the objective function as an energy function,
which is referred to as the Hamiltonian of the Ising model.
As explained in Sec. I, the Ising model consists of spins with
values of +1 and —1. Let H({o;}) be the Hamiltonian of the
Ising model, where {o;} is a combination of decision variables
called spins. In this case, the ground (lowest-energy) state
corresponds to the spin combination (spin configuration) {o;}
that minimizes the value of H ({o;}).

Algorithm 1 shows the SA algorithm implemented by
Markov Chain Monte Carlo (MCMC). The algorithm starts
from a completely random initial state. That is, the spin
configuration {o;} is arbitrarily selected. Then the spin con-
figuration is repeatedly updated. Let us consider a transition
from the current state {ai’ } to a candidate state {o;}. The prob-
ability of making the transition is specified by a transition
probability W(AE, T), which depends on temperature 7 and
the energy difference between the two states defined by

AE = H({oi}) — H({o}). ey
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According to the principle of MCMC, the transition proba-
bility W(AE, T) must satisfy the balance condition, which is
given as

Y W(AE, T)PF({o])) = Y W(=AE, T)PF({oi}), (2)

{oi} {oi}
where the summation means the summation of all the spin
configurations. Two well-known choices of the transition
probability satisfying the above equation are the heat-bath
method and the Metropolis method. Here, PeTq({al-}) is the
probability distribution of the thermal equilibrium state at
temperature 7' and is given by

exp [_ (;a,-})]
H(lo/D ]’
Loy exe [ =57

Here, we set the Boltzmann constant, which is a physical con-
stant, to unity. When the temperature 7 is fixed, Algorithm 1
is used to sample spin configurations in a thermal equilib-
rium state [16], [40]. The thermal equilibrium state at high
temperature is a random state where the population is almost
the same for all spin configurations. By contrast, the thermal
equilibrium state at low temperature has a large population
in the lower-energy states. In SA, by gradually lowering the
temperature, the state should make transitions from a high-
temperature state to a low-temperature state while annealing.
After performing SA, a lower-energy state, ideally the ground
state of H({o;}), is identified.

Herein the expectation value of a physical quantity in the
thermal equilibrium state at temperature T is referred to as
the thermal average and is denoted as

(fr =Y f{oihPFoi): T). )
{oi}

where f({o7}) is an arbitrary function of the spin configura-
tion.

P (o) = 3

lll. MINOR-EMBEDDING

In this section, we describe our proposed ME. First, we intro-
duce the concept of ME and a physical Ising model to sys-
tematically tune the chain length and the intra-chain-coupling
strength.

A. BRIEF INTRODUCTION OF MINOR-EMBEDDING

ME is the mapping from a logical Ising model to a physical
Ising model. The symbols L and P denote a logical Ising
model and a physical Ising model, respectively. The logical
Ising model is defined on an undirected graph Gy, = (Vi, EL),
where Vi, and Ep, are sets of vertices and edges, respectively.
Herein we refer to Gr, as a logical graph. The number of
vertices is denoted by Np. As mentioned in Sec. II, the
Hamiltonian of the Ising model is an objective function and
is given by

Hi(fo) =— Y Jyoio;— Y hio, 5)

(i,)eEL ieVy
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where o; € {—1, 1} is the logical spin, J;; is the interaction
between spins o; and o;, and ; is the bias on the spin o;. Both
Jij and h; are real values. J;; > 0 indicates ferromagnetic cou-
pling, whereas J;; < 0 denotes antiferromagnetic coupling.
Many combinatorial optimization problems can be mapped as
problems to find the ground state of Hy ({o;}). The interaction
strengths J;; and the biases h; are specified by the objective
function and constraints of the combinatorial optimization
problem.

In a similar manner, the physical Ising model is defined on
an undirected graph Gp = (Vp, Ep), where a physical spin
with a binary variable is put on each vertex. [For the specific
form of the Hamiltonian in this study, see eq. (6).] Hereafter,
Gp is referred to as the physical graph and it corresponds to
the graph determined by the Ising machine architecture. In
general, the physical graph Gp has a degree constraint where
each vertex can have at most a constant degree. For example,
the degree is 6 for the Chimera graph [2], 15 for the Pegasus
graph in the D-Wave machines [41], and 5 (Ist generation
prototype [3]) and 8 (2nd generation prototype [8]) in the
CMOS annealing machines. Due to the connectivity restric-
tion among vertices, the logical graph G, is not typically a
subgraph of Gp.

ME enables G, to be expressed in Gp even when G, is not
a subgraph of Gp. Each vertex in the logical graph, i € Vi,
is mapped to a set of several vertices in the physical graph,
¢(i) C Vp. ME is defined by mapping ¢ : VL, — Vp, which
satisfies the following conditions [29]:

1) For each vertex i € VL, the vertices in ¢(i) C Vp are
connected and the connection is called chain;

2) For all i # jin Vi, ¢(i) and ¢(j) are disjointed;

3) For each pair (i, j) € EL, the corresponding pair exists
in the physical graph (i.e., a pair of vertices, k € ¢(i)
and £ € ¢()), satisfying (k, £) € Ep).

The physical spins in a chain interact with a ferromagnetic
coupling. When the ferromagnetic coupling is sufficiently
large, the ground state of the logical Ising model and that
of the physical Ising model have a one-to-one correspon-
dence [24]. This implies that the ground state of Hy({o;})
is obtained by searching the ground state of the embedded
physical Ising model.

B. PHYSICAL ISING MODEL TO TUNE CHAIN LENGTHS
AND INTRA-CHAIN-COUPLING STRENGTHS IN
MINOR-EMBEDDING

This subsection describes a physical Ising model to system-
atically tune the chain lengths and the intra-chain-coupling
strengths. The upper panel of Fig. 1 represents the logical
Ising model with N = 5. The logical spins o; and o; are
connected with coupling strength J; when there is an edge
between the corresponding vertices, and the bias with the
strength &; is applied on each spin i. The lower panel shows
the physical Ising model in which the logical Ising model is
embedded. For simplicity, we assume that each chain is a ring
of vertices in Gp. Each vertex in the logical graph, i € Vi,

VOLUME 8, 2020



T. Shirai et al.: Guiding Principle for ME in Simulated-Annealing-Based Ising Machines

IEEE Access

Logical Ising model

h, h,
’ Minor-Embedding

Physical Ising model
L(1)=4

J (1
) ’\J hys

h,/5 S2’1 hy/5

/5 24 2.3 hz/S

7,3)

L(3)=4

FIGURE 1. Example of mapping from a logical Ising model to a physical
Ising model. (Upper) Logical Ising model with logical spins {o; ]?=l - Ui
and {h;} denote the coupling strengths and the biases in the logical Ising
model, respectively. (Lower) Physical Ising model, which is mapped by the
ME of the logical Ising model. Each spin in the logical Ising model o; is
mapped to a ring with length L(/) and ferromagnetic coupling strength
Jg(i)- Physical spins are labeled by s; ;, where i is the ring label and k
runs from 1 to L(i). This model can tune the length of the ring L(i) and the
intra-ring-coupling strength Jg(i).

is mapped to the ring with the length L(i), and the physical
spins in the ring are connected through a ferromagnetic cou-
pling with the strength Jr(i). The Hamiltonian of the physical
Ising model is explicitly given by
hi L(i)
Hp({s;j}) = — Z JijSivi()Sj.viti) — Z o Zsi,k
(i,)eEL ieVp k=1
L)
=Y e Y siksiks1,  (6)
ieVy, k=1
where s;; € {—1, 1} is the j-th physical spin in the ring
¢(i) and the periodic boundary condition is imposed (i.e.,
Si,L(y+1 = si1). There is an interaction with the strength
Jij between a physical spin in a ring ¢(i) and a physical
spin in a ring ¢(j), and v;(j) denotes the physical spin in a
ring ¢(i). We assume that each physical spin interacts with
one physical spin in other rings, at most. Therefore, v;(j) #
vi(k) if j # k. The bias on each physical spin in a ring
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¢(i) is set as h;/L(7). In this way, the biases applied to the
spins in a ring become uniform. Since intra-ring-couplings
are ferromagnetic couplings, Jr(i) > O for all i. When the
strength of Jr(?) is sufficiently large, the ground states of the
logical Ising model and the physical Ising model have a one-
to-one correspondence.

C. TYPES OF MINOR-EMBEDDING

We consider three types of ME: ME i, ME ii, and ME iii.
These depend on the choice of the ring length L(i) and the
intra-ring-coupling strength Jr(i). ME i and ME ii have been
studied previously [25]-[29], [31]-[36]. ME iii is a new
type proposed in this study. Equation (6) can systematically
express the three types of ME.

o ME i: uniform-length and uniform-coupling ME
In the first type of ME, all rings have the same length
and coupling strength. We set the number of spins in a
ring as N, — 1, which is the maximum degree for each
vertex. That is

L(i)= N, — 1. @)
We set v;(j) as

) J ifi > j,
vi(h) = 7. e ®)
j—1 ifi<j.
In ME i, the logical Ising model with all-to-all coupling
can be embedded. We introduce a hyperparameter J. for
the intra-ring-coupling, which is expressed as

Je(i) = Je.. ©)

The number of vertices in the physical graph (i.e., the
number of spins in the physical Ising model) is provided
as

|Vp| = NL(NL — D). (10)

o ME ii: nonuniform-length and uniform-coupling ME
In the second type of ME, the total number of physical
spins is set as small as possible. For a given logical Ising
model, it is sufficient to take the number of spins in a
ring ¢ (i) as the degree of vertex denoted by k;. Namely,

L(i) = k;. (1
We set v;(j) as
vi(j) = n;(j) for (i, j) € EL, (12)

where 7n;(j) € N is an integer given for vertex i € VL.
The integer is incremented by one when there is an edge
between the logical spins i and j. That is, (i,j) € EL.
For example, if a logical spin labeled by 2 interacts with
spins labeled by 1, 5, and 6, then ny(1) = 1, n2(5) = 2,
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and n(6) = 3. Similar to ME i, a uniform ferromagnetic
coupling strength is assumed inside the ring and

Je(i) = Je. (13)

In this ME, every physical spin is connected to a spin
in another ring. Hence, the number of vertices in the
physical Ising model is given by

ki
Vel =) 5 (14)

eV

e ME iii:
coupling ME
We propose a new type of ME where the intra-ring-
coupling strength depends on the ring length. Similar
to ME ii, the length of ring L(i) is equal to the degree of
the vertices i € V1,

nonuniform-length  and  nonuniform-

L) = ki, (15)

and v;(j) is set by eq. (12). The intra-ring-coupling
strength Jg(i) is given by

Lk 1
Jr(i) = -5 log |:tanh <T(l)>i| . (16)

Here, Jr(i) is a monotonically increasing function of
L(i), and it asymptotically behaves as

Jr(i) ~ log L(i) for L(i) > 1. a7

Below, we derive the formula in eq. (16). First, consider
the local Hamiltonian of the i-th ring,
' L()
H (i} = —Je() Y ijsiji1. (18)
j=1
Here, the effect due to inter-ring couplings between rings
{Jij} and the biases on spins {#;/L(i)} is neglected. The
correlation length &;(T') of this model at temperature T is
given by [13] (see Appendix A for a detailed derivation)

£(T)"! = —log |:tanh <JFT(’)>} , (19)

where &;(T) is defined by
Ci(j) = (i kSijrk)T = €Xp <—%) . (20)

Here, C;(j) is called the correlation function. It describes
the thermal average of the products of spins s;; and
s j+k- The correlation function is independent of k due
to the periodic boundary condition of the ring. As the
distance between the spins increases, the value of C;(j)
decays exponentially. The correlation length &;(T") deter-
mines the decay length scale. &;(T') is a monotonically
decreasing function of 7. At sufficiently low temper-
atures, the correlation length is much larger than the
ring length &;(T) > L(i). Hence, all the spins in the
ring tend to have the same values. On the other hand,
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at sufficiently high temperatures, &;(T) < L(i). In this
case, each spin in the ring randomly has values +1 or
—1. The crossover occurs at 7.(i), where

L) = §(Tc(D)). 2

Here, we assume that 7.(i) of all the rings have the same
value. That is,

T.() = Je. (22)

Substituting egs. (19) and (22) into (21) gives (16).

The guiding principle of ME design to achieve a high
performance in Ising machines is that the intra-ring-coupling
strength must be tuned according to eq. (16). In SA, the
temperature 7 decreases from a high temperature to a low
temperature. The physical spins in each ring randomly take
values of +1 or —1 when T > J.. By contrast, they are
aligned in the same direction when T < J.. The physical
spins in each ring are aligned along the same direction simul-
taneously at T = J..

When the lengths of rings are uniform and L(i) = Ny, — 1,
ME iii is reduced to ME i. As such, the case with uniform-
length and nonuniform-coupling ME is not considered in this
study. Next, we compared the performance of the three MEs.

IV. EXPERIMENTAL SETUP
A. BENCHMARKING PROBLEMS
We considered four types of benchmarking problems (i.e.,
logical Ising models). Each benchmarking problem has its
own distribution of the degree in G, or of {J;;} and {h;}.
e Binomial-Bimodal problem
The logical graph Gy is created by connecting the ver-
tices i and j by an edge with half probability. The degree
distribution is given by the binomial distribution. The
coupling strengths and the biases are chosen according
to a bimodal distribution. That is, J;; and h; take values
from {—1, +1} with equal probability.
o Binomial-Gaussian problem
The logical graph Gy is created by connecting the ver-
tices i and j by an edge with half probability. The cou-
pling strengths and the biases are chosen according to a
Gaussian distribution with a mean of zero and a standard
deviation of unity.
o Power-Bimodal problem
The logical graph Gp with a scale-free network is
created by the algorithm of the Barabasi-Albert (BA)
model [42]. The degree distribution is given by a power-
law distribution. The coupling strengths and the biases
are chosen according to a bimodal distribution. That
is, J;j and h; take values from {—1, +1} with an equal
probability.
o Power-Gaussian problem
The logical graph Gy, with a scale-free network is cre-
ated by the algorithm of the BA model. The coupling
strengths and the biases are chosen according to a Gaus-
sian distribution with a mean of zero and a standard
deviation of unity.
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For each benchmarking problem, we prepared a hundred
scenarios by creating ten connected logical graphs. For each
connected graph, we generated ten sets of different coupling
strengths {J;;} and biases {;}.

The BA model was originally introduced to explain the
mechanism responsible for the emergence of power-law
degree distributions of networks in various fields. In the
algorithm of the BA model, the graph begins from a fully
connected graph with my vertices. At every step, a new vertex
with m edges is added to m different vertices already present
in the graph with a certain probability. The probability of
connecting a new vertex and vertex i depends on the degree
ki, and is given as

Pli) = =
2k
The algorithm ends when the number of vertices is N. Since
the number of edges increases by m in every step, the number
of edges in a graph with N, vertices is approximately

(23)

>k~ i @4

ieVy,

Numerical simulations and analytic results [42] have demon-
strated that the graph evolves into a scale-free network.
Namely, the histogram of the degree k denoted by n(k) fol-
lows a power-law scaling. In the BA model, the exponent is
3 and is independent of my and m.

Figure 2 shows histograms of the degree k in the Binomial-
Bimodal problem and the Binomial-Gaussian problem [Fig. 2
(a)] and in the Power-Bimodal problem and the Power-
Gaussian problem [Fig. 2 (b)] for the model with N, = 1000.
The error bars denote the standard deviation of the 10 realiza-
tions of the logical graphs in each benchmarking problem. In
the Binomial-Bimodal problem and the Binomial-Gaussian
problem, there is a peak around k = N, /2 because the ver-
tices are connected by an edge with half probability. The peak
width is the order of NLl/ %, The histogram is well described
by a scaled Gaussian distribution with a mean of Ny /2 and
a standard deviation of /Ni /2. On the other hand, in the
Power-Bimodal problem and the Power-Gaussian problem,
the degree is more widely distributed, and the histogram
follows a power law. The power-law scaling of n(k) o< k=3 is
consistent with our data. Here, we set mg = 3 and m = 3.

B. SIMULATION DETAILS

We applied SA to the physical Ising models by adopting
the single-spin flip Monte Carlo method. In each update of
the spin configuration, the spin is randomly selected and the
energy difference AE is calculated between the current state
and the candidate state in which the chosen spin is flipped
[see eq. (1)]. Here, the heat-bath transition probability at
temperature 7 is used and is given as

AENT!
W(AE,T) = |:1 + exp (T)] . (25)
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FIGURE 2. Histograms of the degree for the logical Ising model with 1000
spins in (a) the Binomial-Bimodal problem and the Binomial-Gaussian
problem and (b) the Power-Bimodal problem and the Power-Gaussian
problem. In Fig. (a), the line is drawn using a Gaussian distribution. In
Fig. (b), the line is a guide to show the power-law scaling of n(k) « k3.
Error bars are the standard deviation of 10 realizations of the logical
graphs for each benchmarking problem.

Equation (25) satisfies the balance condition [see eq. (2)],
and each Monte Carlo step (MCS) repeats the updates |Vp|
times. The temperature is initially set to Ti,; = 10, which is
larger than the typical energy scale, and decreases by 10~*
in every MCS. The temperature at the end of the annealing
is zero. Appendix B shows the result using a different type
of annealing schedule. Regardless of the annealing schedule,
the same results are qualitatively produced.

After performing SA, the values of the logical spins {o;}
are determined from the spin configuration of the physical
Ising model. If all the physical spins in the ring have the same
value, the value is the same as that for the logical spin. If not,
the value of the logical spin +1 or —1 is determined by the
majority vote. Namely, when five physical spins take +1 and
three physical spins take —1 in a ring ¢(i), o; is determined
as +1. If (+1)-spins and (—1)-spins are the same, the value
of the corresponding logical spin is set to +1.

For each physical Ising model (i.e., the model mapped
by an embedding), we performed SA one hundred times to
estimate the average and standard deviation of the quantities
described in Sec. V.
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V. NUMERICAL RESULTS

We compared the performances of ME i, ME ii, and ME iii
for each benchmarking problem. We measured two quanti-
ties. The first one is the step to solution (STS). The STS is
the number of steps required for the algorithm to obtain the
ground state at least once with a probability of 0.99, and it is
defined by [9], [43]

o _ log(1 = 0.99)

* " log(1 —PY)’ 29
where ng) is the success probability and & is a label of the
logical Ising models. Herein & is the run, which ranges from
1 to 100. A small R(glz,) value indicates a good performance.
Here, the success probability is estimated as ng) = Ns(k) /100,
where Ns(k) is the number of obtained ground states in one
hundred simulations of SA. We measured STS for relatively
small-size systems up to N, = 28 because it is difficult
to obtain the ground state of Hy ({o;}) for a larger system
size.

For the N -dependence of the performance in a larger-sized
system, we calculated the energy density (i.e., the value of
Hy ({oi})/NL), where o; is determined by the majority vote
after SA (see subsection IV-B). ¢ ®) denotes the average of the
energy density for 100 simulations of SA, where £ is the label
of the logical Ising model. A smaller ¢ indicates a better
performance. Note that the energy density can be evaluated
on the order of NI% steps. Thus, this quantity is useful to study
larger-sized systems.

To investigate the performance of ME in the benchmarking
problems, we used the median of the STSs and the median of
energy densities. These are denoted as Rgg and €, respectively.

Figure 3 plots the J.-dependences of Rgg (a) and € (b)
in ME i for each benchmarking problem. Here, the optimal
values of J. that minimizes Rgg or € are found. We estimated
the optimal values of J. in each ME for different sized
systems, where 0.1 is used as the precision threshold of J.
(see Appendix C for the Np -dependences). In the following,
we show the data of Ryg, €, and €¢® at the optimal value of
Je.

A. STEP TO SOLUTION (STS)

First, we used STS to compare the performance among ME i,
ME ii, and ME iii. Figure 4 shows the Np -dependences of STS
for each benchmarking problem. In all cases, STS increases
exponentially with Np. For small system sizes, N, = 8 or
12, there is not a clear difference in performance. However,
a clear difference appears as the number of logical spins
increases. For all benchmarking problems, ME i shows the
poorest performance. For the Binomial-Bimodal problem
[Fig. 4 (a)] and the Binomial-Gaussian problem [Fig. 4 (b)],
the performances of ME ii and ME iii are the same within the
margin of error. On the other hand, for the Power-Bimodal
problem [Fig. 4 (c)] and the Power-Gaussian problem [Fig. 4
(d)], ME iii outperforms ME ii.
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FIGURE 3. (a) Jc-dependences of the STS Rgg and (b) the energy density ¢
in ME i. Squares (red), circles (orange), up-triangles (green), and
down-triangles (blue) denote the Binomial-Bimodal problem, the
Binomial-Gaussian problem, the Power-Bimodal problem, and the
Power-Gaussian problem, respectively. Number of logical spins used is
(a) Np =8 and (b) N, = 10.

We also considered the time to  solution
(TTS) [9], [43]-[45]. TTS is the total time required for the
algorithm to obtain the ground state at least once with a
probability of 0.99. TTS is estimated as

TTS >~ nmcs X tcs X Roo, 27

where nppcs is the number of the MCSs in the SA and mycs
is the time required to calculate one MCS. For all three MEs,
nmMcs is the same as STS and is given as

nvcs = 10°. (28)

In each MCS, we calculated the energy difference of a single-
spin flip |Vp| times. The time required for the calculation of
the energy difference is O(| Vp |0) since the connectivity of the
physical Ising model is sparse. Thus

™cs ~ |Vpl. (29)

In the Binomial-Bimodal problem and the Binomial-
Gaussian problem, the number of physical spins is on the
order of Nf for all three MEs. Thus, TTS qualitatively shows
the same result as STS. In the Power-Bimodal problem and
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Figs. (a) and (b), the data of ME ii and ME iii overlap with each other.

the Power-Gaussian problem, the number of physical spins
is on the order of Nf in ME i, while it is on the order of N
in ME ii and ME iii. The scaling of O(NL) is obtained from
eqs. (14) and (24). TTS shows larger performance differences
between ME i and the other two compared to the STS.

B. ENERGY DENSITY
Next, we compared the performance among ME i, ME ii,
and ME iii in terms of the energy density. The results are
qualitatively the same as those of STS. Figure 5 shows the
Np-dependence of € for each benchmarking problem. As
Np, increases, the difference in performance among the MEs
becomes clear. ME i has the poorest performance. ME ii and
ME iii have the same performance for the Binomial-Bimodal
problem [Fig. 5 (a)] and the Binomial-Gaussian problem
[Fig. 5 (b)]. On the other hand, ME iii outperforms ME ii
for the Power-Bimodal problem [Fig. 5 (c)] and the Power-
Gaussian problem [Fig. 5 (d)]. Figures 5 (c) and (d) show
that the differences in energy densities are almost the same
for N > 102. This implies that ME iii will provide the best
performance, even for larger-sized systems.

Figure 6 shows the scatterplot to compare the energy den-

sities for each benchmarking problem (i.e., {ek}}{g)l, among

VOLUME 8, 2020

the three MEs) using the data at Nt = 100. The upper
panel compares the energy densities between ME i and ME ii.
All the points are plotted below the diagonal, indicating that
ME ii outperforms ME i for all the logical Ising models in
each benchmarking problem. The lower panel compares the
energy densities between ME ii and ME iii. For the Binomial-
Bimodal problem [Fig. 6 (a2)] and the Binomial-Gaussian
problem [Fig. 6 (b2)], the points are plotted around the diago-
nal, implying that ME ii and ME iii have similar performance.
On the other hand, for the Power-Bimodal problem [Fig. 6
(c2)] and the Power-Gaussian problem [Fig. 6 (d2)], all the
points are plotted below the diagonal, indicating that ME iii
is better suited for these benchmarking problems.

VI. DISCUSSION

The numerical studies demonstrate that ME i has the poorest
performance. The poor performance of ME i is attributed to
the large dimension of the solution space. In ME i, the logical
Ising model with Ny -spins is mapped to the physical Ising
model with N (N, — 1)-spins. On the other hand, in ME ii, the
number of the physical spins is about Nf /2 for the Binomial-
Bimodal problem and the Binomial-Gaussian problem, but
is on the order of N, for the Power-Bimodal problem and
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the Power-Gaussian problem. The dimension of the solution
space increases exponentially with respect to the number of
physical spins. Thus, the dimension of the solution space in
ME i rapidly increases with Ni, compared to those in ME ii
and ME ii.

ME ii and ME iii have the same performance for
the Binomial-Bimodal problem and the Binomial-Gaussian
problem. This can be understood as follows for large L(i).
For the Binomial problem, the degree distribution shows a
peak around k = Ni /2 with the width on the order of NLI/ 2
[see Fig. 2(a)]. In ME iii, the length of the ring is equal to the
degree. Thus, L(i) is distributed with a mean of Lyean = N /2
and a standard deviation AL on the order of Nﬂ/ ?. For large
L(i), the intra-ring-coupling strength Jr(i) behaves as the
log L(i) [see eq. (17)]. Then, the standard deviation of Jr(i)

scales as

_1
2
L

~

AJg ~ A(logL) ~ (30)

can
The standard deviation AJg decays with Np, implying that
ME iii approaches ME ii as the system size increases.

On the other hand, ME iii outperforms ME ii for the Power-
Bimodal problem and the Power-Gaussian problem for large
Ny. In these problems, the degree of the logical Ising model
is widely distributed, reflecting the distribution of L(i) in the
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physical Ising model. Namely, the lengths of some rings are
on the order of 1, while others are on the order of N.. In
these problems, it is necessary to set the intra-ring-coupling
strength according to eq. (16) to achieve a high performance
in SA-based Ising machines.

VII. CONCLUSION AND OUTLOOK
Here, we discussed the guiding principle of ME design to
achieve a high performance in SA-based Ising machines from
a viewpoint of statistical mechanics. We proposed a new type
of ME shown in eq. (16). In the proposed ME, the coupling
strength inside a chain depends on the chain length. This is
a unique approach that has not been discussed previously.
We compared the performance of our proposed ME with the
two existing MEs using four benchmarking problems. SA
showed that the proposed ME has the best performance for
all the benchmarking problems. In particular, it outperformed
the others when the logical Ising model has a wide degree
distribution. The results are independent of the distribution
of coupling strengths and biases in the logical Ising model.
We demonstrated the importance of tuning the intra-chain
coupling strengths in SA, which is regarded as an ideal Ising
machine. In the future, we plan to apply eq. (16) to real Ising
machines such as a CMOS annealing machine.
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It is also important to compare our results with the case
of quantum annealing (QA) [46], where the transverse-field
strength I plays the role of the temperature 7 in SA. A recent
paper [47] shows that ME ii outperforms ME i. This is con-
sistent with the results in this study. Furthermore, our results
imply that the performance of QA could be enhanced for
some problems if the intra-chain coupling strength Jg is tuned
according to the chain length. The D-Wave’s report [48] eval-
uated the chain-length dependence of the tunneling energy
between the all-up-spin state and the all-down-spin state of
chains, and showed that I"/Jr should be larger for a longer
chain to achieve a high performance of QA. In this study, I
was tuned instead of Jg. Interestingly, their result implied the
opposite as ours using SA. This is a future problem to uncover
the origin of the difference between QA and SA.

APPENDIX A

CORRELATION LENGTH IN A ONE-DIMENSIONAL ISING
MODEL

The appendix provides a detailed derivation of the correlation
length in a one-dimensional Ising model [see eq. (19) in
the main text]. The correlation length is determined by the
correlation function, which is given by

Ci()) = (si,18ij+1)7>
=Y siasijr1Peq(Usis, T,
{sir}
L(i)
=Y siisijriexp [ KO Y sixsixs1 |/Z. 31)

{si.1} k=1

We use the Hamiltonian shown in eq. (18) and set K(i) =
Je(i)/T. Here, Z is called the partition function in statistical
mechanics, which is given by

L(i)
Z=7 exp | KDY siksiks1 |- (32)
{si.r} k=1

The transfer matrix method is a powerful tool in statistical
mechanics. We applied it to calculate the partition function
Z and the numerator on the right-hand side of eq. (31). First,
we introduce

T (sij, sijr1) = exp (K()sijsijv1)- (33)
Then the partition function is given by

L)

2=y ¥

=1 s;€{+1,-1}
< T(SiLi—15 8i, L) T (i Lays i) (34)

T(si1,5i2)T(si2,8i3) -

Here, it is convenient to regard 7'(s;;, s;j+1) as a matrix

element of T such as
{1 T(1,-1) KD oK)
T= (T(—l, 1 T(-1, _1)> = <6K(i) oK) |- (35)
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The matrix T is called the transfer matrix. Then the partition
function is written as

Z="Tr (THO) =3[0 4210, (36)

where A are the two eigenvalues of T [i.e., A, = 2 cosh K (7)
and A_ = 2sinh K (i)]. Similarly, the numerator on the right-
hand side of eq. (31) is evaluated as

L(i)

Y siasijriexp | K@) D siksikr1
{si,i} k=1
L)

=2 >

=1 s;1e{+1,-1}
x T(si1, 82T (82, 8i3) - T(Si,LG)» Si, 1),
=Tr (aTjUTL(i)fj) R

i1 j+1

_ )»j_','_)uf(i)_j +)\[_;_(i)_j)»j_, (37)

o— ((1) _01) | (38)

The correlation function is then given by

where

IO

P

() = T
P

1 + tanhl®=% K(i))

(39)

= tanl K (i :
an (l)< 1 + tanh®®D K (i)

For large L(i), the parenthesis in eq. (39) can be approximated
by one. Then

Ci(j) = tanl¥ K (i). (40)

By combining this expression with

Ci(j) = exp (—ﬁ) 1)

we obtain eq. (19) in the main text.

APPENDIX B
PERFORMANCE COMPARISON OF MINOR-EMBEDDING
FOR A DIFFERENT ANNEALING SCHEDULE

This appendix validates the proposed ME (ME iii) when a
different annealing schedule in SA is used. Here, the temper-
ature in the SA algorithm [see Algorithm 1] is taken as

Tipr = (1 =Tk, (42)

where T} is the temperature at the k-th MCS. We set the total
number of the MCSs as nycs = 10%, the initial temperature
Tini = 10, and the final temperature Tg, = 0.01. The
initial temperature and the final temperature are the default
values in the CMOS annealing machine. The decay rate of the
temperature is determined by 7 = Tini and Ty,.s = Tfin as
r 2 6.9x 107*. In this annealing schedule, the temperature is

210499



IEEE Access

T. Shirai et al.: Guiding Principle for ME in Simulated-Annealing-Based Ising Machines

Power-Bimodal

Power-Gaussian

a) b)
5 Binomial-Bimodal 5 Binomial-Gaussian
0% F T T — 10° T T 3
{102 ¢ .
r_§101 e E

] 10" E

100 100 | | |
5 20 5 10 15 20

N

10° ¢ T T 3 103 ¢ T T T
102 | 4 102 ¢ 5
| mw 10" ¢ E
100 I | | L 100 I | | |
5 10 15 20 5 10 15 20
N N

FIGURE 7. N\ -dependences of the STS for (a) the Binomial-Bimodal problem, (b) the Binomial-Gaussian problem, (c) the Power-Bimodal problem,
and (d) the Power-Gaussian problem. ME i, ME ii, and ME jii are denoted by red circles, green squares, and blue triangles, respectively.

Binomial-Bimodal

Binomial-Gaussian

7\ \7 10 7\

(opt)
o

0\ . \\\\\\7 0\

10" 102 10'

Ny Ny

10°

Power-Bimodal 3 Power-Gaussian
T AR T T T T T AR

0 | Lol
10’ 102
NL

il | | Lo
102 10’ 102
NL

10°

FIGURE 8. N, -dependences of the optimal values of J¢ for (a) the Binomial-Bimodal problem, (b) the Binomial-Gaussian problem, (c) the
Power-Bimodal problem, and (d) the Power-Gaussian problem. ME i, ME ii and ME iii are denoted by red circles, green squares, and blue triangles,

respectively.

lowered as an exponential function of MCSs. This is different
from the annealing schedule in the main text, where the
temperature linearly decays to zero.

We use the STS given by eq. (26) to compare the perfor-
mances among ME i, ME ii, and ME iii. Figure 7 shows the
Ny -dependences of the STS for each benchmarking problem.
Similar to the main text, ME iii outperforms ME i and ME ii
for all the benchmarking problems, implying that the results
are independent of the annealing schedules.

APPENDIX C
N_-DEPENDENCES OF THE OPTIMAL VALUES OF J.

This appendix discusses the Np-dependences of the opti-
mal value J;, which minimizes the energy density of the
logical Ising model €. Here, we denote the optimal value
as Jc(om).

Figure 8 shows the Np-dependences of JC(OPt) for each
benchmarking problem. In the Binomial-Bimodal problem
and the Binomial-Gaussian problem [Figs. 8 (a) and (b)],
JC(OPO increases with Ni,. The increase of JC(OPO in ME iii is
slow compared to those in ME i and ME ii. On the other
hand, in the Power-Bimodal problem and the Power-Gaussian
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problem [Figs. 8 (c¢) and (d)], the Np-dependences of the
optimal values are small compared to the Binomial-Bimodal
problem and the Binomial-Gaussian problem. In ME i,
C(Op Y increases with NL. In ME ii, JC(Op Y fluctuates between
Jc(om) = 1 and Jc(om) = 2.In ME iii, Jc(om) gradually increases
with Np, but the increase is slower than that of the ME i.
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