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ABSTRACT Barnacles mating optimizer (BMO) is an evolutionary algorithm that simulates the mating
and reproductive behavior of barnacle population. In this article, an improved Barnacles mating optimizer
based on logistic model and chaotic map (LCBMO) was proposed to produce the high-quality optimal result.
Firstly, the logistic model is introduced into the native BMO to realize the automatic conversion parameters.
This strategy maintains a proper relationship between exploitation and exploration. Then, the chaotic map is
integrated to enhance the exploitation capability of the algorithm. After that, six variants based on LCBMO
are compared to find the best algorithm on benchmark functions. Moreover, to the knowledge of the authors,
there is no previous study on this algorithm for multilevel color image segmentation. LCBMO takes Masi
entropy as the objective function to find the optimal threshold. By comparing different thresholds, different
types of images, different optimization algorithms, and different objective functions, our proposed technique
is reliable and promising in solving color image multilevel thresholding segmentation. Wilcoxon rank-sum
test and Friedman test also prove that the simulation results are statistically significant.

INDEX TERMS Barnacles mating optimizer, logistic model, chaotic map, Masi entropy, multilevel thresh-

olding, color image segmentation.

I. INTRODUCTION

With the emergence of computer technology, image
processing has been widely used in many fields. Image
segmentation is one of the classical topics in image pro-
cessing [1]. It divides the original image into significative
and multiple sub-regions according to intensity, color, texture
and other attributes of the image [2]. Image segmentation
is often the pretreatment stage of higher-class processing
such as: image analysis, object recognition, and computer
vision. Consequently, the performance of higher-class pro-
cessing system depends on the accuracy of the segmen-
tation technique adopted [3]. Researchers have proposed
many kinds of segmentation, including edge detection, his-
togram based thresholding, region, feature clustering, and
neural networks [4]-[6]. Histogram based thresholding is a
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simple and the most commonly used image segmentation
approach [7], [8]. Thresholding methods can be divided
into two categories: bi-level thresholding and multi-level
thresholding. Bi-level thresholding means that the target and
background can be clearly distinguished by a single threshold
value. Multi-level thresholding denotes that the given image
can be segmented into various classes by multiple threshold
values [9]-[11].

In recent years, the methods to determine the optimal
threshold for a given image can be divided into two cate-
gories: parametric and non-parametric methods [12]. In the
parametric techniques, it is assumed that the probability den-
sity function of each class is known. The common parameter
methods generally follow a certain distribution of probability
density, such as Gauss distribution [13], Poisson distribu-
tion [14], [15], generalized Gaussian distribution [16], and
so on. This methods differs from the actual situation to some
extent. In addition, the segmentation is affected when classes
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are highly overlapped. Therefore, the parametric approaches
are not ideal choices in this case. For non-parametric meth-
ods, the probability density function is usually unknown, and
the threshold is generally searched by optimizing the objec-
tive function [17]. The classical non-parametric methods are
mainly as follows: Otsu proposed a method to maximize the
variance between classes at first [18]. Then the methods based
on information entropy theory are proposed, which are cate-
gories to measure homogeneity. Among them, the most repre-
sentative entropy approaches for image segmentation include:
Minimum Cross entropy [19], Kapur entropy [20], Renyi
entropy [21], Tsallis entropy [22], and Masi entropy [23].
They can be easily extended to multi-level thresholding.

Among them, a novel generalized entropy measurement
called Masi entropy has attracted increasing attention in the
past few years. Furthermore, Tsallis and Renyi entropies
are two different generalizations along two different paths.
Furthermore, Tsallis entropy is generalized to non-extensive
systems, while Renyi entropy is quasi-linear devices. How-
ever, Masi entropy is extended to non-extensive systems
and non-linear devices, including Tsallis entropy and Renyi
entropy [24], [25]. A publication for multilevel thresholding
segmentation of color satellite images based on Masi entropy
has been proposed by Shubham in 2019. Simulation results
show that the proposed method is effective and has better
segmentation performance than Kapur, Renyi and Tsallis
entropy [26]. Although the exhaustive search is effective in
image segmentation, it cannot find the optimal threshold, and
the complexity increases exponentially with the number of
thresholds. [27], [28]. In order to speed up this process, one
option is to replace some classical exhaustive searches based
on meta-heuristic search algorithms.

Sulaiman proposed a novel bio-inspired algorithm called
Barnacles mating optimizer (BMO) in 2020 [29]. Obvi-
ously, the BMO algorithm simulates the intelligent behav-
ior of barnacles in nature, including selection process and
reproduction. It can be seen from the lecture that the BMO
algorithm has outstanding convergence ability, fast conver-
gence speed and excellent search ability. But according to
the no free lunch theorem, it can be seen that no indepen-
dent algorithm can solve all optimization problems [30].
Therefore, the BMO algorithm need to be improved. The
logistic regression model is a common improvement strategy
and widely used in various optimization methods. In 2018,
Qasim et al. applied logistic regression model for optimiza-
tion of feature selection. The results showed that the pro-
posed method can obtain a great classification performance
with few features [31]. In 2019, by using logistic regres-
sion prediction model, Ghazvini et al. solved the problem
of the variables affecting tuberculosis [32]. Therefore, this
article chooses logistic regression model to improve BMO.
Meanwhile, chaotic map is an excellent mathematical strate-
gies, which can improve the performance of meta-heuristic
algorithm in avoiding local optimization. Chaotic map can
provide random behavior without random component [33].
Accordingly, scholars have added chaotic map to the
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FIGURE 1. Selection of mating process of ten barnacles [69].
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FIGURE 2. Visualization of six different chaotic maps.

optimization algorithm to improve the ability of algorithms.
J. Alikhani Koupaei et al. proposed a new optimization algo-
rithm based on chaotic maps. Experimental results proved
that the modified algorithm was competitive in multi/uni-
modal objective functions [34]. A. Naanaa embedded spa-
tiotemporal map into chaos optimization algorithms to
improve its convergence and efficiency [35]. Yang et al
proposed chaos optimization algorithms based on chaotic
maps to achieve the high efficiency, which improve the con-
vergence speed and accuracy [36]. Chuang et al. combined
chaotic maps with s binary particle swarm optimization,
which sped up search process the algorithm [37]. Motivated
by these successful applications of the strategies, the authors
introduce logistic model and chaotic map into BMO algo-
rithm to increase the diversity of algorithm and prevent skip-
ping over the optimal solutions. In addition, it also better
balances the exploration and exploitation trends.

Image segmentation based on histogram and global thresh-
old is most commonly used to determine threshold value.
Masi entropy is a bi-level threshold method based on the gray
level and its histogram. And Masi entropy objective functions
can be maximized by LCBMO to find the optimum threshold
value. Furthermore, the provided image is segmented into
unique classes. In this article, a series of experiments are
conducted, and the experimental results are analyzed and
discussed in details. The performance of image segmenta-
tion is measured in terms of objective function values, peak
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FIGURE 3. Flowchart of the LCBMO algorithm based multilevel thresholding method.

signal-to-noise ratio (PSNR) [38], [39], structural similarity
index (SSIM) [40]-[42], feature similarity (FSIM) [43], [44],
Wilcoxon rank-sum test [45], [46], and Friedman test [47].
In order to compare various algorithms more intuitively,
the convergence curve based on objective function values
are drawn. The experimental results confirm that the pro-
posed Barnacles mating optimizer based on logistic model
and chaotic map can be effectively used for multilevel
thresholding.

The remainder of this article is organized as follows:
Section II discusses related studies. Section III outlines some
preliminaries. Section IV gives the proposed BMO based
on logistic model and chaotic map for multilevel thresh-
olding color image segmentation. The benchmark functions
experiments are presented in Section V. Other simulation
experiments and results analysis are described in Section VI.
Finally, Section VII concludes the work and suggests some
directions for future studies.

II. LITERATURE REVIEW

In 2015, A.K. Bhandari et al. proposed satellite image seg-
mentation model based on modified artificial bee colony
algorithm, in which the Kapur, Tsallis and Otsu functions
are used to determine the threshold [48]. And in 2016,
Mozaffari et al. introduced an inclined planes system opti-
mization algorithm to solve the problems in different fields
of science and engineering [49]. The convergence heteroge-
neous particle swarm was utilized to find the best thresholds
in literature, which has the better stability and convergence
in 2017 [50]. Oliva et al. combines cross entropy with crow
search algorithm for image segmentation to reduce computa-
tional complexity in the same year [51]. H. N. Liang et al.
applied modified grasshopper algorithm in image segmen-
tation technology, which showed excellent results [52]. Fur-
thermore, cuckoo search algorithm based on minimum cross
entropy is proposed to make the method more practical
and uncomplicated [53]. In 2018, S. Kotte presented an
improved differential search algorithm for gray scale images
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to increase its computational efficiency and accuracy of seg-
mentation [54]. In 2019, H. S. Gill exploits minimize cross
entropy as the objective function, and uses teaching-learning-
based optimization algorithm to select multilevel threshold
values. The experimental outcomes indicate the proposed
method has an advantage of efficiency and robustness [55].
S. J. Mousavirad published the human mental to search the
optimal threshold to increase segmentation efficiency [56].
Bohat studied a new heuristic for multilevel thresholding of
images, and combined whale optimization algorithm. Mean-
while, the results demonstrate that the proposed algorithm
is superior to the other algorithm [57]. A novel beta differ-
ential evolution algorithm-based fast multilevel thresholding
is applied for color image segmentation in 2020. Then the
performance is proved to be superior to other methods in
image segmentation such as artificial bee colony, particle
swarm optimization and differential evolution [58]. And a
competitive swarm algorithm was applied in image segmen-
tation guided based opposite fuzzy entropy to improve the
segmentation accuracy in the same year [59]. Furthermore,
a benchmark of recent population-based metaheuristic algo-
rithms was proposed for high-dimensional multi-level max-
imum variance threshold selection, which has attract much
attention [60]. D. Oliva combined the thresholding tech-
niques and the evolutionary Bayesian network algorithm to
generate the accurate class even in complex condition [61].
E. R. Esparza represented an efficient harris hawks method
used into the image segmentation so as to produce the effi-
cient and reliable results [62].

These algorithms are successfully applied to multilevel
thresholding and reduce the computational complexity, which
inspire further research by scholars.

Ill. MATERIAL AND METHODS

A. MULTILEVEL THRESHOLDING

Threshold segmentation processes the digital image his-
togram. We use an algorithm as the segmentation

VOLUME 8, 2020



H. Li et al.: LCBMO With Masi Entropy for Color Image Multilevel Thresholding Segmentation

IEEE Access

TABLE 1. Results of benchmark functions.

Function BMO LCBMO-1 LCBMO-2 LCBMO-3 LCBMO-4 LCBMO-5 LCBMO-6
Fl Mean  2.7456E-104 8.0670E-122 2.0982E-138 4.9079E-132 3.0311E-131 3.4664E-128 2.5972E-131
Std 1.5036E-103 4.2272E-121 1.1492E-137 2.4220E-131 1.5751E-130 1.8982E-127 1.0009E-130
) Mean 1.3881E-54 2.2668E-62 5.5896E-73 1.1049E-67 1.1786E-64 7.1625E-67 2.5444E-67
F Std 6.2307E-54 6.7554E-62 1.8738E-72 4.6165E-67 6.2120E-64 3.7995E-66 9.9918E-67
F Mean 3.4180E-102 5.1183E-122 5.3994E-126 4.1877E-132 4.0884E-131 1.3896E-128 7.9177E-141
3 Std 1.3858E-101 2.7389E-121 2.9574E-125 1.9593E-131 1.6927E-130 7.6110E-128 4.2957E-140
F4 Mean  3.6797E-50 2.0731E-60 3.5046E-71 9.3413E-67 4.9115E-68 6.3592E-68 3.1208E-68
Std 2.0154E-49 1.1008E-59 1.8882E-70 4.6508E-66 2.6334E-67 2.3039E-67 1.3970E-67
Mean 2.8608E+01 2.8708E+01 2.8697E+01 2.8634E+01 2.8659E+01 2.8661E+01 2.8666E+01
ES Std 1.3377E-01 1.0713E-01 1.3578E-01 1.2642E-01 1.2173E-01 1.7660E-01 1.1627E-01
F6 Mean 3.2407E+00 3.3267E+00 2.9480E+00 3.4678E+00 3.3950E+00 3.4415E+00 3.5499E+00
Std 4.4858E-01 4.8817E-01 3.7241E-01 5.2348E-01 5.0161E-01 4.5087E-01 3.7263E-01
Mean  2.4745E-04 1.5032E-04 1.7646E-04 1.6915E-04 1.7598E-04 2.3721E-04 1.6801E-04
F7 Std 2.1311E-04 2.0998E-04 2.3254E-04 2.0896E-04 1.7959E-04 2.3736E-04 1.5103E-04
3 Mean -5.7997E+03 -4.0807E+03 -3.9814E+03 -4.1040E+03 -3.8691E+03 -3.9180E+03 -3.8819E+03
F Std 6.9936E+02 1.0228E+03 9.4000E+02 9.4871E+02 8.0760E+02 9.9503E+02 9.3137E+02
F9 Mean 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Fl10 Mean  8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16
Std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Fl1 Mean 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F12 Mean 2.7451E-01 3.2043E-01 1.8922E-01 2.8045E-01 3.4166E-01 2.9491E-01 3.4588E-01
Std 1.0270E-01 8.6751E-02 5.9385E-02 8.3200E-02 1.3080E-01 7.9854E-02 1.2573E-01
F13 Mean  2.9798E+00 2.9779E+00 2.9784E+00 2.9818E+00 2.9818E+00 2.9819E+00 2.9821E+00
Std 1.5409E-03 2.0415E-02 1.9976E-02 2.4983E-03 1.5493E-03 1.8747E-03 2.0256E-03
Fl4 Mean 9.9830E+00 1.0694E+01 9.2442E+00 1.1119E+01 8.5327E+00 9.5436E+00 1.0316E+01
Std 3.6994E+00 2.8149E+00 3.8806E+00 2.9583E+00 3.8008E+00 4.3413E+00 3.7889E+00
F15 Mean 5.9055E-04 5.3476E-04 5.4436E-04 5.1764E-04 5.1406E-04 6.6665E-04 5.7058E-04
Std 7.9877E-04 3.9538E-04 4.8363E-04 2.9702E-04 3.3917E-04 6.4106E-04 4.3494E-04
Fl6 Mean  -1.0316E+00 -1.0316E+00 -1.0312E+00 -1.0313E+00 -1.0316E+00 -1.0316E+00 -1.0316E+00
Std 1.1726E-10 3.0155E-08 2.0588E-03 8.1873E-04 2.0418E-09 2.7294E-08 1.2335E-05
F17 Mean 3.9789E-01 3.9789E-01 3.9789E-01 3.9789E-01 3.9789E-01 3.9789E-01 3.9789E-01
Std 6.8631E-06 3.8505E-07 8.2335E-08 5.0036E-09 1.8101E-07 8.1594E-08 8.0256E-08
F18 Mean 3.0001E+00 3.0000E+00 3.9946E+00 3.3127E+00 3.6133E+00 3.0483E+00 4.0239E+00
Std 3.3832E-04 8.8141E-06 4.9389E+00 1.7119E+00 3.3436E+00 2.0203E-01 4.9463E+00
F19 Mean  -3.0048E-01 -3.0048E-01 -3.0048E-01 -3.0048E-01 -3.0048E-01 -3.0048E-01 -3.0048E-01
Std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F20 Mean -3.2940E+00 -3.2846E+00 -3.2946E+00 -3.2588E+00 -3.2868E+00 -3.2598E+00 -3.2507E+00
Std 6.3265E-02 5.9113E-02 4.7664E-02 1.6016E-01 9.1560E-02 1.3013E-01 1.1327E-01
F21 Mean -5.0762E+00 -5.0550E+00 -5.0546E+00 -5.0548E+00 -5.0068E+00 -5.1213E+00 -5.0545E+00
Std 1.1538E-01 3.1608E-04 1.0224E-03 4.6342E-04 2.6253E-01 3.6470E-01 1.4294E-03
F22 Mean -5.0871E+00 -5.0872E+00 -5.0873E+00 -5.0876E+00 -5.0689E+00 -5.0873E+00 -5.0864E+00
Std 7.9617E-04 1.1689E-03 5.8886E-04 6.7546E-05 9.8831E-02 6.7017E-04 3.6973E-03
) Mean  -5.1283E+00 -5.1280E+00 -5.3087E+00 -5.1278E+00 -5.1279E+00 -5.1278E+00 -5.1373E+00
3 Std 2.3597E-04 8.3436E-04 9.8735E-01 1.2471E-03 1.3436E-03 1.4594E-03 5.0919E-02

criterion, and the threshold that satisfies the criterion function
is called the optimal segmentation threshold. By compar-
ing with the optimal threshold, the image is divided into
target region and background region. The image threshold
method can be summarized into two categories: bi-level
thresholding segmentation and multilevel thresholding
segmentation. Bi-level thresholding segmentation cannot
completely extract the target at a particular image segmen-
tation, so we need multilevel thresholding to divide the
whole image into multiple regions. Multilevel threshold-
ing segmentation can highlight the features among image
regions.

For a n-bit gray image, the gray level of the image is L = 2"
and the gray level interval is {0, 1, ..., L — 1}. n; denotes the
number of pixels whose gray level is i. N denotes the total
number of pixels. p; denotes the probability density of ith the
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gray value. They are defined as follows:

L—0
N = Zni (1)
i=0
nj
pi=5 2
L—0
dopi=1 3)
i=0
Suppose there are K thresholds of #1, s, ..., . They

divide the gray level of a given image into K 4 1 classes:

Co=1[0,1,...,1]
Ci=h+1Lu+2,...,n]
Cor=tr +1,t,+2,...,L —1]
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FIGURE 4. Original test images and histograms of color channels.

The selection of threshold is very critical, and it is related B. MASI ENTROPY
to the quality of the segmentation results. In this article, Masi According to Tsallis and Renyi entropy, Masi proposed
entropy method are adopted. a novel generalized entropic measure by introducing the
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FIGURE 5. The segmentation results based on LCBMO-2 algorithm at K = 4.

concept of conventional thermodynamic entropies in 2005 [23].
Masi entropy segment color images by utilizing thorough
probability function, and its detailed definition is as follows:

wj =Y Pi )

ieC;
Eq. (4) is proposed to express the probabilities of class
occurrence wj, 0 < j < k. Based on the non-extensivity

of Tsallis entropy the additivity of Renyi entropy, Eqgs. (5)
and (6) for calculating Masi entropy are proposed, where
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Ej stands for Masi entropy. » < 0,7 # 1, In this article,
the power parameter r is set to 1.18 through experiments [24].

1 Pi Pi
Ej= — log 1—(1—r)2<;j>log<a—)j> 5)

ieCj
k
Yt n) =y E
j=0
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TABLE 2. Parameters of the compared algorithms.

Algorithm Parameters Value
Awareness probability AP 0.1
CSA Flight length 2
Random number 7, 7, [0,1]
GOA Mini_mum c 0.00001
Maximum ¢ 1
cs Mutation probability value P, 0.25
Scale factor S 1.5
Teaching factor TF 1
TLBO Random number r [0,1]
Parameter a, 2
Parameter a» 1
EO Parameter 1 [0,1]
Generation probability GP 0.5
Parameter P 0.5
MPA Fish aggregating devices FADs 0.2
MABC Random number r [0,1]
IDSA Random number r [0,1]
Parameter a [0,2]
Constant b 1
WOA-TH Random number / [-1,1]
Constant ag 13
Initial value G, 40
Number of objectives 1
Number of constraints 0
BDE Number of decision variables 4
Scaling factor 0.5
Crossover probability 0.2
Random number p [0,1]
LCBMO Initial decay rate 4 0.05
Initial value of chaos map 0.7

Masi entropy method obtains the optimal threshold val-
ues according to maximizing the total entropy. The optimal
threshold is represented by Eq. (7).

{tr. e, i} = argmax (W@ n,- %) (T)

O<ty<ty--<ty<L—1

Compared with the histogram of grey scale image,
the RGB image is more complex. In RGB space, every
color pixel of the image is composed of red, green and
blue [63], [64]. In this article, three channel components of R,
G and B are extracted at first. Then, each channel is calculated
by Masi entropy, and the objective function is maximized to
find the optimal threshold for the corresponding channel [65].
The RGB channel components are divided by the optimal
threshold and then merged to form the ultimate segmented
image.

C. BARNACLES MATING OPTIMIZER

Barnacles mating optimizer (BMO) [29] is a novel bio-
inspired optimization algorithm inspired by the mating pro-
cess of barnacles. Barnacles live in water and are famous
for their long penises [66]. According to initialization, selec-
tion, and reproduction, simulation optimization process is
realized. The mathematical model is described in details as
follows.
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In the initialization process, the barnacle population can be
expressed in the following matrix.

1 n
)Cl )Cl
X=|: -~ ®)
1 n
XN XN

where N is the number of barnacle population, » is the number
of control variables. In the next selection process, the parents
to be mated are randomly selected from the population. The
mathematical forms are proposed in Eq. (9) and (10).

barnacle_d = randperm(N) O]
barnacle_m = randperm(N') (10)

where barnacle_d represents the Dad of the offspring,
barnacle_m represents the Mum of the offspring.

In the reproduction process, BMO mainly produces the
offspring based on Hardy-Weinberg principle [67], [68]. The
interesting fact is that the penis length of the barnacle (pl)
plays an important role in determining the exploitation and
exploration of BMO algorithm. When pl is equal to 7, it can
see from Fig. 1 that barnacle #1 can only mate with one of
the barnacles #2-#7. Then, the exploitation process will be
occurred. In this case, Eq. (11) is proposed to produce new
offspring from parents.

xlN_MW = pxixlrnacle_d + qxli\tlzrnacle_m (1 1)
where p is a random number drawn from the standard normal
distribution between [0, 1], ¢ = (1 — p), xll7varnacle 4 and
xé\;made n, are the variables of Dad and Mum of barnacles
respectively which are selected in Eq. (9) and (10). Fur-
thermore, p and g represent the percentage of genotype of
Dad and Mum in the new generation. The new offspring is
produced based on genotype frequencies p and g of parents.
If barnacle #1 mates with barnacle #8-#10, the offspring
is proceeded by sperm cast process. Then, the exploration
process will be occurred. In this case, Eq. (12) is proposed
to produce new offspring from parents.

n_new
X~

= rand() X xgarnacle_m (12)
where rand() is the random number between [0, 1]. It can
be noted that Eq. (12) shows the new offspring is produced
only based on Mum. Generally, the positions of barnacles are
updated in each iteration by Eq. (11) or Eq. (12) to find the
best position (the best solution).

D. LOGISTIC MODEL

The adaptive parameter allows the algorithm to smoothly
transit between exploration and exploitation. Therefore, it is
important to choose a suitable conversion model. The logistic
model and its mathematical expression are given as follow-
ing [70]. How the conversion parameter accords with the
change law of logistic model will be introduced in Section III.

drP(t) P(1)
a = Pmax) P (13)
P(O) == Pmin
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TABLE 3. The PSNR of each algorithm under Masi entropy.

IMAGE K CSA GOA CS TLBO EO MPA LCBMO-2
4 16.7737 15.1415 14.8758 16.9725 16.9849 15.9463 17.0351
1 8 22.4884 19.8869 15.0566 23.6259 21.8374 22.7054 24.0551
12 25.0843 22.3833 17.5726 26.2105 23.8129 26.2196 27.4720
16 26.6106 24.9792 19.1451 29.2858 25.5035 28.6755 29.9519
4 16.1585 16.3893 10.3505 15.3004 17.7529 18.7559 18.0045
2 8 23.0058 17.9405 11.9013 24.7892 21.7227 23.2093 24.7084
12 24.3936 18.1793 12.7747 25.5095 23.9062 25.8181 26.7896
16 26.9856 20.7563 20.2220 29.7386 25.7934 29.9196 30.6855
4 13.4553 13.7312 14.4236 14.4024 17.9079 16.7418 14.4094
3 8 20.4363 16.2995 19.8112 21.9875 20.3140 21.4140 22.8970
12 24.8107 16.7855 21.7414 25.8231 23.2965 25.9708 26.5311
16 26.1256 17.0928 22.5313 27.6689 26.0409 26.8405 28.6002
4 18.5508 18.6138 17.1138 19.1078 21.4262 21.4262 19.1378
4 8 22.9040 19.2987 18.4075 23.2655 22.0260 23.9954 23.5312
12 243634 20.2259 20.3673 26.5647 24.3936 25.0019 25.1143
16 28.0821 22.1911 23.9530 27.6167 27.8094 28.1749 29.6135
4 18.1523 16.1748 15.9589 18.7960 16.1695 18.7308 19.4151
5 8 23.6714 17.6890 17.0105 23.4358 19.3198 21.1293 23.2857
12 24.4254 19.4415 19.2915 26.6461 22.2780 25.2621 27.1847
16 28.1375 21.3093 23.6164 29.2902 28.4748 29.4993 28.6008
4 16.6959 15.5516 16.4072 16.6310 16.3878 18.3878 16.1783
6 8 22.2443 23.2185 18.3555 21.7855 21.9410 22.7283 23.3973
12 25.7029 24.0306 19.7916 23.5796 24.4812 25.9510 26.0665
16 28.6911 26.4871 24.9146 28.6828 28.9307 29.8234 30.7591
TABLE 4. The SSIM of each algorithm under Masi entropy.
IMAGE K CSA GOA CS TLBO EO MPA LCBMO-2
4 0.4858 0.4059 0.1263 0.5161 0.4987 0.5187 0.5222
1 8 0.7747 0.5858 0.1928 0.8188 0.7471 0.8198 0.8325
12 0.8583 0.6695 0.2662 0.8914 0.8542 0.8924 0.9137
16 0.8881 0.7116 0.2764 0.9420 0.9482 0.9431 0.9470
4 0.5252 0.5559 0.3085 0.5721 0.5406 0.5419 0.4442
2 8 0.7727 0.5938 0.3373 0.8190 0.7535 0.7720 0.8225
12 0.8215 0.6360 0.3671 0.8299 0.7919 0.8465 0.8674
16 0.8607 0.7830 0.7345 0.9219 0.9072 0.9287 0.9339
4 0.4071 0.3746 0.2776 0.3984 0.3206 0.4206 0.3984
3 8 0.7169 0.5605 0.3309 0.7668 0.7543 0.7611 0.8186
12 0.8316 0.6242 0.4689 0.8556 0.8102 0.8345 0.8710
16 0.8758 0.7232 0.6570 0.8864 0.8909 0.8857 0.9013
4 0.5671 0.5518 0.2178 0.5844 0.5286 0.5726 0.5850
4 8 0.7165 0.6996 0.3843 0.7088 0.7832 0.7190 0.7194
12 0.7893 0.7973 0.4411 0.7337 0.8126 0.8204 0.8356
16 0.8646 0.8554 0.6154 0.8481 0.8830 0.8912 0.8995
4 0.6308 0.5440 0.6843 0.6114 0.6296 0.6796 0.6508
5 8 0.7712 0.7292 0.7596 0.7995 0.7854 0.7852 0.8041
12 0.8196 0.8000 0.8332 0.8638 0.8420 0.8681 0.8655
16 0.8842 0.8863 0.8807 0.8784 0.8920 0.9070 0.9024
4 0.7234 0.7250 0.2907 0.7219 0.7003 0.7013 0.7161
6 8 0.8294 0.7604 0.3406 0.8379 0.7700 0.8114 0.8634
12 0.9000 0.8116 0.4279 0.8975 0.8188 0.8848 0.8734
16 0.9159 0.9364 0.5435 0.9205 0.8314 0.9270 0.9405

where 7 is the number of iteration, and A is the initial decay
rate. By solving differential Eq. (13), logistic function (14) is
obtained.

Pmax

L (s — 1) e

P(t) = (14)
It can be seen from (7) that P(t) = P, when t = 0, while
P(t) = Ppax, t = 0.

E. CHAOTIC MAP

Chaotic map is one of the best mathematical strategies
to improve the performance of the metaheuristic algo-
rithm in terms of local optima avoidance. Chaotic map can
provide random behavior without the need for random
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component [33]. The mathematical modulation of six differ-
ent chaotic maps are as following. Fig. 2 visualizes the chaotic
behavior. The initial value may have a significant effect on
the fluctuation patterns of some chaotic maps. Fig. 2 is drawn
based on the initial value of 0.7 [71], [72].

The Chebyshev map is formulated as [73]:

Xip1 = cos(icos™ (xi11)) (15)

The equation of the Gauss/mouse map is defined as fol-
lows [74]:

1 x,-=0

Xitl = 1 . (16)
———  otherwise
mod(x;, 1)
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TABLE 5. The FSIM of each algorithm under Masi entropy.

IMAGE K CSA GOA CS TLBO EO MPA LCBMO-2
4 0.6668 0.6461 0.3363 0.6938 0.6118 0.7406 0.6980
1 8 0.8742 0.7330 0.3878 0.9026 0.8335 0.8561 0.9132
12 0.9303 0.8123 04514 0.9489 0.8672 0.9592 0.9625
16 0.9426 0.9110 0.5667 0.9749 0.9393 0.9764 0.9781
4 0.7012 0.7131 0.5454 0.7051 0.7055 0.6056 0.6647
5 8 0.8484 0.7917 0.6837 0.8925 0.8423 0.8925 0.8913
12 0.8812 0.8651 0.7673 0.9179 0.8729 0.9238 0.9280
16 0.9089 0.8688 0.8084 0.9605 0.9189 0.9403 0.9692
4 0.7421 0.7284 0.5223 0.7311 0.7099 0.7217 0.7341
3 8 0.8260 0.7594 0.5255 0.8417 0.8388 0.8504 0.8565
12 0.8715 0.7976 0.5928 0.8966 0.8823 0.9001 0.9115
16 0.9083 0.8693 0.6978 0.9266 0.9108 0.9282 0.9373
4 0.7749 0.7640 0.5865 0.7770 0.8276 0.8199 0.7776
4 8 0.8553 0.8348 0.6483 0.8543 0.8613 0.8971 0.8609
12 0.8706 0.8762 0.6678 0.8652 0.8849 0.9150 0.9026
16 0.9176 0.9188 0.7914 0.8965 0.9192 0.9350 0.9353
4 0.7546 0.7171 0.4890 0.7743 0.7736 0.7854 0.7962
5 8 0.8618 0.8219 0.5408 0.8800 0.8690 0.8760 0.8825
12 0.8799 0.8500 0.6386 0.9140 0.8547 0.8819 0.9206
16 0.9249 0.8705 0.7515 0.9404 0.8787 0.9122 0.9365
4 0.7731 0.7714 0.7705 0.5339 0.7584 0.7418 0.7755
6 8 0.8483 0.8755 0.8491 0.8500 0.8092 0.8519 0.8739
12 0.9048 0.8918 0.8998 0.8717 0.8584 0.9052 0.9110
16 0.9313 0.9262 0.9045 0.9365 0.9165 0.9477 0.9551
TABLE 6. The average fitness value of each algorithm at K = 16.
IMAGE CSA GOA CS TLBO EO MPA LCBMO-2
1 59.0399 54.2575 56.4156 59.4657 58.9956 59.7299 61.8733
2 527597  55.9205  55.1793 534192 555071 579364  59.5827
3 55.7641 53.7352 53.9765 56.1654 56.6999 58.0864 59.1549
4 58.2561 57.1797 57.8783 58.6954 59.1138 60.4193 61.2633
5 57.0013 56.9317 56.8577 57.7764 57.9079 58.3755 60.1861
6 52.8967 56.5019 56.4473 53.0058 55.8742 56.6141 57.9554
The Logistic map is defined as [75]: competence of BMO algorithm to handle optimization prob-
lems, two strategi i isti i
Xip1 = axi(l —x;), a=4 a7 . gies regarding logistic model and chaotic map
are introduced. The pattern and mechanism of improvement
The Singer chaotic map equation is expressed as [76]: will be described in details.
9 3 In the original BMO algorithm, pl can be set to 50%-70%
Xit1 = (7.86x; — 23.31x;" + 28.75x; of the total population size by repeated experiments, which is
— 13.302875)(;‘ ), =107 (18) beneficial to balance the exploitation and exploration. More

The Sinusoidal map is represented by the following
equation [77]:

X1 = ax? sin(rx;), a=2.3 (19)
The family of Tent map can be represented as [78]:
X
ﬁ X < 0.7
Xir1 = 20)

10
?(1 —xi) x;>0.7

IV. PROPOSED METHOD

A. IMPROVED BARNACLES MATING OPTIMIZER (LCBMO)
Metaheuristic algorithms all have two important stages
in the search level: exploration and exploitation. The
balance between these two capabilities directly affects
the performance of the algorithm. In the native
BMO algorithm, low search accuracy and limited production
capacity are the main drawbacks. In order to improve the
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exploration processes will occur when the value of p/ is small.
On the contrary, more exploitation processes occur when the
value of pl is large. Finally, the authors set pl to a constant
value (70% of the population of barnacles). In view of this,
the logistic model is used to improve p! to realize the adaptive
transformation of parameters. The parameter is improved by
the following equation.

plmax

14 (B — 1) e

pl(t) = 2

It can be seen from (7) that pl(#) = plmin when ¢t = 0,
while pl(t) = plnax,t — oo. The logistic model makes
BMO algorithm to perform high exploration in the initial
stage and more exploitation in the final stage of search. It can
be regarded as a proper strategy to balance the two stages.

In addition, in order to avoid local optimal values,
the chaotic map is used to improve the position updat-
ing equation of barnacles. Eq. (12) is replaced by the
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following form.

n_new __ n
X =mX Xbarnacle_m (22)

where m is a chaotic vector obtained based on six chaotic
maps. The chaotic vector can provide random behavior with-
out the need for random component. The purpose of intro-
ducing this strategy is to make solutions search in space as
widely, randomly and globally as possible. The exploitation
efficiency is the primary beneficiary. Finally, the improved
version of BMO is called LCBMO whose pseudocode is
provided in Algorithm 1.

The computational complexity of LCBMO depends
on the related factors such as the number of barnacles N,
the dimension D, the maximum number of iterations 7,
and the cost of fitness function F. In the initialization process,
the computational complexity is O(N). The computational
complexity of sorting process is O(N). The computational
complexity can be expressed as O(T x N x F) for fitness
evaluation process and O(T x N x D) for updating positions.
The overall computational complexity of LCBMO is: O(N x
(2+T x (F + D))).

Algorithm 1 Pseudocode of the LCMO Algorithm

1: [Initialize the population of barnacles X; using Eq. (8)

2: Calculate the fitness of each barnacle

3:  Sort to locate the best result at the top of the population

4: While t < Max_iter do

5: Set the dynamic value of pl using Eq. (21)

6: Select Dad and Mum using Eqs. (9) and (10)

7: If selection of Dad and Mum = pl

8: For each variable

9: Generate offspring using Eq. (11)

10: End for

11: Else if selection of Dad and Mumpl

12: For each variable

13: Generate offspring using Eq. (22)

14: End for

15 End if

16 Bring the current barnacle back if it goes outside
boundaries

17 Calculate the fitness of each barnacle

18 Sort and update the best solution if there is a better
solution

19 t=1t+1

20 End while
21 Return the best solution

B. LCBMO BASED MULTILEVEL THRESHOLDING METHOD
The process of finding the threshold by Masi entropy is
actually to find the optimal solution. However, they have high
computational complexity when dealing with multiple thresh-
olds. In order to achieve efficiency, it is entirely possible to
use LCBMO algorithm to deal with this. The basic steps are
described as follows:
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Firstly, we input selected color images and calculate the
components of the histogram. Next, the number of search
agents and iterations are initialized, and the fitness of initial
population is calculated. The dynamic pl value is used to
determine the position update mode of barnacles. Individual
with high fitness value is preserved. Repeat this process until
the maximum number of iterations is completed. The best
position represents the optimal threshold values of segmen-
tation. The flowchart is provided in Fig. 3.

V. BENCHMARK FUNCTIONS EXPERIMENT
In this section, 23 standard functions are used to evaluate
the optimization improvement of LCBMO algorithm. These
benchmark functions are divided into three groups: unimodal
(fi — f7), multimodal (fg — f13) and fixed-dimension mul-
timodal (fj3 — f>3). Furthermore, the relevant composition,
dimension, range limitation and optimal position of 23 func-
tions can be found in [49]. Meanwhile, all the experimental
series are carried out on MATLAB R2016b, and the computer
is configured as AMD A8-7410 APU with AMD Radeon RS
Graphics @2.20 GHz, using Microsoft Windows 7 system.
For the experiment, the most traditional and improved BMO
algorithm for global optimization are adopted. And the pop-
ulation size is set to 30 while the number of iterations is set
to 500. Moreover, all experiments are conducted 30 times.
In LCBMO, the logistic model can make the algorithm be
highly explored in the initial stage and developed more in
the later search period. Compared with the traditional BMO,
it has excellent exploration and exploitation. For the chaotic
map, putting it into BMO as a strategy can greatly improve the
convergence and high efficiency. The LCBMOs are divided
into 6 different types. LCBMO-1 to LCBMO-6 all intro-
duce the logistic model, but utilize Chebyshev, Gauss/mouse,
Logistic, Singer, Sinusoidal, and Tent maps, respectively.
The performance of algorithms is evaluated according to the
mean value and standard deviation (Std). The stability of each
model is evaluated by Std value. Meanwhile, the best results
has been highlighted in boldface in Table 1. It can be found
from the Table 1 that the LCBMO-1, LCBMO-2, LCBMO-3,
LCBMO-4, LCBMO-5 and LCBMO-6 models show much
better results compared to BMO on unimodal benchmark
functions. In other words, Chebyshev, Gauss/mouse, Logis-
tic, Singer, Sinusoidal and Tent chaotic maps have success-
fully improved the performance of the BMO algorithm. For
multimodal benchmark functions, it can be seen that the
LCBMO-2 model shows the best value and great stability
in most cases. Although BMO, LCBMO-1 and LCBMO-
6 models show competitive result in some cases, this result
still proves that the optimal solution obtained by the proposed
method is high-quality. In addition, as for fixed-dimension
multimodal benchmark functions, compared to other hybrid
model, LCBMO-2 model can keep the population diversity
in the later iteration. Therefore, the ability to avoid local
optimization has enhanced. Moreover, it can be found from
the Table 1 that LCBMO-2 shows the lowest value of Std,
which indicates better stability. Thus, it can be said that the
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FIGURE 6. The boxplot based on each algorithm at K = 16.

proposed method in this article is more effective than BMO
in 23 benchmark functions, so this article combines LCBMO
with multilevel thresholding segmentation method to improve
the image segmentation accuracy.

VI. COLOR IMAGES SEGMENTATION EXPERIMENT

A. PREPARED WORKS

1) EXPERIMENTAL SETUP

All the experimental series were carried out on MATLAB
R2016b, and the computer was configured as AMD
A8-7410 APU with AMD Radeon R5 Graphics @2.20 GHz,
using Microsoft Windows 7 system.

2) COMPARED ALGORITHMS

After the thresholding segmentation method is extended from
two-level thresholding to multi-level thresholding, its com-
putational complexity increases exponentially. Therefore,
a large number of optimization algorithms are applied in

213140

Image 2
61
- - T
60 - 1 - 1 B
v =
59 - 1 ! 1 £
1 ! 1
58 - 1 ! '
1 ' 1
57 - ! '
56
55 |
L 1 1 1
=S o R
sl L <4 1
1
51 -+
CSA GOA cs TLBO EO MPA  LCBMO-2

62 -

8"

61

_____.{4

60 |- !
1
1

57
56

55

54
CSA GOA cs TLBO EO MPA  LCBMO-2
Image 6
61 -
1
60 T '
1 ! *
59 ' ' M 1
1
1
58 .- -
S
57 | ! 8 1
T g .
55 ; - n 4
1 ' — 1
54 1 ' ! -4
— 1
st -+
e -
52 !
L
CSA GOA cs TLBO EO MPA  LCBMO-2

multithreshold segmentation. In order to prove the superiority
of the modified algorithm, two sets of 10 meta-heuristic
algorithms which have been proposed and widely applied
to multithreshold segmentation are selected for comparison
experiments, including MABC [48], CSA [51], GOA [52],
CS [53], EO [79], MPA [80], IDSA [54], TLBO [55], WOA-
TH [57], and BDE [58]. These comparison algorithms have
different search strategies and mathematical formulas and are
representative algorithms for multithreshold. The maximum
of iterations for all algorithms is 500 and the population size
is 30. We follow the same parameters in the original arti-
cles. The main parameters of various algorithms are shown
in Table 2.

3) COLOR IMAGE DATABASE

In this article, two sets of twelve color images are selected
from the Berkeley university database and NASA landsat
image dataset for performance analysis. The satellite images
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16

FIGURE 7. (Continued.) The segmentation results based on each algorithm.

can be downloaded from the website [81]. Fig. 4 shows the
original test images and the corresponding histograms for
each of color channels (red, green, and blue). All images are
in JPG format.

The experiments use the control variable method, in which
each algorithm runs each image 30 times separately. The
number of threshold K includes: 4, 8, 12, and 16.

B. EVALUATION METRICS

1) PEAK SIGNAL TO NOISE RATIO

The peak signal to noise ratio (PSNR) is an objective image
quality evaluation algorithm based on pixel error. A higher
PSNR value indicates that the quality of the distorted test
image is better and closer to the original reference image.
However, it is based on the error between corresponding
pixels and does not take into account the visual characteristics
of human eyes. Its calculation formula is as follows:

L2
PSNR = 1010g; 7 (db) 23)

where L represents the grayscale range of the image. For 8-
bit grayscale image, L = 255. MSE is the mean square error
between the original image and the processed image.

m_y 2y [R (m,n) = 1(m, m)]?
M x N

MSE = 24

where M x N is the size of the image, R(m, n) represents
the gray value of coordinates at the reference image (m, n),
and I(m, n) represents the gray value of coordinates at the
distorted image (m, n).
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2) STRUCTURAL SIMILARITY INDEX

It is an objective image quality evaluation algorithm based
on structural similarity. It measures the image similarity from
brightness, contrast and structure. SSIM value range is [0, 1].
If the value is closer to 1, the image distortion is smaller. It is
defined as follows

Qurpr + C1)2ogr + C2)

SSIM(R,I) =
(uf + 1 + C1)of + o} + Ca)

(25)

where Ug and U; are the average gray values of the original
image R and the segmented image /. O'I% and 012 represent
the variance of image R and image I respectively. og; is
the covariance of image R and image I. C; = (0.01L)?,
Cr, = (O.O3L)2.They are constants that are used to maintain
stability.

3) FEATURE SIMILARITY INDEX

On the basis of SSIM, researchers have proposed a new image
quality assessment metric based on underlying features,
namely feature similarity algorithm (FSIM). Researchers use
two complementary features of phase congruency (PC) and
gradient magnitude (GM) to calculate FSIM.

Y veqSL (x) X PCy (x)
> veq PCm (x)
where 2 is the pixel field of the entire image, Sy (x) rep-

resents the similarity value of each position x,and PC, (x)
denotes the phase consistency measure.

S (x) = [Spc ()]* - [Sg (x)1P 27
PC,, (x) = max (PC; (x), PC> (x)) (28)

FSIM =

(26)
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TABLE 7. Comparison of optimal thresholds of each algorithm.

where Spc (x) is the similarity measure of phase consistency,
S (x) represents the similarity measure of gradient magni-

MABC IDSA
IMAGE K = G m = G m
4 43114 158 200 56 105 161 222 3694 158 193 41114 158 200 57106 161 222 3694 158 193
g 215080111137 275177106137 20406690115 215386111137 265177106139 20426490 116
173 203 239 165 196 22 140 165 197 176 208 239 167 195223 149 170 196
1631527693 25517396122 15366079 96 1537557191 28507497114 2439516989
12 112131149179 139156173191 112134149174 111131152174 133152166187 107129152 174
7 203 221238 204 218 230 191212 225 198 217 238 205222238 192 208 225
14253760 72 2235465577 1126 40 50 63 2234576982 26 48 63 76 90 14233042 63
16 89108119129 92109 123 140 7791 111 132 99 115 130 148 104113127 141 76 91 105 121
147163177203 148158179191 157171181191 166184 198211 159 174 190205 138 155 172 187
217235247 205 225239 211220 227 224234243 212229 240 199 213 225
4 4170163222 32106 168 218 31122165210 52183163 222 41107 165 217 31122165210
g (265679111145 295278111140 255080113142 23437099133 295180112145 254979 107 133
176 207 232 171 205 233 171 201 226 170 202 230 174 205 233 160 185 210
17385676100 274261 81 101 16 30 54 76 95 2142567392 29436287107 2141587797
N 12 122141157175 123145166181 116135154176 121144159174 133152171190 116 136 151 165
193 215 234 205216236 194 209 228 195 220 235 209 228 240 185 205 226
1729 41 48 64 1930435779 1736 52 68 75 1528 4358 77 2741546679 1532517293
16 SL101113129 92104 116 133 99 108 125 139 91102112 125 90 100 113 130 111134 144 157
149161171191 150 167182195 154 168 183197 142153169180 151 171 188205 167 179 191 203
211226 237 209 228 250 210220 232 206 224 235 218 228 243 219229 241
4 68119164202 64115158 194 3386 138 183 71122 169 202 68 121 164 197 3386 138 183
g 43877107139 305789116145 315882107133 54482107137 306188114142 326086112139
171 197 225 169 194 224 157 183 211 170 199 226 168 194 227 167 197 230
430527792 28497294113 213653769 531547492 2642 60 77 96 26 48 65 81 96
9 12 113137164182 135149167183 122138157175 109128150 165 119137156174 111 128 142 162
199 215 234 195214233 190 208 230 187210 236 194213 228 179 200 225
61833476272 92236546892 1625375066 41832465873 2133486274 7305169 83 96
16 91122136148 105115138154 7891105 114 88 108 125 140 8698 108 125 112 126 133 148
161178193208 169177193210 124141167185 157175192212 146162179195 164 177 191200
222241 223243 198 223 241 225241 213228 245 216233
4 59108 158 202 2692 141 193 68 112 154197 58 104 158 204 2697152 197 68 112155197
g 285583112130 234578110139 224875108132 295477102141 234677105131 245077 107 130
169 199 225 167 193 221 162 190 215 180 205 229 161 191 220 154 178 206
2947638299 122544 58 81 1832527194 22476484104 1938527292 193348 65 81
10 12 118136152170 102122142160 105120140161 118138158176 111128151166 100 115 134 156
193 211 231 184 203 228 187 203 222 194 209 231 185 203 225 179 201 224
14314556 77 1229 42 54 67 14 26 40 50 59 18 34 50 65 81 1226 41 54 69 2239567390
16 100115135155 8098107 123 8294107 125 95111 124 137 7991 107 123 105 120 135 152
178 187197205 143159170201 141156167178 150 164178 191 140157173190 170 189201 212
214227 241 215225240 192211 227 202217235 204 220 233 223233242
4 58102146223 60 112 173 220 50 84 142 211 58 102 146 223 61112173 221 48 84 138 209
g 336288112138 326088116143 376486113139 306395122148 396997125151 325179107138
164 197 228 175 200 227 167 196 223 173 200 231 179 207 231 167 198 224
20456491109 1938557594 25436081102 24446685104 23416183102 34517088 107
" 12 124141160179 110132155172 121 141158185 123141158 177 122141160179 121 136 154 174
200 222 242 193216 235 205222236 196 216 237 196 216 237 191209 229
163349 66 71 2740527079 2231496578 1632496178 234058 72 85 1327415875
16 80101114125 92106 119 132 106123133142 95114 131 146 93105 121 138 89105 120 135
146 161 180193 154170 178 200 158 167 181192 164179198211 154176190205 147 161 175 191
212226238 211228 244 204 222 241 220 232 245 218 229 242 205222239
4 57103 156 205 4282143 197 2965 121 195 53100 152 201 4282143197 2965121 195
g 144576103132 254879109140 264672104132 134375105133 345682112142 214774109 143
165197 228 170 198 229 163192219 164 196 228 171 201 230 174205 230
18 34 50 67 84 2138547186 1736 557289 1133517086 2342587692 173449 66 79
12 12 102126147174 109131147166 112128150173 107129152173 110127149168 91 104 125 151
195217 236 187212231 193215 232 196 220 236 190 210 233 178 205 230
1123365868 19 30 46 64 85 16 29 48 60 81 92540587384 1222354662 14 30 45 55 66
16 86104120143 101118124146 101119128140 96 112 126 140 7792103 116 87102 117 134
161172184198 165173186196 154163173188 153173193213 133149166183 147 161 175 189
208 221234 210 225 235 204 226 238 228 242 195211 231 201216 233

tude, and «, B are both constants.

where T and T are positive constants that increase stability.
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Spc (x) =

Sg (x) =

2PCi (x) x PCr (x) + T

PC? (x) x PC? (x) + T}
2G1 (x) x Gr (x) + T

G} (x) x G5 (x) + T

4) WILCOXON RANK-SUM TEST
Wilcoxon rank-sum test is used to compare the two sam-

ples. The p value returned represents the probability whether
two independent samples are identical, and the & value
(29) returned represents the result of hypothesis test. The null
hypothesis Hp represents the statement of no difference.

(30)

At significance level 5%, it generally believe that if
p <0.05(or & = 1) means rejection of the null hypothesis,

if p >0.05 (or & = 0) means that Hy cannot be rejected at the

5% level.
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TABLE 8. The PSNR of each algorithm under Masi entropy.

IMAGE K MABC IDSA WOA TH BDE LCBMO-2
4 18.2007 18.2114 17.2563 18.2007 19.1160
7 8 23.6300 23.6540 23.7105 23.8559 24.2969
12 27.6018 27.0490 27.4933 26.8865 27.1574
16 27.9356 29.7352 29.6724 30.1504 30.1521
4 15.3576 16.1202 15.3576 15.5939 16.8826
] 8 23.3730 23.3871 22.7854 23.0168 23.4774
12 26.8710 26.7478 26.9868 27.1873 25.7287
16 28.6141 28.1745 28.6406 29.2417 29.7247
4 19.1021 18.7466 19.0644 16.5387 19.1081
9 8 24.0016 23.9694 24.2659 23.6486 20.0786
12 26.8760 27.0653 24.6080 27.4009 27.5735
16 29.5999 29.1155 29.4242 28.3301 30.1050
4 16.5265 17.5688 17.5348 17.5374 17.7046
10 8 24.0391 24.3097 24.1835 24.2300 22.4801
12 26.9152 27.4526 25.4049 27.3150 27.6707
16 29.3430 29.3776 29.6925 27.9892 30.2118
4 18.0895 18.0619 18.0895 18.1319 18.2625
1 8 23.3103 23.8757 23.5759 23.7345 24.9803
12 27.1949 26.8338 27.0993 26.2429 28.1751
16 28.2634 29.5835 29.5607 29.1181 30.3144
4 18.3298 18.3645 18.3298 18.4089 18.3298
12 8 23.5761 23.6314 23.4507 23.5774 23.7936
12 26.8188 26.8561 27.1105 26.0924 27.1363
16 28.5066 28.9744 29.5627 29.2562 29.7149
TABLE 9. The SSIM of each algorithm under Masi entropy.
IMAGE K MABC IDSA WOA TH BDE LCBMO-2
4 0.6809 0.6815 0.6566 0.6809 0.6847
7 8 0.7948 0.7856 0.7969 0.7988 0.8090
12 0.8658 0.8538 0.8648 0.8571 0.8605
16 0.8704 0.9016 0.9025 0.9064 0.9091
4 0.4962 0.5312 0.4962 0.5071 0.5769
] 8 0.8289 0.8340 0.8139 0.8218 0.8366
12 09110 0.9071 0.9140 0.8869 0.9176
16 0.9320 0.9270 0.9349 0.9456 0.9508
4 0.6243 0.6068 0.6218 0.6244 0.4067
9 8 0.8112 0.8090 0.8194 0.8028 0.6177
12 0.8647 0.8640 0.8699 0.8742 0.8766
16 0.9246 0.9002 0.8954 0.9439 0.9444
4 0.5153 0.5105 0.5085 0.5086 0.4158
10 8 0.7745 0.7789 0.7799 0.7083 0.7802
12 0.8328 0.8495 0.8669 0.8563 0.8022
16 0.8993 0.8921 0.9016 0.8657 0.9103
4 0.7098 0.7093 0.7098 0.7113 0.7192
1 8 0.8532 0.8684 0.8609 0.8652 0.8959
12 0.9250 0.9176 0.9230 0.9032 0.9408
16 0.9306 0.9509 0.9500 0.9446 0.9596
4 0.7665 0.7681 0.7665 0.7665 0.7700
12 8 0.9035 0.9048 0.9017 0.9038 0.9080
12 0.9447 0.9466 0.9491 0.9358 0.9485
16 0.9584 0.9631 0.9672 0.9650 0.9690

5) FRIEDMAN TEST

Non-parametric Friedman test is applied to estimate which
algorithms have significant differences. This multiple com-
parison can be used for comparisons between more than two
algorithms and ranks the each algorithm separately.

C. BERKELEY IMAGES SEGMENTATION EXPERIMENT

This subsection analyzes the results provided by Masi entropy
implementations based on CSA, GOA, CS, TLBO, EO, MPA,
and LCBMO-2, after being applied to segment the 6 Berke-
ley images (image 1-6). Fig. 5 represents segmented images
into four classes using LCBMO-2 algorithm and the fitted
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histogram with the thresholds for the segmented images. The
Berkeley images are segmented using Eq. (6) and the best
threshold values found by the LCBMO-2. Fig. 5 visually
shows the search capabilities of LCBMO-2 in K-dimensional
search space.

Table 3-5 report PSNR, SSIM, and FSIM from the eval-
uation of the segmented images, respectively. From the
Table 3, we can observe that the LCBMO-2 based method
gives the higher PSNR values in general, which indi-
cates that the segmented image is similar to the original
image. For example, in the image 6 through Masi technique
(for K = 16), the PSNR values are 28.6911, 26.4871,
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TABLE 10. The FSIM of each algorithm under Masi entropy.

IMAGE K MABC IDSA WOA TH BDE LCBMO-2
4 0.7321 0.7326 0.7029 0.7321 0.7446
7 8 0.8481 0.8434 0.8509 0.8539 0.8651
12 0.9139 0.9073 0.9146 0.9089 09111
16 0.9184 0.9427 0.9400 0.9497 0.9507
4 0.6557 0.6827 0.6557 0.6653 0.7204
8 8 0.9150 0.9141 0.9047 0.9093 0.9153
12 0.9588 0.9563 0.9613 0.9471 0.9621
16 0.9678 0.9669 0.9717 0.9743 0.9781
4 0.9102 0.8914 0.8985 0.9002 0.8238
9 8 0.9651 0.9637 0.9186 0.9629 0.9674
12 0.9775 0.9757 0.9682 0.9798 0.9803
16 0.9877 0.9836 0.9847 0.9885 0.9830
4 0.8823 0.8786 0.8780 0.8780 0.8582
10 8 0.9603 0.9617 0.9621 0.9407 0.9628
12 0.9739 0.9812 0.9823 0.9813 0.9707
16 0.9850 0.9877 0.9894 0.9832 0.9903
4 0.8931 0.8936 0.8931 0.8940 0.8959
11 8 0.9606 0.9672 0.9644 0.9666 0.9754
12 0.9857 0.9832 0.9850 0.9746 0.9892
16 0.9890 0.9921 0.9917 0.9903 0.9933
4 0.9223 0.9223 0.9223 0.9230 0.9223
12 8 0.9769 0.9782 0.9765 0.9775 0.9794
12 0.9882 0.9878 0.9887 0.9860 0.9897
16 0.9914 0.9923 0.9935 0.9935 0.9942
TABLE 11. The average fitness value of each algorithm.
IMAGE K MABC IDSA WOA TH BDE LCBMO-2
4 30.4982 30.4976 30.0127 30.4982 30.4882
7 8 42.6620 42.5971 42.3578 42.6572 42.6741
12 51.8025 52.1063 50.9048 52.2167 52.2504
16 58.8019 59.2167 57.3708 59.9432 60.0104
4 30.7294 30.7023 30.6794 30.7287 30.7294
] 8 43.7170 43.5701 43.5403 43.7440 43.7504
12 53.2312 53.2168 52.5576 53.3588 53.5073
16 60.4396 60.4510 59.7813 60.9434 61.3517
4 31.3420 31.3324 31.0421 31.3420 31.3410
9 8 43.7958 43.7180 42.9805 43.7823 43.8202
12 53.1768 53.1099 51.7778 53.3948 53.4618
16 60.2456 60.4285 60.3254 61.0127 61.1725
4 31.8139 31.8132 31.6638 31.8146 31.8132
10 8 44.1346 44.0643 43.9029 44.1377 44.1476
12 53.2432 53.3130 53.1202 53.2639 53.4773
16 60.2350 60.9759 59.7542 61.1469 61.3551
4 32.6256 32.6183 32.5119 32.6180 32.6256
1 8 44.9539 44.8619 44.2172 44.9669 44.9759
12 54.1653 54.2734 53.8891 54.0886 54.3966
16 61.0911 61.7204 61.4387 62.0976 62.1485
4 31.8183 31.8182 31.8183 31.8138 31.8183
12 8 44.1536 44.0927 44.0938 44.1695 44.1584
12 53.5618 53.5294 53.2184 53.1146 53.8210
16 60.6674 61.2279 61.1520 61.4314 61.6188

24.9146, 28.6828, 28.9307, and 29.8234 for CSA, GOA,
CS, TLBO, EO, and MPA respectively. Besides, it can
be seen from the Table 4 that LCBMO-2 based method
outperform the other algorithms again, which shows the
segmentation accuracy of proposed algorithm is satisfied.
On comparing the FSIM values, which are given in Table 5,
it can be observed that the values increase as the number
of the thresholds increase. And the proposed method gives
the highest values, accounting for 75% of the total results.
These results indicate the precise search ability of LCBMO-2
based method, which is suitable for color Berkeley images
segmentation.
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As the stochastic nature of metaheuristic algorithms,
the experiments are conducted over 30 runs. Then the average
fitness values at K = 16 are presented in Table 6. It can be seen
from the tables above that the LCBMO-2 based method gives
all the best values. In order to verify the stability of proposed
algorithm, the results of the fitness function values at K = 16
obtained for 30 runs is plotted as boxplots. A narrower box-
plot indicates better stability. The boxplots obtained by all
algorithms are shown in Fig. 6. From the figure it is found that
LCBMO-2 based method gives narrower boxplots as com-
pared to other algorithms, which shows the better consistency
and stability of proposed algorithm.
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FIGURE 8. The convergence curve of fitness values for each algorithm at K = 16.
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FIGURE 9. The running time (in second) based on each algorithm.
D. SATELLITE IMAGES SEGMENTATION EXPERIMENT environment, the requirements for the quality and quantity of

With the progress of earth observation technology and high-resolution remote sensing data are constantly increas-
the deepening of understanding of earth resources and ing. The main features of high-resolution satellite images
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TABLE 12. The p values of Wilcoxon rank-sum test.

IMAGE K MABC IDSA WOA TH BDE
4 3.16E-21 7.65E-101  8.26E-46 7.97E-67
7 8 2.02E-53 3.03E-122  1.55E-90 2.81E-91
12 7.19E-94 1.94E-125 3.45E-158  3.28E-103
16  5.42E-148 5.42E-148 1.05E-166  6.85E-162
4 5.61E-10 3.41E-51 0.1277 6.43E-83
] 8 1.14E-54 4.86E-67 1.52E-12 4.17E-106
12 2.19E-91 9.32E-92 7.08E-75 9.42E-139
16  834E-104 8.34E-104 9.18E-162  5.86E-155
4 7.54E-05 2.51E-11 2.32E-102  6.19E-47
9 8 1.68E-14 8.49E-22 7.08E-55 2.75E-104
12 2.13E-26 3.92E-35 6.21E-114  1.93E-131
16  2.60E-37 2.60E-37 4.62E-159  5.56E-155
4 2.95E-91 1.72E-65 0.0550 8.80E-62
10 8 1.63E-16 5.22E-84 4.76E-03 1.56E-127
12 8.41E-83 7.69E-102  1.44E-171  8.92E-109
16 5.80E-106 5.80E-106 5.80E-164  1.40E-154
4 6.88E-08 8.51E-32 2.57E-05 6.31E-19
11 8 1.27E-08 5.98E-15 8.18E-86 3.68E-71
12 8.26E-13 1.09E-24 1.93E-153  8.72E-88
16  7.25E-28 7.25E-28 490E-165 3.48E-152
4 0.0928 2.81E-57 1.79E-111  8.24E-49
12 8 7.94E-05 4.52E-15 7.35E-86 6.93E-93
12 1.57E-18 1.46E-43 9.01E-133  1.73E-127
16  8.12E-26 8.12E-26 1.25E-144  6.38E-149
TABLE 13. The results of ranks of Friedman test.

IMAGE MABC IDSA WOA TH BDE LCBMO-2
7 3.4000 3.0500 3.4000 3.2000 1.9500
8 3.4750 2.9500 3.5750 3.2500 1.7500
9 2.7750 3.2000 3.4000 3.0250 2.6000
10 3.5000 2.5750 2.9750 3.5750 2.3750
11 3.7000 2.6500 3.4250 3.7000 1.5250
12 3.7750 2.7250 3.0000 3.5750 1.9250

include: rich texture information corresponding to objects,
large imaging spectrum, and short revisit time. Therefore,

TABLE 14. The PSNR of LCBMO-2 algorithm under each object function.

the segmentation and evaluation of satellite images is a chal-
lenging work.

This subsection analyzes the results provided by Masi
entropy implementations based on MABC, IDSA, WOA_TH,
BDE and LCBMO-2, after being applied to segment the
6 satellite images (image 7-12). The segmented images
(image 7, image 8, and image 10) obtained by Masi entropy
with different thresholds levels are given in Fig. 7. Besides,
the corresponding threshold values are given in Table 7 and
Appendix Table 2. From the segmentation results we can find
that the images with higher levels (such as K =8, 12, and 16)
contain more information than the others.

The PSNR, SSIM, and FSIM values obtained by all
algorithms using Masi entropy techniques are reported
in Tables 8-10. In terms of PSNR values, the proposed
algorithm gives the highest values, accounting for 79.2%
of the total results. Besides, the proposed algorithm gives
the highest SSIM and FSIM values, accounting for 75%
of the total results. Taking Image 12 (at K = 12) as an
example, WOA_TH algorithm achieves the highest SSIM
value of 0.9491. Our proposed algorithm ranks second and is
not much different from the results obtained by WOA_TH.
The average fitness values of Masi entropy functions are
presented in Table 11. It can be seen from the table above
that the LCBMO-2 based method gives the best values
in general. Moreover, in order to reflect the performance
of LCBMO-2 more intuitively, the convergence curves of
Masi entropy functions (for K = 16) are shown in Fig. 8.
It can be found that the proposed algorithm outperforms
other algorithms in general. In other words, the LCBMO-2
based method gives higher position curves using Masi
entropy technique. It is further proved that the two strategies
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IMAGE K Otsu Mcet Kapur Tsallis Masi
4 21.0643 8.1780 18.6482 17.7794 17.0351
| 8 22.0930 8.1780 222207 20.8764 24.0551
12 26.6758 8.1780 26.3194 24.8967 27.4720
16 29.0852 8.1780 27.1408 28.3791 29.9519
4 19.3636 8.1220 15.5506 14.3611 14.4094
3 8 21.6250 8.5306 20.6919 18.9631 22.8970
12 25.2523 8.5883 23.5096 24.3285 26.5311
16 28.1631 8.9736 24.6163 25.7160 28.6002
4 19.1016 5.2961 19.1516 18.6865 19.4151
5 8 21.2904 5.3144 23.1143 23.1302 23.2857
12 26.7551 5.3144 26.1639 26.5678 27.1847
16 28.6101 5.4066 28.7435 28.2613 28.6008
4 17.7511 3.3848 18.7211 19.0463 19.1160
7 8 21.0080 3.4649 21.8492 22.6915 24.2969
12 25.5862 3.5848 249117 25.8671 27.1574
16 29.9833 3.7008 30.2542 30.7179 30.1521
4 18.1977 11.0181 19.1055 16.5115 19.1081
9 8 22.0751 11.0502 22.5411 21.9235 20.0786
12 25.3509 11.0882 25.1386 26.3663 27.5735
16 28.2492 11.2574 27.0882 28.3073 30.1050
4 19.3968 2.0277 18.6145 18.2153 18.2625
1 8 24.1931 2.0420 24.7042 24.1126 24.9803
12 26.6364 2.0420 27.8858 28.0313 28.1751
16 30.2693 2.0554 30.0289 29.6196 30.3144
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TABLE 15. The SSIM of LCBMO-2 algorithm under each object function.

IMAGE K Otsu Mcet Kapur Tsallis Masi
4 0.6735 0.0083 0.6089 0.5532 0.5222
I 8 0.7843 0.0083 0.7690 0.7250 0.8325
12 0.8206 0.0083 0.8898 0.8569 0.9137
16 0.9436 0.0083 0.9046 0.9240 0.9470
4 0.3768 0.0426 0.4548 0.3962 0.3984
3 8 0.7810 0.1071 0.7054 0.6474 0.8186
12 0.8243 0.1142 0.8034 0.8237 0.8710
16 0.8869 0.1996 0.8173 0.8373 0.9013
4 0.6142 0.0123 0.6107 0.6397 0.6508
5 8 0.8033 0.0156 0.7564 0.7584 0.8041
12 0.8548 0.0156 0.8344 0.8450 0.8655
16 0.8829 0.0310 0.8912 0.8841 0.9024
4 0.6235 0.0071 0.6817 0.6955 0.6847
7 8 0.7463 0.0146 0.7998 0.8057 0.8090
12 0.8790 0.0271 0.8455 0.8393 0.8605
16 0.8910 0.0391 0.9104 0.9099 0.9091
4 0.7964 0.0855 0.6198 0.4256 0.4067
9 8 0.8632 0.0952 0.7599 0.7367 0.6177
12 0.9153 0.0960 0.8082 0.8551 0.8766
16 0.9289 0.1005 0.8632 0.8816 0.9444
4 0.6758 0.0019 0.7123 0.7110 0.7192
1 8 0.8053 0.0029 0.8874 0.8732 0.8959
12 0.9275 0.0029 0.9371 0.9367 0.9408
16 0.9342 0.0038 0.9418 0.9550 0.9596
TABLE 16. The FSIM of LCBMO-2 algorithm under each object function.
IMAGE K Otsu Mcet Kapur Tsallis Masi
4 0.8293 0.3330 0.7494 0.7149 0.6980
| 8 09114 0.3330 0.8725 0.8425 0.9132
12 0.9501 0.3330 0.9478 0.9314 0.9625
16 0.9653 0.3330 0.9585 0.9645 0.9781
4 0.7277 0.4254 0.7071 0.7291 0.7341
3 8 0.8107 0.4280 0.8272 0.8085 0.8565
12 0.9030 0.4283 0.8621 0.8818 0.9115
16 0.9355 0.4297 0.8890 0.9033 0.9373
4 0.7974 0.4459 0.7827 0.7670 0.7962
5 8 0.8787 0.4469 0.8565 0.8581 0.8825
12 0.9148 0.4469 0.9009 0.9153 0.9206
16 0.9351 0.4612 0.9435 0.9414 0.9365
4 0.7870 0.4952 0.7681 0.7473 0.7446
7 8 0.8299 0.4952 0.8356 0.8420 0.8651
12 0.9046 0.4952 0.9225 0.9267 09111
16 0.9168 0.4953 0.9497 0.9456 0.9507
4 0.8502 0.4249 0.8946 0.8473 0.8238
9 8 0.8749 0.4249 0.9502 0.9432 0.9674
12 0.9572 0.4249 0.9564 0.9757 0.9803
16 0.9869 0.4249 0.9782 0.9817 0.9830
4 0.8742 0.3275 0.8936 0.8789 0.8959
1 8 0.9052 0.3275 0.9431 0.9384 0.9754
12 0.9510 0.3275 0.9879 0.9884 0.9892
16 0.9924 0.3283 0.9930 0.9915 0.9933

(logistic model and chaotic map) can improve the search
accuracy and production capacity of the native BMO algo-
rithm, and the LCBMO-2 algorithm can use the search space
more effectively to complete the optimization task of image
segmentation. For visual analysis, the results of the running
time (in second) based on each algorithm are represented as
stacked bar diagrams in Fig. 9. It can be seen that the running
time is sorted as follows: BDE > MABC > LCBMO-2 >
WOA_TH > BDE. Although our proposed algorithm is not
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the champion algorithm in terms of running time, it is not
too bad. The improved strategy used slightly increases the
computational cost of the algorithm. In general, the running
time of the proposed algorithm (LCBMO-2) is acceptable.
In order to statistically prove the superior performance of
the proposed algorithm, Wilcoxon rank-sum test and Fried-
man test are used to evaluate the significant difference among
algorithms. The p values of Wilcoxon rank-sum test are given
in Table 12. For example, the proposed algorithm gives better
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TABLE 17. The main variables involved in this article.

Provenance Symbols Paraphrase
L The gray value
n; The number of pixels with gray value of i
N The total number of pixels
Color images p The distribution probability of gray value
k The total number of threshold
t The threshold
C The class
R.G,B The three channels of color images
(4] The probabilities of class occurrence
Masi entropy method E The entropy of the image
v The objective function of Kapur
T Temperature profile
t The current iteration times
Maxieasion The maximum iteration times
4 C The vector of avoidance collisions
1[\14 The movement parameter
EPO fu The position of best optimal solution
P, The position of other emperor penguins
P4 (Accuracy) The polygon grid accuracy
uuu
D, The distance between the emperor penguin and best fittest search agent
SO The social forces
Pm The mutation probability
ub The upper bound of parameter
HDPM
b The lower bound of parameter
Nm The distribution index
Levy Flight N The random step length
" The new temperature of each object
TEO Vi The environmental temperature
M The original temperature of each object
PSNR MSE The mean square error
R The original image
1 The segmented image
SSIM Hps My The average gray values of image
o2, o The variance of image
Oy The covariance of image
PC Phase congruency
GM Gradient magnitude
Q The entire domain of image
SL(%) The similarity value of each position x
FSIM
PC,(x) The phase consistency measure
Spc(x) The similarity measure of phase consistency
S (x) The similarity measure of gradient magnitude
H, The null hypothesis
Statistical analysis H, The alternative hypothesis
0 The test statistic
Time complexity o The complexity notation

results in 23 out of 24 cases (6 images times 4 thresholds) for
MABC, 24 cases for IDSA, 22 cases for WOA_TH, 24 cases
for BDE. To sum up, all the other algorithms show a signifi-
cant difference with LCBMO-2 based method. Table 13 ranks
all algorithms based on PSNR values, SSIM values, FSIM
values, fitness values, and running time. It is obvious
that our proposed algorithm in the field of color image

VOLUME 8, 2020

segmentation is the champion algorithm compared to other
algorithms.

E. DIFFERENT OBJECTIVE FUNCTIONS EXPERIMENT

It can be seen from the above experimental results that
LCBMO-2 based method is superior to other compared algo-
rithms using Masi entropy. In order to obtain a simple and
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TABLE 18. (Table 7 continued). Comparison of optimal thresholds for different algorithms using Masi entropy.

IMAGE K WOA_TH

BDE LCBMO-2

R G B R

G B R G B

4 2469115193 56 105 161 222 3694158 193 43 114 158 200
204979111137 275076105135 326289 112138 235282114 142

8 173 204 239 164 193 223 164192 212 176 205 238
174164 88 111 275069 87 105 2036 5269 89 173756 74 93
7 12 130 148 167 185 124 144 164 184 106 125 146 167 111 130 150 171
203219 239 205222237 192210225 193213 239
1226425772 243550 66 82 1732466175 122642 62 81
16 87102 115130 97 110 124 139 89102 115129 98 114 128 142
145161 176 191 153 167 181 195 143 158 171 185 157 172 186 201
206 221 239 209 223 237 197212 225 215229 241
4 4170163 222 32106 168 218 31122165210 4377163 222
3 265679111142 295287121156 255085120147 265679 111 142
174 207 232 182209 233 174 201 226 173 206 232

16 355470 88
12 110131 153 174

27425979 100
120 140 160 179

18345274 94
114133 153 174

2343587797
119139 160 179

8 196 217 235 198 216 233 194 210 230 199 217 235
16 29 43 56 70 1629 42 5570 18 31 46 60 75 16 3043 56 70
16 8499 115130 86102 118 133 89104 119 133 8398 113 127
146 161 176 192 149 164 179 195 147 160 174 187 144 160 175 191
207222235 212227241 201 214 230 206 221 235
4 68 119 164 202 64 115158 194 3489142183 8119 164 202
3 53671104 137 285686114142 315783108133 53975109 141
170 197 225 168 194 224 157183 216 171 197 225
4264769 90 26 46 66 86 106 2037547291 427507394
9 12 112134 154 175 127 146 164 181 110 128 147 166 114135154 175
194 214 233 196 214 233 183203 227 194 214 233
42036526985 2641557085 142637526883 41833476073
16 101 117 133 148 100 114 128 142 99 116 133 150 8699 114 129
164 179 194 209 156 169 184 197 166 183 199 216 148 164 181 197
225240 213227241 234246 214233
4 59 108 161 204 2697 154 197 68 112 154 197 59 108 158 202
3 275481111140 234577107137 234975107130 2756 81 109 137
169 198 225 166 193 221 156 184 212 166 194 223
1936 547292 1226425777 22426178 100 1936 547291
10 12 113133 153 172 99 121 144 166 115135 156 177 111 130 150 169
191210 231 187209 229 197217 238 189210 231
16 304558 73 1226 40 53 70 183146 62 77 163046 59 72
16 88104 120 136 85100 115130 93107 120 135 87101 117 132
151 165 180 194 146 161 176 191 151 166 180 194 143 155168 193
208 223 238 206221 236 208 223 240 205219233
4 58102 146 223 60 112 173 220 50 84 142 211 58104 147 223
3 325885113140 326083116143 3763 86113 141 325885113 140
165 196 229 174 203 229 170 199 225 165 196 230
193858 7797 23416079 99 274565 84 103 1735587795
11 12 117135155175 119138 158 178 122 141 160 179 114135155175
196 217 237 199 219 237 198 216 234 195216 235
16 3044 58 73 173249 6479 2135506579 162944 58 73
16 88102117 133 94109 123 138 93107 122 136 87100 114 128
148 163 179 195 153168 183 198 151 166 181 196 143 158 174 190
211226 241 212226 240 211225239 205223 239
4 57103 156 205 4282143197 29 65121 195 53100 152 201
3 14 4475 104 135 254778 108 139 1738 66 98 127 154575104 135
166 197 228 169 200 230 159191 220 166 197 228
1232517292 224058 77 96 1730 47 66 87 1733426474
1 12 112133 154 174 116 136 155 175 107 127 149 170 82112126 142
194 214 233 195214 234 191 211 232 173 209 232
10 25 40 55 70 1225415773 1730 44 58 72 1129 46 60 74

85100 115130
145160 175 190
205 220 235

87102 117 133
148 163 178 193
208 223 238

87102 117 132
147162 177 192
207 221 236

88102 116 130
144 158 174 190
206 222 236

56 105 161 222 3694158 193 53115 159 200 109 165 193 223 5697158 193
275176105135 326289112138 215282114142 6086 109 135 29466790113
164 193 223 164192 212 176 206 239 161 184 206 225 139 165 195
275069 87 106 153250 68 89 17416488 111 275176105130 275492112132
125 146 166 185 108 127 147 167 133 156 178 198 149 168 186 205 153 169 185 198

205222237 192210 225 216 236 246 221234248 212225256
2435506579 173246 61 76 1538 58 80 103 1406178 94 284962 76 90
94108 121 138 89103 116 130 121137 156 172 108 123 139 155 105 123 141 160
154 169 184 200 144 159 173 187 186 199 210 219 171 187 203 216 178 188 198 209
214225238 198 212 225 229238 247 226238 248 219230 256
32106 168 218 31122165210 56 118 170 222 41107 168 218 39122165 210
295286120154 255083115143 416892 123 151 386193124156 255186122152
179207 233 172201 226 177 207 232 182209 233 180 205 226

2744 62 83 104
125145 163 182

1936 54 75 94
114133 154 173

355882110126
141157 173 189

294977105133
156 177 196 212

254977102125
147 167 182 197

207231242 194 210 230 206221 235 224233 245 210224 236

16 30 46 61 72 1321314253 3252708499 1430 47 64 86 213960 80 100
83 104 124 144 668097 114 131 115131 147 163 105 124 142 159 117 133 150 166
160 175 190 205 148 166 185 205 174 186 198 209 176 192 208 222 180 194 206 217
218232243 224242 220230240 233241248 227241255

64 115 158 194 3386138183 68 119 164 202 68 121 164 197 102 147 179 211
285686114142 3368101 125 54382119152 5999122 145 6190 118 146
168 194 224 148 174 197 224 178 202 226 167 188 213 233 174197 215 233

2646 66 87 104
122141 158 178
196 218 234

82645638199
116 132 147 162
176 189 200 214

2037557595
116 135 148 166
183 204 227
203750657993
107 121 135 148
162 175 189 203

744 87 126 148
168 183 199 214
229 241 249
41832455974
89105122 139
157 175 192 209

9386796122
146 167 189 204
219233244
827496989 108
128 147 167 184
199 212 223 233

32527190 109
128 148 168 186
204 224 241

30527189104
118 133 148 162
175 188 200 212

228 241 224241 225240 242249 224235 246
2697152197 68 114 156 197 59 108 161 204 81121 169 209 73114 156 197
234576102130 234975108132 386291120148 234579112144 2872107 130
159 187 218 162 190 216 177 202 227 173 200 224 156 178 201 221

25507393114
137159 176 193

21395876 96
112130 148 166

275477103 126
147 168 185 202

23457293114
134 155 173 190

23487396 112
131 151 169 187

210224 238 184 201 221 215228 241 207221237 20322124
1226 38 49 60 1832 48 65 80 18 46 65 80 96 62035497288 193451 69 85
7287103118 94107 119 133 112128 145 162 104 119 135 152 103 119 138 157
135152 169 187 148 162 176 190 179 191 202 213 169 187 204 219 178 200 216 228
203 220 235 203 220238 223233243 233244 238242247

61112173 220
326088116143

50 84 142 211
386488116143

58 108 148 223
5788117 144

60 112 173 220
6589113 136

65134177217
6589117 143

174 203 229 173 204 228 170 195 217 237 163185211 233 167 190 213 233
18527290110 2238557493 254876101125 326085108 130 2238557492
129 147 166 185 113134 153 175 148 169 188 203 150 169 185 202 116 141 165 187
204213 228 195214 232 218232244 216230243 204 221 237

173249 63 78
92106 119 133
147161 176 191
206 223 239
4282143 197
254778108 139
169200 230
20344768 89
111134 156 178
200 222 235
12233448 63
7891103 118
137 155 173 190
208 223 238

2135496377
91105 120 134
149 164 179 194
209 224 239
3067122 195
264772105134
166 197 225

17 31 48 66 86
106 126 146 168
189210 231
1526 41 60 81
100 114 126 139
152166 180 195
211225238

1126 43 60 80
104 130 155173
186 197 207 218
228238 247

57 103 156 205
154575104 135
166 197 228
165383 110 127
145160 176 192
208 223 237
1233537189
107 123 139 154
168 182 195 208
220231241

2545628096
113128 143 157
171 184 197 209
221233244
4282143 197
276088 119 148
176 204 231
30527597119
139159 176 192
209 224 239
2341587796
114 130 145 160
175189 202 214
226 235244

213550 65 80
94 110 125139
153167 181 196
210224 239
2965121 195
265786116 145
174 203 228
214061 81 103
123 143 162 180
199 216 234
1527415671
87102 117 132
148 164 179 195
211225238

powerful technique for color image segmentation, different
thresholding techniques (different objective functions) based
on LCBMO-2 is conducted in this section. Three Berkeley
images and three satellite images are selected for testing. The
PSNR, SSIM, and FSIM values obtained by LCBMO-2 based
method using Otsu, Minimum cross entropy, Kapur entropy,
Tsallis entropy, and Masi entropy are given in Tables 14-16.
It can be seen that LCBMO-2 based method using Masi
entropy gives higher results than using other thresholding
techniques in most cases. For example, in terms of PSNR
values, Masi technique presents better results in 18 out
of 24 cases (6 images times 4 thresholds). Considering
other two indicators, the Masi entropy technique outperforms
again, in 17 cases for SSIM and 18 cases for FSIM. To sum
up, these satisfied results prove that LCBMO-2 based method
using Masi entropy is superior to the method using other
thresholding techniques.
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VII. CONCLUSION AND FUTURE WORK

In this article, the Barnacles mating optimizer algorithm
based on logistic model and chaotic map for multilevel
thresholding color image segmentation is proposed. Among
many thresholding segmentation methods, Masi entropy
method is adopted. The proposed algorithm is used to
find the optimal threshold for color images. Meanwhile,
10 algorithms are selected for comparison. Objective func-
tion value, PSNR, SSIM, FSIM, Wilcoxon rank-sum test,
and Friedman test are used to evaluate the segmentation
quality. Firstly, by the convergence curve and boxplot at
K = 16, it can be seen that LCBMO-2 algorithm can
find larger objective function value more times. Then,
in terms of PSNR, SSIM, FSIM, the value obtained by the
LCBMO-2 algorithm is larger than other algorithms in most
cases. It concludes that the segmentation performance based
on LCBMO-2 algorithm is superior. Furthermore, the results
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of Wilcoxon rank-sum test and Friedman test demonstrate
that LCBMO-2 is significantly different from other algo-
rithms, and the improvement is effective. To sum up, a vari-
ety of experiments fully proves that LCBMO-2 algorithm
has higher search accuracy and convergence speed, stronger
robustness, and the overall performance of the algorithm is
enhanced.

However, like other optimization algorithms, LCBMO has
certain limitations. The computational complexity needs to be
reduced. Runtime is important for real-world problems. The
distributed island model can organize population into small
independent groups (islands) and make the algorithm run in
parallel. We believe that it is a potentially effective strategy
to reduce the complexity. In the future, the relevant research
directions are given as follows:

(1) Extend the algorithm to multi-objective problem for
obtaining superior segmentation effect.

(2) Explore to introduce LCBMO-2 algorithm in other
fields, such as machine learning and data mining.

APPENDIX
See Tables 17 and 18.
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