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ABSTRACT Barnacles mating optimizer (BMO) is an evolutionary algorithm that simulates the mating
and reproductive behavior of barnacle population. In this article, an improved Barnacles mating optimizer
based on logistic model and chaotic map (LCBMO) was proposed to produce the high-quality optimal result.
Firstly, the logistic model is introduced into the native BMO to realize the automatic conversion parameters.
This strategy maintains a proper relationship between exploitation and exploration. Then, the chaotic map is
integrated to enhance the exploitation capability of the algorithm. After that, six variants based on LCBMO
are compared to find the best algorithm on benchmark functions. Moreover, to the knowledge of the authors,
there is no previous study on this algorithm for multilevel color image segmentation. LCBMO takes Masi
entropy as the objective function to find the optimal threshold. By comparing different thresholds, different
types of images, different optimization algorithms, and different objective functions, our proposed technique
is reliable and promising in solving color image multilevel thresholding segmentation. Wilcoxon rank-sum
test and Friedman test also prove that the simulation results are statistically significant.

INDEX TERMS Barnacles mating optimizer, logistic model, chaotic map, Masi entropy, multilevel thresh-
olding, color image segmentation.

I. INTRODUCTION
With the emergence of computer technology, image
processing has been widely used in many fields. Image
segmentation is one of the classical topics in image pro-
cessing [1]. It divides the original image into significative
and multiple sub-regions according to intensity, color, texture
and other attributes of the image [2]. Image segmentation
is often the pretreatment stage of higher-class processing
such as: image analysis, object recognition, and computer
vision. Consequently, the performance of higher-class pro-
cessing system depends on the accuracy of the segmen-
tation technique adopted [3]. Researchers have proposed
many kinds of segmentation, including edge detection, his-
togram based thresholding, region, feature clustering, and
neural networks [4]–[6]. Histogram based thresholding is a
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simple and the most commonly used image segmentation
approach [7], [8]. Thresholding methods can be divided
into two categories: bi-level thresholding and multi-level
thresholding. Bi-level thresholding means that the target and
background can be clearly distinguished by a single threshold
value. Multi-level thresholding denotes that the given image
can be segmented into various classes by multiple threshold
values [9]–[11].

In recent years, the methods to determine the optimal
threshold for a given image can be divided into two cate-
gories: parametric and non-parametric methods [12]. In the
parametric techniques, it is assumed that the probability den-
sity function of each class is known. The common parameter
methods generally follow a certain distribution of probability
density, such as Gauss distribution [13], Poisson distribu-
tion [14], [15], generalized Gaussian distribution [16], and
so on. This methods differs from the actual situation to some
extent. In addition, the segmentation is affected when classes
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are highly overlapped. Therefore, the parametric approaches
are not ideal choices in this case. For non-parametric meth-
ods, the probability density function is usually unknown, and
the threshold is generally searched by optimizing the objec-
tive function [17]. The classical non-parametric methods are
mainly as follows: Otsu proposed a method to maximize the
variance between classes at first [18]. Then themethods based
on information entropy theory are proposed, which are cate-
gories to measure homogeneity. Among them, themost repre-
sentative entropy approaches for image segmentation include:
Minimum Cross entropy [19], Kapur entropy [20], Renyi
entropy [21], Tsallis entropy [22], and Masi entropy [23].
They can be easily extended to multi-level thresholding.

Among them, a novel generalized entropy measurement
called Masi entropy has attracted increasing attention in the
past few years. Furthermore, Tsallis and Renyi entropies
are two different generalizations along two different paths.
Furthermore, Tsallis entropy is generalized to non-extensive
systems, while Renyi entropy is quasi-linear devices. How-
ever, Masi entropy is extended to non-extensive systems
and non-linear devices, including Tsallis entropy and Renyi
entropy [24], [25]. A publication for multilevel thresholding
segmentation of color satellite images based on Masi entropy
has been proposed by Shubham in 2019. Simulation results
show that the proposed method is effective and has better
segmentation performance than Kapur, Renyi and Tsallis
entropy [26]. Although the exhaustive search is effective in
image segmentation, it cannot find the optimal threshold, and
the complexity increases exponentially with the number of
thresholds. [27], [28]. In order to speed up this process, one
option is to replace some classical exhaustive searches based
on meta-heuristic search algorithms.

Sulaiman proposed a novel bio-inspired algorithm called
Barnacles mating optimizer (BMO) in 2020 [29]. Obvi-
ously, the BMO algorithm simulates the intelligent behav-
ior of barnacles in nature, including selection process and
reproduction. It can be seen from the lecture that the BMO
algorithm has outstanding convergence ability, fast conver-
gence speed and excellent search ability. But according to
the no free lunch theorem, it can be seen that no indepen-
dent algorithm can solve all optimization problems [30].
Therefore, the BMO algorithm need to be improved. The
logistic regression model is a common improvement strategy
and widely used in various optimization methods. In 2018,
Qasim et al. applied logistic regression model for optimiza-
tion of feature selection. The results showed that the pro-
posed method can obtain a great classification performance
with few features [31]. In 2019, by using logistic regres-
sion prediction model, Ghazvini et al. solved the problem
of the variables affecting tuberculosis [32]. Therefore, this
article chooses logistic regression model to improve BMO.
Meanwhile, chaotic map is an excellent mathematical strate-
gies, which can improve the performance of meta-heuristic
algorithm in avoiding local optimization. Chaotic map can
provide random behavior without random component [33].
Accordingly, scholars have added chaotic map to the

FIGURE 1. Selection of mating process of ten barnacles [69].

FIGURE 2. Visualization of six different chaotic maps.

optimization algorithm to improve the ability of algorithms.
J. Alikhani Koupaei et al. proposed a new optimization algo-
rithm based on chaotic maps. Experimental results proved
that the modified algorithm was competitive in multi/uni-
modal objective functions [34]. A. Naanaa embedded spa-
tiotemporal map into chaos optimization algorithms to
improve its convergence and efficiency [35]. Yang et al.
proposed chaos optimization algorithms based on chaotic
maps to achieve the high efficiency, which improve the con-
vergence speed and accuracy [36]. Chuang et al. combined
chaotic maps with s binary particle swarm optimization,
which sped up search process the algorithm [37]. Motivated
by these successful applications of the strategies, the authors
introduce logistic model and chaotic map into BMO algo-
rithm to increase the diversity of algorithm and prevent skip-
ping over the optimal solutions. In addition, it also better
balances the exploration and exploitation trends.

Image segmentation based on histogram and global thresh-
old is most commonly used to determine threshold value.
Masi entropy is a bi-level threshold method based on the gray
level and its histogram. AndMasi entropy objective functions
can be maximized by LCBMO to find the optimum threshold
value. Furthermore, the provided image is segmented into
unique classes. In this article, a series of experiments are
conducted, and the experimental results are analyzed and
discussed in details. The performance of image segmenta-
tion is measured in terms of objective function values, peak
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FIGURE 3. Flowchart of the LCBMO algorithm based multilevel thresholding method.

signal-to-noise ratio (PSNR) [38], [39], structural similarity
index (SSIM) [40]–[42], feature similarity (FSIM) [43], [44],
Wilcoxon rank-sum test [45], [46], and Friedman test [47].
In order to compare various algorithms more intuitively,
the convergence curve based on objective function values
are drawn. The experimental results confirm that the pro-
posed Barnacles mating optimizer based on logistic model
and chaotic map can be effectively used for multilevel
thresholding.

The remainder of this article is organized as follows:
Section II discusses related studies. Section III outlines some
preliminaries. Section IV gives the proposed BMO based
on logistic model and chaotic map for multilevel thresh-
olding color image segmentation. The benchmark functions
experiments are presented in Section V. Other simulation
experiments and results analysis are described in Section VI.
Finally, Section VII concludes the work and suggests some
directions for future studies.

II. LITERATURE REVIEW
In 2015, A.K. Bhandari et al. proposed satellite image seg-
mentation model based on modified artificial bee colony
algorithm, in which the Kapur, Tsallis and Otsu functions
are used to determine the threshold [48]. And in 2016,
Mozaffari et al. introduced an inclined planes system opti-
mization algorithm to solve the problems in different fields
of science and engineering [49]. The convergence heteroge-
neous particle swarm was utilized to find the best thresholds
in literature, which has the better stability and convergence
in 2017 [50]. Oliva et al. combines cross entropy with crow
search algorithm for image segmentation to reduce computa-
tional complexity in the same year [51]. H. N. Liang et al.
applied modified grasshopper algorithm in image segmen-
tation technology, which showed excellent results [52]. Fur-
thermore, cuckoo search algorithm based on minimum cross
entropy is proposed to make the method more practical
and uncomplicated [53]. In 2018, S. Kotte presented an
improved differential search algorithm for gray scale images

to increase its computational efficiency and accuracy of seg-
mentation [54]. In 2019, H. S. Gill exploits minimize cross
entropy as the objective function, and uses teaching-learning-
based optimization algorithm to select multilevel threshold
values. The experimental outcomes indicate the proposed
method has an advantage of efficiency and robustness [55].
S. J. Mousavirad published the human mental to search the
optimal threshold to increase segmentation efficiency [56].
Bohat studied a new heuristic for multilevel thresholding of
images, and combined whale optimization algorithm. Mean-
while, the results demonstrate that the proposed algorithm
is superior to the other algorithm [57]. A novel beta differ-
ential evolution algorithm-based fast multilevel thresholding
is applied for color image segmentation in 2020. Then the
performance is proved to be superior to other methods in
image segmentation such as artificial bee colony, particle
swarm optimization and differential evolution [58]. And a
competitive swarm algorithm was applied in image segmen-
tation guided based opposite fuzzy entropy to improve the
segmentation accuracy in the same year [59]. Furthermore,
a benchmark of recent population-based metaheuristic algo-
rithms was proposed for high-dimensional multi-level max-
imum variance threshold selection, which has attract much
attention [60]. D. Oliva combined the thresholding tech-
niques and the evolutionary Bayesian network algorithm to
generate the accurate class even in complex condition [61].
E. R. Esparza represented an efficient harris hawks method
used into the image segmentation so as to produce the effi-
cient and reliable results [62].

These algorithms are successfully applied to multilevel
thresholding and reduce the computational complexity, which
inspire further research by scholars.

III. MATERIAL AND METHODS
A. MULTILEVEL THRESHOLDING
Threshold segmentation processes the digital image his-
togram. We use an algorithm as the segmentation
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TABLE 1. Results of benchmark functions.

criterion, and the threshold that satisfies the criterion function
is called the optimal segmentation threshold. By compar-
ing with the optimal threshold, the image is divided into
target region and background region. The image threshold
method can be summarized into two categories: bi-level
thresholding segmentation and multilevel thresholding
segmentation. Bi-level thresholding segmentation cannot
completely extract the target at a particular image segmen-
tation, so we need multilevel thresholding to divide the
whole image into multiple regions. Multilevel threshold-
ing segmentation can highlight the features among image
regions.

For a n-bit gray image, the gray level of the image is L = 2n

and the gray level interval is {0, 1, . . . ,L − 1}. ni denotes the
number of pixels whose gray level is i. N denotes the total
number of pixels. pi denotes the probability density of ith the

gray value. They are defined as follows:

N =
L−0∑
i=0

ni (1)

pi =
ni
N

(2)

L−0∑
i=0

pi = 1 (3)

Suppose there are K thresholds of t1, t2, . . . , tk . They
divide the gray level of a given image into K + 1 classes:

C0 = [0, 1, . . . , t1]

C1 = [t1 + 1, t1 + 2, . . . , t2]

Ck = [tk + 1, tk + 2, . . . ,L − 1]
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FIGURE 4. Original test images and histograms of color channels.

The selection of threshold is very critical, and it is related
to the quality of the segmentation results. In this article, Masi
entropy method are adopted.

B. MASI ENTROPY
According to Tsallis and Renyi entropy, Masi proposed
a novel generalized entropic measure by introducing the
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FIGURE 5. The segmentation results based on LCBMO-2 algorithm at K = 4.

concept of conventional thermodynamic entropies in 2005 [23].
Masi entropy segment color images by utilizing thorough
probability function, and its detailed definition is as follows:

ωj =
∑
i∈Cj

Pi (4)

Eq. (4) is proposed to express the probabilities of class
occurrence ωj, 0 ≤ j ≤ k . Based on the non-extensivity
of Tsallis entropy the additivity of Renyi entropy, Eqs. (5)
and (6) for calculating Masi entropy are proposed, where

Ej stands for Masi entropy. r ≤ 0, r 6= 1, In this article,
the power parameter r is set to 1.18 through experiments [24].

Ej =
1

1− r
log

1− (1− r)
∑
i∈Cj

(
Pi
ωj

)
log

(
Pi
ωj

) (5)

ψ (t1, t2, · · · , tk) =
k∑
j=0

Ej (6)
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TABLE 2. Parameters of the compared algorithms.

Masi entropy method obtains the optimal threshold val-
ues according to maximizing the total entropy. The optimal
threshold is represented by Eq. (7).

{
t∗1 , t
∗

2 , · · · , t
∗
k
}
= argmax

0<t1<t2···<tk<L−1
(ψ (t1, t2, · · · , tk)) (7)

Compared with the histogram of grey scale image,
the RGB image is more complex. In RGB space, every
color pixel of the image is composed of red, green and
blue [63], [64]. In this article, three channel components of R,
G and B are extracted at first. Then, each channel is calculated
by Masi entropy, and the objective function is maximized to
find the optimal threshold for the corresponding channel [65].
The RGB channel components are divided by the optimal
threshold and then merged to form the ultimate segmented
image.

C. BARNACLES MATING OPTIMIZER
Barnacles mating optimizer (BMO) [29] is a novel bio-
inspired optimization algorithm inspired by the mating pro-
cess of barnacles. Barnacles live in water and are famous
for their long penises [66]. According to initialization, selec-
tion, and reproduction, simulation optimization process is
realized. The mathematical model is described in details as
follows.

In the initialization process, the barnacle population can be
expressed in the following matrix.

X =

 x11 . . . xn1
...

. . .
...

x1N . . . xnN

 (8)

whereN is the number of barnacle population, n is the number
of control variables. In the next selection process, the parents
to be mated are randomly selected from the population. The
mathematical forms are proposed in Eq. (9) and (10).

barnacle_d = randperm(N ) (9)

barnacle_m = randperm(N ) (10)

where barnacle_d represents the Dad of the offspring,
barnacle_m represents theMum of the offspring.
In the reproduction process, BMO mainly produces the

offspring based on Hardy-Weinberg principle [67], [68]. The
interesting fact is that the penis length of the barnacle (pl)
plays an important role in determining the exploitation and
exploration of BMO algorithm. When pl is equal to 7, it can
see from Fig. 1 that barnacle #1 can only mate with one of
the barnacles #2-#7. Then, the exploitation process will be
occurred. In this case, Eq. (11) is proposed to produce new
offspring from parents.

xN_new
i = pxNbarnacle_d + qx

N
barnacle_m (11)

where p is a random number drawn from the standard normal
distribution between [0, 1], q = (1 − p), xNbarnacle_d and
xNbarnacle_m are the variables of Dad and Mum of barnacles
respectively which are selected in Eq. (9) and (10). Fur-
thermore, p and q represent the percentage of genotype of
Dad and Mum in the new generation. The new offspring is
produced based on genotype frequencies p and q of parents.
If barnacle #1 mates with barnacle #8-#10, the offspring
is proceeded by sperm cast process. Then, the exploration
process will be occurred. In this case, Eq. (12) is proposed
to produce new offspring from parents.

xn_newi = rand()× xnbarnacle_m (12)

where rand() is the random number between [0, 1]. It can
be noted that Eq. (12) shows the new offspring is produced
only based onMum. Generally, the positions of barnacles are
updated in each iteration by Eq. (11) or Eq. (12) to find the
best position (the best solution).

D. LOGISTIC MODEL
The adaptive parameter allows the algorithm to smoothly
transit between exploration and exploitation. Therefore, it is
important to choose a suitable conversion model. The logistic
model and its mathematical expression are given as follow-
ing [70]. How the conversion parameter accords with the
change law of logistic model will be introduced in Section III.

dP(t)
dt
= λ · (1−

P(t)
Pmax

) · P(t)

P(0) = Pmin

(13)
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TABLE 3. The PSNR of each algorithm under Masi entropy.

TABLE 4. The SSIM of each algorithm under Masi entropy.

where t is the number of iteration, and λ is the initial decay
rate. By solving differential Eq. (13), logistic function (14) is
obtained.

P(t) =
Pmax

1+ (Pmax
Pmin
− 1) · e−λt

(14)

It can be seen from (7) that P(t) = Pmin when t = 0, while
P(t) = Pmax, t →∞.

E. CHAOTIC MAP
Chaotic map is one of the best mathematical strategies
to improve the performance of the metaheuristic algo-
rithm in terms of local optima avoidance. Chaotic map can
provide random behavior without the need for random

component [33]. The mathematical modulation of six differ-
ent chaoticmaps are as following. Fig. 2 visualizes the chaotic
behavior. The initial value may have a significant effect on
the fluctuation patterns of some chaotic maps. Fig. 2 is drawn
based on the initial value of 0.7 [71], [72].

The Chebyshev map is formulated as [73]:

xi+1 = cos(icos−1(xi+1)) (15)

The equation of the Gauss/mouse map is defined as fol-
lows [74]:

xi+1 =

 1 xi = 0
1

mod(xi, 1)
otherwise

(16)
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TABLE 5. The FSIM of each algorithm under Masi entropy.

TABLE 6. The average fitness value of each algorithm at K = 16.

The Logistic map is defined as [75]:

xi+1 = axi(1− xi), a = 4 (17)

The Singer chaotic map equation is expressed as [76]:

xi+1 = µ(7.86xi − 23.31x2i + 28.75x3i
− 13.302875x4i ), µ = 1.07 (18)

The Sinusoidal map is represented by the following
equation [77]:

xi+1 = ax2i sin(πxi), a=2.3 (19)

The family of Tent map can be represented as [78]:

xi+1 =


xi
0.7

xi < 0.7

10
3
(1− xi) xi ≥ 0.7

(20)

IV. PROPOSED METHOD
A. IMPROVED BARNACLES MATING OPTIMIZER (LCBMO)
Metaheuristic algorithms all have two important stages
in the search level: exploration and exploitation. The
balance between these two capabilities directly affects
the performance of the algorithm. In the native
BMO algorithm, low search accuracy and limited production
capacity are the main drawbacks. In order to improve the

competence of BMO algorithm to handle optimization prob-
lems, two strategies regarding logistic model and chaotic map
are introduced. The pattern and mechanism of improvement
will be described in details.

In the original BMO algorithm, pl can be set to 50%-70%
of the total population size by repeated experiments, which is
beneficial to balance the exploitation and exploration. More
exploration processes will occur when the value of pl is small.
On the contrary, more exploitation processes occur when the
value of pl is large. Finally, the authors set pl to a constant
value (70% of the population of barnacles). In view of this,
the logistic model is used to improve pl to realize the adaptive
transformation of parameters. The parameter is improved by
the following equation.

pl(t) =
plmax

1+ ( plmax
plmin
− 1) · e−λt

(21)

It can be seen from (7) that pl(t) = plmin when t = 0,
while pl(t) = plmax, t → ∞. The logistic model makes
BMO algorithm to perform high exploration in the initial
stage and more exploitation in the final stage of search. It can
be regarded as a proper strategy to balance the two stages.

In addition, in order to avoid local optimal values,
the chaotic map is used to improve the position updat-
ing equation of barnacles. Eq. (12) is replaced by the
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following form.

xn_newi = m× xnbarnacle_m (22)

where m is a chaotic vector obtained based on six chaotic
maps. The chaotic vector can provide random behavior with-
out the need for random component. The purpose of intro-
ducing this strategy is to make solutions search in space as
widely, randomly and globally as possible. The exploitation
efficiency is the primary beneficiary. Finally, the improved
version of BMO is called LCBMO whose pseudocode is
provided in Algorithm 1.

The computational complexity of LCBMO depends
on the related factors such as the number of barnacles N ,
the dimension D, the maximum number of iterations T ,
and the cost of fitness function F . In the initialization process,
the computational complexity is O(N ). The computational
complexity of sorting process is O(N ). The computational
complexity can be expressed as O(T × N × F) for fitness
evaluation process and O(T ×N ×D) for updating positions.
The overall computational complexity of LCBMO is: O(N×
(2+T × (F + D))).

Algorithm 1 Pseudocode of the LCMO Algorithm
1: Initialize the population of barnacles Xi using Eq. (8)
2: Calculate the fitness of each barnacle
3: Sort to locate the best result at the top of the population
4: While t < Max_iter do
5: Set the dynamic value of pl using Eq. (21)
6: Select Dad and Mum using Eqs. (9) and (10)
7: If selection of Dad and Mum = pl
8: For each variable
9: Generate offspring using Eq. (11)
10: End for
11: Else if selection of Dad andMumpl
12: For each variable
13: Generate offspring using Eq. (22)
14: End for
15 End if
16 Bring the current barnacle back if it goes outside

boundaries
17 Calculate the fitness of each barnacle
18 Sort and update the best solution if there is a better

solution
19 t = t+1
20 End while
21 Return the best solution

B. LCBMO BASED MULTILEVEL THRESHOLDING METHOD
The process of finding the threshold by Masi entropy is
actually to find the optimal solution. However, they have high
computational complexitywhen dealingwithmultiple thresh-
olds. In order to achieve efficiency, it is entirely possible to
use LCBMO algorithm to deal with this. The basic steps are
described as follows:

Firstly, we input selected color images and calculate the
components of the histogram. Next, the number of search
agents and iterations are initialized, and the fitness of initial
population is calculated. The dynamic pl value is used to
determine the position update mode of barnacles. Individual
with high fitness value is preserved. Repeat this process until
the maximum number of iterations is completed. The best
position represents the optimal threshold values of segmen-
tation. The flowchart is provided in Fig. 3.

V. BENCHMARK FUNCTIONS EXPERIMENT
In this section, 23 standard functions are used to evaluate
the optimization improvement of LCBMO algorithm. These
benchmark functions are divided into three groups: unimodal
(f1 − f7), multimodal (f8 − f13) and fixed-dimension mul-
timodal (f13 − f23). Furthermore, the relevant composition,
dimension, range limitation and optimal position of 23 func-
tions can be found in [49]. Meanwhile, all the experimental
series are carried out onMATLABR2016b, and the computer
is configured as AMD A8-7410 APU with AMD Radeon R5
Graphics @2.20 GHz, using Microsoft Windows 7 system.
For the experiment, the most traditional and improved BMO
algorithm for global optimization are adopted. And the pop-
ulation size is set to 30 while the number of iterations is set
to 500. Moreover, all experiments are conducted 30 times.

In LCBMO, the logistic model can make the algorithm be
highly explored in the initial stage and developed more in
the later search period. Compared with the traditional BMO,
it has excellent exploration and exploitation. For the chaotic
map, putting it into BMOas a strategy can greatly improve the
convergence and high efficiency. The LCBMOs are divided
into 6 different types. LCBMO-1 to LCBMO-6 all intro-
duce the logistic model, but utilize Chebyshev, Gauss/mouse,
Logistic, Singer, Sinusoidal, and Tent maps, respectively.
The performance of algorithms is evaluated according to the
mean value and standard deviation (Std). The stability of each
model is evaluated by Std value. Meanwhile, the best results
has been highlighted in boldface in Table 1. It can be found
from the Table 1 that the LCBMO-1, LCBMO-2, LCBMO-3,
LCBMO-4, LCBMO-5 and LCBMO-6 models show much
better results compared to BMO on unimodal benchmark
functions. In other words, Chebyshev, Gauss/mouse, Logis-
tic, Singer, Sinusoidal and Tent chaotic maps have success-
fully improved the performance of the BMO algorithm. For
multimodal benchmark functions, it can be seen that the
LCBMO-2 model shows the best value and great stability
in most cases. Although BMO, LCBMO-1 and LCBMO-
6 models show competitive result in some cases, this result
still proves that the optimal solution obtained by the proposed
method is high-quality. In addition, as for fixed-dimension
multimodal benchmark functions, compared to other hybrid
model, LCBMO-2 model can keep the population diversity
in the later iteration. Therefore, the ability to avoid local
optimization has enhanced. Moreover, it can be found from
the Table 1 that LCBMO-2 shows the lowest value of Std,
which indicates better stability. Thus, it can be said that the

VOLUME 8, 2020 213139



H. Li et al.: LCBMO With Masi Entropy for Color Image Multilevel Thresholding Segmentation

FIGURE 6. The boxplot based on each algorithm at K = 16.

proposed method in this article is more effective than BMO
in 23 benchmark functions, so this article combines LCBMO
withmultilevel thresholding segmentationmethod to improve
the image segmentation accuracy.

VI. COLOR IMAGES SEGMENTATION EXPERIMENT
A. PREPARED WORKS
1) EXPERIMENTAL SETUP
All the experimental series were carried out on MATLAB
R2016b, and the computer was configured as AMD
A8-7410 APU with AMD Radeon R5 Graphics @2.20 GHz,
using Microsoft Windows 7 system.

2) COMPARED ALGORITHMS
After the thresholding segmentation method is extended from
two-level thresholding to multi-level thresholding, its com-
putational complexity increases exponentially. Therefore,
a large number of optimization algorithms are applied in

multithreshold segmentation. In order to prove the superiority
of the modified algorithm, two sets of 10 meta-heuristic
algorithms which have been proposed and widely applied
to multithreshold segmentation are selected for comparison
experiments, including MABC [48], CSA [51], GOA [52],
CS [53], EO [79], MPA [80], IDSA [54], TLBO [55], WOA-
TH [57], and BDE [58]. These comparison algorithms have
different search strategies and mathematical formulas and are
representative algorithms for multithreshold. The maximum
of iterations for all algorithms is 500 and the population size
is 30. We follow the same parameters in the original arti-
cles. The main parameters of various algorithms are shown
in Table 2.

3) COLOR IMAGE DATABASE
In this article, two sets of twelve color images are selected
from the Berkeley university database and NASA landsat
image dataset for performance analysis. The satellite images
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FIGURE 7. The segmentation results based on each algorithm.
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FIGURE 7. (Continued.) The segmentation results based on each algorithm.

can be downloaded from the website [81]. Fig. 4 shows the
original test images and the corresponding histograms for
each of color channels (red, green, and blue). All images are
in JPG format.

The experiments use the control variable method, in which
each algorithm runs each image 30 times separately. The
number of threshold K includes: 4, 8, 12, and 16.

B. EVALUATION METRICS
1) PEAK SIGNAL TO NOISE RATIO
The peak signal to noise ratio (PSNR) is an objective image
quality evaluation algorithm based on pixel error. A higher
PSNR value indicates that the quality of the distorted test
image is better and closer to the original reference image.
However, it is based on the error between corresponding
pixels and does not take into account the visual characteristics
of human eyes. Its calculation formula is as follows:

PSNR = 10 log10
L2

MSE
(db) (23)

where L represents the grayscale range of the image. For 8-
bit grayscale image, L = 255. MSE is the mean square error
between the original image and the processed image.

MSE =

∑M
m=1

∑ N
n=1 [R (m, n)− I (m, n)]

2

M × N
(24)

where M × N is the size of the image, R(m, n) represents
the gray value of coordinates at the reference image (m, n),
and I (m, n) represents the gray value of coordinates at the
distorted image (m, n).

2) STRUCTURAL SIMILARITY INDEX
It is an objective image quality evaluation algorithm based
on structural similarity. It measures the image similarity from
brightness, contrast and structure. SSIM value range is [0, 1].
If the value is closer to 1, the image distortion is smaller. It is
defined as follows

SSIM (R, I ) =
(2µRµI + C1)(2σRI + C2)

(µ2
R + µ

2
I + C1)(σ 2

R + σ
2
I + C2)

(25)

where UR and UI are the average gray values of the original
image R and the segmented image I . σ 2

R and σ 2
I represent

the variance of image R and image I respectively. σRI is
the covariance of image R and image I . C1 = (0.01L)2,
C2 = (0.03L)2.They are constants that are used to maintain
stability.

3) FEATURE SIMILARITY INDEX
On the basis of SSIM, researchers have proposed a new image
quality assessment metric based on underlying features,
namely feature similarity algorithm (FSIM). Researchers use
two complementary features of phase congruency (PC) and
gradient magnitude (GM) to calculate FSIM.

FSIM =

∑
x∈� SL (x)× PCm (x)∑

x∈� PCm (x)
(26)

where � is the pixel field of the entire image, SL (x) rep-
resents the similarity value of each position x,and PCm (x)
denotes the phase consistency measure.

SL (x) = [SPC (x)]α · [SG (x)]β (27)

PCm (x) = max (PC1 (x) ,PC2 (x)) (28)
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TABLE 7. Comparison of optimal thresholds of each algorithm.

where SPC (x) is the similarity measure of phase consistency,
SG (x) represents the similarity measure of gradient magni-
tude, and α, β are both constants.

SPC (x) =
2PC1 (x)× PC2 (x)+ T1
PC2

1 (x)× PC
2
2 (x)+ T1

(29)

SG (x) =
2G1 (x)× G2 (x)+ T2
G2
1 (x)× G

2
2 (x)+ T2

(30)

where T1 and T2 are positive constants that increase stability.

4) WILCOXON RANK-SUM TEST
Wilcoxon rank-sum test is used to compare the two sam-
ples. The p value returned represents the probability whether
two independent samples are identical, and the h value
returned represents the result of hypothesis test. The null
hypothesis H0 represents the statement of no difference.
At significance level 5%, it generally believe that if
p <0.05(or h = 1) means rejection of the null hypothesis,
if p >0.05 (or h = 0) means that H0 cannot be rejected at the
5% level.
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TABLE 8. The PSNR of each algorithm under Masi entropy.

TABLE 9. The SSIM of each algorithm under Masi entropy.

5) FRIEDMAN TEST
Non-parametric Friedman test is applied to estimate which
algorithms have significant differences. This multiple com-
parison can be used for comparisons between more than two
algorithms and ranks the each algorithm separately.

C. BERKELEY IMAGES SEGMENTATION EXPERIMENT
This subsection analyzes the results provided byMasi entropy
implementations based on CSA, GOA, CS, TLBO, EO,MPA,
and LCBMO-2, after being applied to segment the 6 Berke-
ley images (image 1-6). Fig. 5 represents segmented images
into four classes using LCBMO-2 algorithm and the fitted

histogram with the thresholds for the segmented images. The
Berkeley images are segmented using Eq. (6) and the best
threshold values found by the LCBMO-2. Fig. 5 visually
shows the search capabilities of LCBMO-2 in K-dimensional
search space.

Table 3-5 report PSNR, SSIM, and FSIM from the eval-
uation of the segmented images, respectively. From the
Table 3, we can observe that the LCBMO-2 based method
gives the higher PSNR values in general, which indi-
cates that the segmented image is similar to the original
image. For example, in the image 6 through Masi technique
(for K = 16), the PSNR values are 28.6911, 26.4871,
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TABLE 10. The FSIM of each algorithm under Masi entropy.

TABLE 11. The average fitness value of each algorithm.

24.9146, 28.6828, 28.9307, and 29.8234 for CSA, GOA,
CS, TLBO, EO, and MPA respectively. Besides, it can
be seen from the Table 4 that LCBMO-2 based method
outperform the other algorithms again, which shows the
segmentation accuracy of proposed algorithm is satisfied.
On comparing the FSIM values, which are given in Table 5,
it can be observed that the values increase as the number
of the thresholds increase. And the proposed method gives
the highest values, accounting for 75% of the total results.
These results indicate the precise search ability of LCBMO-2
based method, which is suitable for color Berkeley images
segmentation.

As the stochastic nature of metaheuristic algorithms,
the experiments are conducted over 30 runs. Then the average
fitness values at K= 16 are presented in Table 6. It can be seen
from the tables above that the LCBMO-2 based method gives
all the best values. In order to verify the stability of proposed
algorithm, the results of the fitness function values at K= 16
obtained for 30 runs is plotted as boxplots. A narrower box-
plot indicates better stability. The boxplots obtained by all
algorithms are shown in Fig. 6. From the figure it is found that
LCBMO-2 based method gives narrower boxplots as com-
pared to other algorithms, which shows the better consistency
and stability of proposed algorithm.
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FIGURE 8. The convergence curve of fitness values for each algorithm at K = 16.

FIGURE 9. The running time (in second) based on each algorithm.

D. SATELLITE IMAGES SEGMENTATION EXPERIMENT
With the progress of earth observation technology and
the deepening of understanding of earth resources and

environment, the requirements for the quality and quantity of
high-resolution remote sensing data are constantly increas-
ing. The main features of high-resolution satellite images
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TABLE 12. The p values of Wilcoxon rank-sum test.

TABLE 13. The results of ranks of Friedman test.

include: rich texture information corresponding to objects,
large imaging spectrum, and short revisit time. Therefore,

the segmentation and evaluation of satellite images is a chal-
lenging work.

This subsection analyzes the results provided by Masi
entropy implementations based onMABC, IDSA,WOA_TH,
BDE and LCBMO-2, after being applied to segment the
6 satellite images (image 7-12). The segmented images
(image 7, image 8, and image 10) obtained by Masi entropy
with different thresholds levels are given in Fig. 7. Besides,
the corresponding threshold values are given in Table 7 and
Appendix Table 2. From the segmentation results we can find
that the images with higher levels (such as K= 8, 12, and 16)
contain more information than the others.

The PSNR, SSIM, and FSIM values obtained by all
algorithms using Masi entropy techniques are reported
in Tables 8-10. In terms of PSNR values, the proposed
algorithm gives the highest values, accounting for 79.2%
of the total results. Besides, the proposed algorithm gives
the highest SSIM and FSIM values, accounting for 75%
of the total results. Taking Image 12 (at K = 12) as an
example, WOA_TH algorithm achieves the highest SSIM
value of 0.9491. Our proposed algorithm ranks second and is
not much different from the results obtained by WOA_TH.
The average fitness values of Masi entropy functions are
presented in Table 11. It can be seen from the table above
that the LCBMO-2 based method gives the best values
in general. Moreover, in order to reflect the performance
of LCBMO-2 more intuitively, the convergence curves of
Masi entropy functions (for K = 16) are shown in Fig. 8.
It can be found that the proposed algorithm outperforms
other algorithms in general. In other words, the LCBMO-2
based method gives higher position curves using Masi
entropy technique. It is further proved that the two strategies

TABLE 14. The PSNR of LCBMO-2 algorithm under each object function.
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TABLE 15. The SSIM of LCBMO-2 algorithm under each object function.

TABLE 16. The FSIM of LCBMO-2 algorithm under each object function.

(logistic model and chaotic map) can improve the search
accuracy and production capacity of the native BMO algo-
rithm, and the LCBMO-2 algorithm can use the search space
more effectively to complete the optimization task of image
segmentation. For visual analysis, the results of the running
time (in second) based on each algorithm are represented as
stacked bar diagrams in Fig. 9. It can be seen that the running
time is sorted as follows: BDE > MABC > LCBMO-2 >
WOA_TH > BDE. Although our proposed algorithm is not

the champion algorithm in terms of running time, it is not
too bad. The improved strategy used slightly increases the
computational cost of the algorithm. In general, the running
time of the proposed algorithm (LCBMO-2) is acceptable.

In order to statistically prove the superior performance of
the proposed algorithm, Wilcoxon rank-sum test and Fried-
man test are used to evaluate the significant difference among
algorithms. The p values ofWilcoxon rank-sum test are given
in Table 12. For example, the proposed algorithm gives better
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TABLE 17. The main variables involved in this article.

results in 23 out of 24 cases (6 images times 4 thresholds) for
MABC, 24 cases for IDSA, 22 cases for WOA_TH, 24 cases
for BDE. To sum up, all the other algorithms show a signifi-
cant difference with LCBMO-2 basedmethod. Table 13 ranks
all algorithms based on PSNR values, SSIM values, FSIM
values, fitness values, and running time. It is obvious
that our proposed algorithm in the field of color image

segmentation is the champion algorithm compared to other
algorithms.

E. DIFFERENT OBJECTIVE FUNCTIONS EXPERIMENT
It can be seen from the above experimental results that
LCBMO-2 based method is superior to other compared algo-
rithms using Masi entropy. In order to obtain a simple and
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TABLE 18. (Table 7 continued). Comparison of optimal thresholds for different algorithms using Masi entropy.

powerful technique for color image segmentation, different
thresholding techniques (different objective functions) based
on LCBMO-2 is conducted in this section. Three Berkeley
images and three satellite images are selected for testing. The
PSNR, SSIM, and FSIM values obtained by LCBMO-2 based
method using Otsu, Minimum cross entropy, Kapur entropy,
Tsallis entropy, and Masi entropy are given in Tables 14-16.
It can be seen that LCBMO-2 based method using Masi
entropy gives higher results than using other thresholding
techniques in most cases. For example, in terms of PSNR
values, Masi technique presents better results in 18 out
of 24 cases (6 images times 4 thresholds). Considering
other two indicators, the Masi entropy technique outperforms
again, in 17 cases for SSIM and 18 cases for FSIM. To sum
up, these satisfied results prove that LCBMO-2 based method
using Masi entropy is superior to the method using other
thresholding techniques.

VII. CONCLUSION AND FUTURE WORK
In this article, the Barnacles mating optimizer algorithm
based on logistic model and chaotic map for multilevel
thresholding color image segmentation is proposed. Among
many thresholding segmentation methods, Masi entropy
method is adopted. The proposed algorithm is used to
find the optimal threshold for color images. Meanwhile,
10 algorithms are selected for comparison. Objective func-
tion value, PSNR, SSIM, FSIM, Wilcoxon rank-sum test,
and Friedman test are used to evaluate the segmentation
quality. Firstly, by the convergence curve and boxplot at
K = 16, it can be seen that LCBMO-2 algorithm can
find larger objective function value more times. Then,
in terms of PSNR, SSIM, FSIM, the value obtained by the
LCBMO-2 algorithm is larger than other algorithms in most
cases. It concludes that the segmentation performance based
on LCBMO-2 algorithm is superior. Furthermore, the results
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of Wilcoxon rank-sum test and Friedman test demonstrate
that LCBMO-2 is significantly different from other algo-
rithms, and the improvement is effective. To sum up, a vari-
ety of experiments fully proves that LCBMO-2 algorithm
has higher search accuracy and convergence speed, stronger
robustness, and the overall performance of the algorithm is
enhanced.

However, like other optimization algorithms, LCBMO has
certain limitations. The computational complexity needs to be
reduced. Runtime is important for real-world problems. The
distributed island model can organize population into small
independent groups (islands) and make the algorithm run in
parallel. We believe that it is a potentially effective strategy
to reduce the complexity. In the future, the relevant research
directions are given as follows:

(1) Extend the algorithm to multi-objective problem for
obtaining superior segmentation effect.

(2) Explore to introduce LCBMO-2 algorithm in other
fields, such as machine learning and data mining.

APPENDIX
See Tables 17 and 18.
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