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ABSTRACT Before being exported, mangoes generally undergo rigorous external and internal quality
inspection processes in which near-infrared (NIR) spectral approaches are favorable for grading purposes.
A successful NIR-based grading system depends largely on high-quality spectral sensors and the reliability
of the classifier. Motivated by the high economic impact of Cat Hoa Loc mangoes (Mangifera indica L.),
we demonstrated that the sweetness of that mangoes could be precisely graded based on a random forest
(RF) classifier in a three-phase approach with a low-cost Visible-Near infrared (VIS-NIR) multispectral
sensor chipset. This approach is so-called RPR because RF, Partial Least Squares regression, and RF were
respectively applied to consecutively determine the significant VIS-NIR responses, the good features as input
variables, and the reliable RF classifier via our formulated discriminant index (DI). The experimental results
confirmed that higher classification accuracy was achieved by using the extracted latent features rather than
the raw VIS-NIR data. The DI was effectively used as a reliability measure to select the optimal classifier
among those of identical training and testing accuracies of 100% and 82.1%, respectively. Performance
comparison between the optimal RF classifier with a Support Vector Machines classifier and a multinomial
logistic regression showed that the developed RF classifier was superior in various performance indices.
Therefore, it is promising to extend the proposed approach to more complicated fruit grading problems with
sufficient VIS-NIR datasets that are acquired from low-cost multispectral sensors.

INDEX TERMS Cost-effective, sweetness grading of Cat Hoa Loc mango, spectral response selection,
VIS-NIR features extraction, discriminant index for random forest classifier.

I. INTRODUCTION

Historically, Mangifera indica L. cultivations have been
widely planted in tropical areas of India, Africa, Asia, and
Central America. Due to its richness in nutrients and min-
erals, and its good taste and aroma, many Mangifera indica
L. cultivars have been developed in favorable subtropical cli-
mates and adapted soils [1]. With an increasing global import
demand, mangoes are becoming an export fruit of very high
economic value for many countries in Africa and Southeast
Asia [2]. Therefore, many techniques have been developed
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for non-invasive inspection and grading of high-quality
mangoes.

One of the simple approaches was to utilize the visual or
extrinsic features of the mango such as color, pattern, size,
and shapes, etc. Based on the fact that the sugar content
increased as the color changed during the maturation process,
the hue feature extracted from an RGB image of a Chokanan
mango (Mangifera indica) was used to grade the sweetness
of Chokanan mangoes with up to an average success rate of
95.67% [3]. In a similar approach, multivariate discriminant
analysis was applied to obtain a maturity classification model
with a classification rate of 90% for ‘“Manila” mangoes
using more color information (i.e., a*, b*, S, and H color
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coordinates) [4]. Although good discriminant results were
reported, it should be noted that the skin color feature of a
mango fruit might not be robust indicators of its maturity as
different environments might cause the skin color to change
[5], [6]. More sophisticated data fusion methods were also
reported for maturity and ripeness classification. These meth-
ods applied data fusion using various sensory information
such as odor, acoustic response [7]; physical, mechanical,
and optical properties of the mango [8]. Classification accu-
racy could also be enhanced with machine learning-based
techniques using convolutional neural networks with sophis-
ticated multispectral information fusion [9], [10]. The neu-
ral network approach was reported to have a high-accuracy
prediction of the sweetness of a mango using its physical
features including its mass, length, width, and volume [11].
However, this might not be a stable approach because little
internal features were utilized. Moreover, convolutional neu-
ral networks require high computation power for real-time
implementation. It is also complicated to implement various
kinds of sensors and data fusion methods for an automated
fruit sorting system.

To provide more internal quality information of the fruit,
spectral data were utilized. With the ease of implementa-
tion, few studies took advantage of the spectrum within the
range of 400-867 nm [12], [13]. However, the application of
near-infrared spectroscopy (NIRS) to the horticultural field
has attracted considerable attention. According to the recent
review, 80% of the NIRS-based horticultural applications
were for investigations and studies on fruit, among which
about 13% were carried out on mangoes which were the fruit
of the second most interest just after apples [14].

Because near-infrared (NIR) spectra contain information
about the major C-H, O-H, and N-H bonds, NIR spectra
might reveal valuable information of many organic materials
that could be used for internal fruit quality analysis [15].
Many studies have reported the use of NIR spectra to estimate
dry matter (DM) content to determine the mango maturity
[6], [16]. Classification and prediction problems related to the
mango sweetness were also tackled. Therefore, the shortwave
infrared (SWIR) spectrum in the range of 900-2400 nm was
investigated [17]-[19] because there are major absorption
bands of sugar within that spectrum [20]. For cost-efficient
applications, the visible and near-infrared (VIS-NIR) spec-
trum of 500-1100 nm was also adopted [6], [16], [21]-[24].
The utilization of this spectral region could be mainly due
to various C-H and O-H vibrations reported for glucose
and sucrose; and the availability of commercially available,
somewhat low-cost, miniaturized NIR spectrometers for this
specific spectral zone [21], [23], [25].

It should be noted that the ripening process is not only
characterized by the increase of sugar content but also by
the degradation of green chlorophylls and the accumulation
of colored pigments such as carotenoids and anthocyanins
which account for the yellowish color of the flesh and the
reddish color of the peel, respectively [26], [27]. It is thus
very probable that the visible spectrum also contains useful
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information for grading mangoes based on their sweetness
because a correlation might exist between the contents of
sugar and those colored pigments. Specifically, the low vis-
ible spectral zone of 400-500 nm is the broad absorption
band of isolated yellow carotenoids. Within this spectral zone,
isolated chlorophyll (Chl) a and Chl b also exhibit the narrow
absorption bands (maxima) near 428 and 453 nm, respec-
tively [28]. Since the ripening process has a complex effect
on the NIR spectra, the machine learning-based classifier
using NIR spectra features could be favorable to improve the
classification accuracy. It would be a more stable approach
than the neural network approaches using visual features
mentioned above because it directly learns spectral data that
contains huge information on the internal quality.

Recently, the VIS spectrum can be obtained easily by low-
cost sensors, and some low-cost devices to obtain the NIR
spectrum such as integrated multispectral sensors became
available. A low-cost multispectral chipset could be used to
develop a portable spectrometric system to predict the soluble
solids content of Kiou apples [29]. With a simple optical
setup, the proposed system showed much potential for prac-
tical applications in terms of manufacturability and repro-
ducibility. It also suggested that cost-effective multispectral
sensors could provide useful features from a few significant
wavebands for the assessment of internal fruit quality. It is
thus worthwhile to examine the potential of such low-cost
multispectral sensors in the noninvasive assessment of fruit
quality because successes in applying such sensors can facil-
itate the development of commercial grading applications
not only for mango exporting companies but also for mango
consumers. In this case, an effective grading technique is very
important to make full use of the VIS-NIR data acquired from
such sensors.

As an initiative for noninvasive mango grading with
low-cost VIS-NIR multispectral sensors, this study aimed
to develop an effective classification technique for precise
sweetness grading of mangoes (Mangifera indica L. cv. Cat
Hoa Loc) based on the spectral data acquired from a low-cost
multispectral sensor chipset with a range from 410 nm
to 940 nm. To achieve such a goal, a systematic approach for
developing a reliable random forest classifier was proposed
with specific contributions as follows.

1) Significant information (i.e., spectral responses) could
be extracted from the spectral data.

2) Classification accuracy could be enhanced by using
the latent features extracted from significant spectral
responses.

3) The proposed Discriminant Index (DI) was a simple
and effective performance measure for determining the
optimal random forest (RF) classifier.

Il. MATERIAL AND METHODS

A. INSTRUMENTATION

In this study, AS7265x Smart Spectral Sensor (ams AG)
chipset was utilized. This evaluation board includes three
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FIGURE 1. Design of adapter for AS7265x kit for interaction mode application.

6-channel sensor devices, delivering 18 VIS and NIR chan-
nels from 410 nm to 940 nm, each with 20 nm Full Width at
Half Maximum (FWHM) [30]. For most NIRS applications,
the measurement mode plays a very important role. The trans-
mittance mode is very well known for detecting both external
and internal qualities of a sample. Nevertheless, transmission
measurements are generally difficult to obtain. Thus, the
interactance mode was applied because it provided a compro-
mise between the reflectance and transmittance modes [31]
and it was a convenient method to obtain internal mango
qualities in various studies [6], [16], [18], [22]-[24], [32].

Since the interactance mode was utilized, a simple opti-
cal setup was designed to utilize the characteristics of the
AS7265x chipset such that appropriate lighting could be pro-
vided without affecting the measurement area. As illustrated
in Fig. 1, the AS7265x kit was mounted at the center of the
adapter, surrounded by a grommet to block the light from a
ring of 22 tungsten lamps (Mineshima P-23, average dissipa-
tion power of 0.5 W/bulb) that ensured the illumination over
the entire spectral region of the sensors. The outer area of the
adapter had a foam holder to provide a soft contact with the
mango and to prevent the illuminated area from the ambient
light.

B. MANGO DATA ACQUISITION

As mangoes (Mangifera indica L. cv. Cat Hoa Loc) can be
harvested throughout the year, a reliable model for grad-
ing “Cat Hoa Loc” mangoes should be developed with
consideration of the variability due to the harvest time.
Therefore, samples of cv. “Cat Hoa Loc” were collected
at different harvest time at the local fruit stores. All man-
goes originated from three provinces in Vietnam, namely
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TABLE 1. Mango dataset information.

Month Number of samples by grade

of Total Training dataset Testing dataset
samples
harvest I 11 111 1 11 111
Jan 28 1 12 15 0 0 0
Mar 12 0 0 6 0 0 6
April 10 0 2 3 0 2 3
Jun 10 4 1 0 3 2 0
Sep 18 0 6 3 0 5 4
Oct 16 0 3 5 0 3 5
Dec 12 0 0 6 0 0 6
Subtotal 5 24 38 3 12 24
Total 106 67 (63.2%) 39 (36.8%)

Can Tho, Tien Giang, and Dong Thap provinces. To help
maintain the representative and robustness of the model, the
samples were split into training and testing datasets such
that most samples, for each harvest period, were present
in both training and testing datasets as summarized in
Table 1.

Because sugars constitute the majority of total soluble
solids (TSS) in many fruits [33], the mango sweetness was
determined based on the “degrees Brix,”” a conventional mea-
sure of the TSS present in the fruit.

According to the quality guide for Cat Hoa Loc mangoes
[5], they could be classified into three categories of highly
acceptable, acceptable, and unacceptable based on their Brix
values. Based on this suggestion, all mango samples were
graded based on their Brix values as

1, if Brix > 24
if 20 < Brix <24 (D
III, if otherwise

grade = {11,
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1) MULTISPECTRAL DATA ACQUISITION
To ensure correct measurement, preliminary calibration for
AS7265x sensors had been performed. First, the sensors were
completely covered and spectral intensities of all channels
were confirmed to be zeros, indicating that the sensors did not
include any bias. Next, a white calibration plate (X-rite Inc.)
was applied on the adapter to acquire the i-th reflectance spec-
tral response [y so that the normalized interactance response
could be calculated as
j= i 2

=7 (2)
where [; is the interactance response of a mango sample for
the i-th spectral channel with the respective wavelength A; of
410, 435, 460, 485, 510, 535, 560, 585, 610, 645, 680, 705,
730, 760, 810, 860, 900, 940 nm; andi = 1,2, --- , 18.

FIGURE 2. Area of measuring VIS-NIR interactance response on a mango.

Fig. 2 shows the actual area of measurement on one side
of a sample mango where multispectral data were acquired.
Both sides of the mangoes were subjected to multispectral
data acquisition to increase the data size. To minimize the
measurement noise, the averaged measurement fl- from five
consecutive measurements of /; was used for developing the
classification model.

2) BRIX MEASUREMENT

After acquiring multispectral data of a mango sample, a piece
of the mango flesh of about 10 millimeters deep was pulled
out from the area of measurement. After it had been peeled,
its juice was extracted, filtered, and subjected to MAS871
digital Brix refractometer (Milwaukee Instruments) for Brix
measurement. A mango sample could be graded from the
Brix measure of the flesh by using (1). A number of
63.2% sample data were used in all phases of develop-
ing the classification model whereas the remaining were
solely used for testing the model (Table 1). The statistics
of Brix measurements are shown in Table 2. Few sam-
ples were found as “‘grade I” because high-quality man-
goes were normally selected for export rather than for local
consumption.
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TABLE 2. Statistics of Brix measurements.

Statistic Grade [ Grade I1 Grade III
Number of samples 8 36 62
Minimum (°Brix) 242 20.0 12.4
Maximum (°Brix) 27.2 24.0 19.9
Mean (°Brix) 25.4 21.4 17.1
Standard deviation 1.1 1.2 2.0

(°Brix)

C. DEVELOPMENT OF CLASSIFIER FOR MANGO GRADING
In the process of developing a reliable classifier or a regres-
sor, it is very important to select significant input variables
and features so that overfitting is prevented, and reasonable
generalization is allowed. Since all spectral responses in
the investigated range of wavelength might not contribute
equally to the classifier, only significant responses were
selected so that discriminant features that highly correlated
with the target grades were extracted. A grid search was then
performed for N iterations to generate N high-performance
random forest (RF) classifiers from which the optimal one
could be determined based on a discriminant index. Thus,
this approach included three phases in which RF, partial least
squares (PLS), and RF were respectively applied in a con-
secutive order to determine the significant spectral responses,
extract the good features, and identify the optimal RF classi-
fier. This so-called RPR approach is summarized in Fig. 3 and
described in detail as follows.

1) VARIABLE SELECTION BASED ON RANDOM FOREST
Random forest algorithm has been extremely successful for
general-purpose classification and regression. It is a kind
of ensemble learning technique that generated several ran-
domized decision trees and aggregates their learning results
by averaging [34]. Random forests can be used to rank the
importance of variables in both regression or classification
problems via two measures of variable importance, which
are Mean Decrease Impurity (MDI) and Mean Decrease
Accuracy (MDA). A detailed explanation and theoretical
background of these measures were described elsewhere
[34], [35]. In this study, the normalized MDI measure,
calculated by using scikit-learn module [36], was used to
determine the classification impact of the input variables
so that significant variables could be selected for mango
grading.

Let define MDI; the normalized MDI of the interactance
response I; at wavelength A; where i denotes the index of VIS
and NIR channels that AS7265x smart spectral sensor can
deliver and i = 1, 2, --- , 18. Let v; be the vote value for an
input variable (i.e., interactance response I;) calculated from
a certain RF model. An input variable would be considered
important if it receives a vote value of 1; otherwise 0. The
vote v; was determined from the corresponding MDI; as

1. ifMDI, > —
Vi = MR = T3 3)

0, if otherwise
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FIGURE 3. lllustration of the proposed RPR approach.

where 1/18 was the mean of normalized MDI values of
all 18 interactance responses.

To obtain a confident decision on the significance of I, a
number of N = 100 iterations of grid search were carried
out to generate 100 random forests. Thus, the total number of
votes each variable I; received was calculated as

N
Vi=Y v, )
Jj=1
where vé_is the vote value of the j-th RF model for input
variable ;. An input variable I; was considered important for
mango grading if it met the following criteria

N

2) FEATURE EXTRACTION BASED ON PARTIAL LEAST
SQUARE REGRESSION

Partial least square (PLS) regression is a powerful tool for
developing a regression model. The goal of PLS analysis is
to search for a set of components (called latent vectors) from
X for the best prediction of Y by performing a simultaneous
decomposition of X and Y with the constraint that the com-
ponents explain as much as possible the covariance between
Xand Y.

The independent variables are decomposed as
X=TP" withT'T =1, (©6)
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where T and P are the score matrix and the loading matrix,
respectively. The columns of T are the latent vectors. Y is
estimated as

Y = TBC!, @)

where B is the diagonal matrix whose diagonal elements are
the “‘regression weights,” and C is the “weight matrix” of
the dependent variables. The main target of PLS regression is
to specify T by obtaining iteratively all pairs of vectors

t=Xw andu=Yec, (8)

with the constraint that w/w = 1, t’t = 1, and importantly
their covariance t’ u is maximal [37]. Further explanation of
PLS regression could be found elsewhere [37]-[39].

The latent components are then used for prediction in place
of the original variables. However, it is necessary to determine
the optimal number of latent variables to keep for building the
PLS model. Typically, cross-validation is the most popular
method for PLS model selection and data overfitting can be
detected if increasing the number of latent variables leads to
a decrease in the prediction accuracy.

Let I (n x 18) be the spectral data of the 18 interactance
responses. Let X(n x m) be the extracted version of I so that
it consisted of the responses of m spectral interaction signals
that were optimally selected based on their impact using (5).
Let kK < m be the optimal number of latent variables that
were obtained by PLS regression from X and corresponding
Brix y (nx 1) of the mango samples in the study. These latent
variables (LV) should have a maximal covariance with the
univariate response y.

To determine the optimal LVs, leave-one-out cross-
validation was performed with different numbers of LVs,
as suggested by many studies [40], [41]. Because the coef-
ficient of determination indicates the goodness of fit for
the observations, the optimal LVs were associated with the
largest coefficient of determination after leave-one-out cross-
validation. Using scikit-learn module [36], the coefficient of
determination, usually denoted as R> was computed as [42]

. S i = 30)?
Ry, ) =1-—==2 20 ©)
Yo i —y)?
where
R
y==) v (10)

and y; is the predicted value of the i-th sample; y; is the
corresponding true value for the total n samples.

The latent features were used as inputs for developing
the mango classifier. The latent-feature data T(n x k matrix)
could be calculated as

T = XW, (11)

where W is the m x k transformation matrix that could be
obtained by horizontally concatenating the corresponding
column vector w that had been derived from t using (8).
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FIGURE 4. Illustration of (a) probability discriminant margin for a correct
classification case and (b) probability error margin for a wrong
classification case. Orange color denotes the predicted resuit.
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3) DEVELOPMENT OF RANDOM FOREST CLASSIFIER

To obtain a good classifier within a certain parameter space,
a grid search with cross-validation was iterated 100 times,
each generated a candidate model. Then, all candidate models
were evaluated with the testing dataset such that a smaller set
of these candidate models with high classification accuracy
could be shortlisted. The classification accuracy of a model
was calculated as

R 1 n—1 A
accuracy (g, g) = Z 1 (gl = gl), (12)
=0

where 1(x) is the indicator function; g; and g; are the pre-
dicted and the true grade of the /-th sample, respectively; n is
the number of samples of the dataset.

Although the reliability of different classifiers could be
analyzed statistically with two-dimensional reliability dia-
grams [43], a simple approach was proposed in this study
based on the class probabilities of a random forest classifier
that could be inherently obtained.

Let denote XZJ the predicted class for sample j which
belongs to class i. Let denote P(X{ = k) the probability of
predicting sample j into class k. It is obvious that

Y P =k)=1. (13)
k

Sample j is correctly predicted when Xl] = i, which means
PX! = i) = m}flx(P(X‘l." = k). (14)

For the correct classification of sample j, let denote dm €
(0, 1] the probability discriminant margin which is calculated
as

dm! = P(X] = i) — Tix(P(X{ = k). (15)
1
As shown in Fig. 4a, a greater value of dn¥ indicates greater

certainty of the j-th classification result, and the most confi-
dent result is obtained when

P =i)=1

PX =k)=0

X =b (16)
dm’ = 1.
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For the wrong classification of sample j, let calculate the
probability error margin en? € (0, 1] as

em! = max(P(X! = k)) — P(X! = i). (17)

A greater value of en? indicates a greater undesired certainty
of the false j-th classification result as shown in Fig. 4b. For
a good classification model, it is desirable to obtain a large
probability discriminant margin and a small probability error
margin for all samples. These margins can be incorporated
into a discriminant index (DI), defined as

N,
1 < . W ,
Dl=—— dm! — S del |, (18)
i (oL

where N, and N,, are the numbers of correct and wrong
classification cases, respectively. DI can also be written as

N, 1
DI =—< — N dm — Zdef (19)
NC+NWNC 1:1 N +N N

or

N Ny
DI = —ADM — ——
Ne+ Ny Ne+ Ny
where ADM and AEM are respectively the average probability
discriminant margin and the average probability error margin.
Therefore, DI can be rewritten based on the accuracy of the
classification model as

AEM, (20)

DI = accuracy * ADM — (1 — accuracy) x AEM. (21)

It is obvious that DI falls in the range of [—1,1]; however,
DI does not probably receive the theoretical minimum or
maximum. The formulation of DI showed that DI was a
more effective measure for relative comparison between RF
classifiers than any metrics solely based on the performance
of an RF classifier. Because P(X{ = k) could be obtained as
the mean probability estimate across the trees in the forest
j when predicting the class for the sample i, the training
and testing DI could be calculated with training and testing
dataset, respectively. Therefore, these DI values of all model
candidates could give some guidelines for the determination
of the best RF classifier. The code for DI was prepared and
available for use as-is on GitHub [44].

D. COMPARISON WITH OTHER CLASSIFIERS

To demonstrate the effectiveness of the proposed RF classi-
fier, a Support Vector Machines (SVM) classifier and a multi-
nomial logistic regression classifier were developed using the
same training dataset. The testing accuracies of the developed
RF classifier and these classifiers were also compared based
on their performance on the same testing dataset.

1) DEVELOPING AN SVM CLASSIFIER

Although SVMs were originally designed for binary clas-
sification, SVM classifiers have effectively been extended
for multiclass classification [45]. SVM is a well-known
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non-linear learning algorithm that uses a kernel function to
transform the data into higher-dimensional spaces where a
hyperplane can be constructed to separate the data with the
maximal margin between the desired classes. They have also
been intensively coupled with NIR spectroscopy in food anal-
ysis [46].

In this study, we developed the SVM classifier using the
radial basis function, which is expressed as

K(X;, X;) = exp (—y Ixi — xj||2) , (22)

where x;, X; are the training vectors; and y is the kernel
parameter. SVM training is a constrained optimization prob-
lem of

. 1 2 m .

min > wl~+C Zi:l &, subjectto (23)
yillw - x) +b) > 1 =&, (24)
§>0, i=1,2,---,m, (25)

where w is the weight vector, b is the bias, & measures the
degree of misclassification of datapoint i, y; is the class label
for the i-th sample, and C is the trade-off parameter between
the margin and error [47], [48].

Because an RBF kernel was used for SVM training, the
penalty parameter C and the kernel parameter y should be
identified beforehand. Thus, we performed a grid-search on
C and y using cross-validation following the practical guide
recommended in [49].

2) DEVELOPING A MULTINOMIAL LOGISTIC REGRESSION
CLASSIFIER

Logistic regression (LG) is a statistical method that has been
widely used for classification purposes. To provide more pre-
cise categorical solutions for multi-class classification prob-
lems, multinomial logistic regression (MLR) and many of
its extensions have been proposed. A brief explanation and
summary of the recent development of MLR could be found
in [50].

In this study, we also developed an MLR classifier to com-
pare the effectiveness of the proposed RF classifier. Because
MLR supported the probability of the class outputs, the train-
ing and testing DI values of the developed MLR were also
calculated.

IIl. RESULTS AND DISCUSSION

In Phase 1 of the proposed approach for developing the clas-
sification model, 100 random forests were generated to vote
for the significance of the 18 interactance responses using (3)-
(5). Each RF was the best classification model that was
determined from a grid search with parameter configuration
listed in Table 3. For our case of small datasets, leave-one-out
cross-validation was utilized in the grid search.

Fig. 5 shows the average spectra for grades I, II, and
III. Since neither anomalous spectra nor obviously-grade-
correlated spectra were found in any grade, the multispectral
data acquisition was successfully performed. Table 4 shows
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TABLE 3. Parameter configuration for grid search.

Parameter Values
max_depth 3,4,5, None
max_features 'sqrt', 'log2', None
n_estimators 100

0ob_score True

TABLE 4. Vote results for variable importance.

Indexi  Wavelength of spectral ~ Number of votes  Selected
response /, (nm)
1 410 37 No
2 435 97 Yes
3 460 92 Yes
4 485 2 No
5 510 11 No
6 535 4 No
7 560 13 No
8 585 2 No
9 610 79 Yes
10 645 0 No
11 680 32 No
12 705 2 No
13 730 98 Yes
14 760 80 Yes
15 810 69 Yes
16 860 70 Yes
17 900 73 Yes
18 940 93 Yes

—— Grade I
—— Grade I
—— Grade IIT

Intensity (a.u.)

OPEEERELS @ SIS & o &
Wavelength (nm)

FIGURE 5. Average spectra for various mango grades.

the vote results of all the variables. Nine variables were deter-
mined as important, which were the interactance responses
at wavelengths of 435, 460, 610, 730, 760, 810, 860, 900,
and 940 nm. These wavelengths were relatively close to the
respective narrow absorption bands of isolated Chl a (near
428 nm), and Chl b (near 453 nm), and they were in the broad
absorption band (between 400 and 500 nm) of isolated yellow
carotenoids [28].

For mangoes, their green pigmentation and yellowish color
are attributed to the presence of Chls and carotenoids [1],
[51], respectively. As the mango ripened, a decrease in
Chl content in the mango pulp was found accompanied by
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a coordinate biosynthesis and accumulation of carotenoids
with arelatively high content [26]. Therefore, the significance
of the spectral responses at 435 nm and 460 nm could be
confirmed because the mango color is mainly characterized
by Chls and carotenoids at different ripening stages, and it is
highly correlated with the sugar content according to [27].

Three significant interaction responses at 730, 900, 940 nm
were found associated with sugar absorbance bands due to
various combinations of major C—H and O-H vibrations [23],
[52]-[54]. Two significant responses at 760 and 860 nm were
close to the reported wavelengths at 755 and 850 nm that were
strongly correlated with organic acids [53] whose content
might have been decreased according to the increase in the
sugar content during mango ripening [55].

When the important interactance responses had been deter-
mined, the significant spectral data X (67 x 9) was extracted
from the normalized spectral data I (67 x 18). PLS regression
was applied with input data X and Brix data y.

“w B
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S | — -
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FIGURE 6. PLS regression b-coefficients.

Fig. 6 shows the plot of PLS b-coefficients. Compara-
bly large and small coefficients were both observed, which
suggested that an optimal subset of latent variables might
be obtained. Fig. 7 shows the plot of the coefficient of
determination after leave-one-out cross-validation had been
performed with different numbers of latent variables. The
seven-LV model had the largest coefficient of determination.
Thus, the seven optimal LVs were determined. Accordingly,
the latent-feature data T (67 x 7) that best explained for Brix
data y could be obtained.

The latent features T(i.e., the outcome of Phase 2 of the
proposed approach) and the desired mango grade g were
used to develop the classification model for grading man-
goes based on their sweetness index. The grid search was
performed for 100 iterations using the same parameter con-
figuration as listed in Table 3. The outcomes of the grid search
were 100 candidate models from which 10 models with the
highest testing accuracy were shortlisted (Table 5).

It was noted that there were models with identical training
and testing accuracy, which showed the necessity of some
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FIGURE 7. Coefficient of determination obtained after leave-one-out
cross-validation with different numbers of latent variables. Red bar
indicated the case of the largest coefficient of determination.

TABLE 5. Discriminant indices of candidate models.

Grid search Training dataset Testing dataset

iteration Accuracy (%) DI Accuracy (%) DI
68 100 0.690 82.1 0.236
85 100 0.687 82.1 0.273
97 100 0.703 82.1 0.287

0 100 0.703 79.5 0.241
4 100 0.596 79.5 0.253
10 100 0.571 79.5 0.194
32 100 0.721 79.5 0.258
39 100 0.588 79.5 0.248
40 98.5 0.583 79.5 0.232
6 97.0 0.564 79.5 0.214

benchmark in addition to classification accuracy to determine
the best classification model. In this study, we formulated the
discriminant index (DI) as an important guideline for optimal
model selection. Table 5 showed that the best model was
obtained from the 97-th grid search because it had the largest
testing DI value of 0.287 with a comparatively higher training
DI value of 0.703. Although the model obtained from the
32-th grid search iteration had the highest training DI value,
it was not chosen because it had smaller testing accuracy
and testing DI value. More importantly, a smaller testing
DI value might signify a less reliable model regarding the
generalization performance.

The confusion matrix and illustration of classification
results obtained from the best model using the testing dataset
are depicted in Fig. 8 and Fig. 9, respectively. There were five
out of seven misclassified cases in which the samples’ Brix
values were relatively close to the decision boundaries at the
Brix value of 20 and 24 (Fig. 9). There were only three cases
of “grade III”” samples (i.e., unacceptable samples) that were
classified as “grade II”” samples (i.e., acceptable samples).
However, the Brix values of these samples were very close
to the decision boundary between ‘““grade II” and “‘grade III”’
regions. Their maximum Brix distance was only 0.7, which
was relatively small.

It was noted that one “grade I"’ sample with a large Brix
value was misclassified into “grade I1.”” A “grade II”” sample
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TABLE 6. Discriminant indices of the high-performance classifiers
developed with significant interactance responses as inputs.

TABLE 8. Misclassified training cases.

Brix True False predicted grade
Grid search Training dataset Testing dataset Sample SVM MLR
. . value grade . .
iteration Accuracy (%) DI Accuracy (%) DI classifier classifier
94 100 0.684 76.9 0.218 1 24.6 1 - 2
97 100 0.700 76.9 0.219 2 24.8 1 2 2
67 97.0 0.584 76.9 0.183 3 244 1 2 2
36 95.5 0.530 76.9 0.213 4 24.0 2 1 1
66 94.0 0.508 76.9 0.189 5 20.4* 2 - 3
27 86.6 0.392 76.9 0.172 6 21.5 2 3 3
83 86.6 0.415 76.9 0.188 7 20.5 2 3 3
32 85.1 0.392 76.9 0.180 8 20.1 2 3 3
3 83.6 0.405 76.9 0.194 9 21.2 2 3 3
61 83.6 0.413 76.9 0.177 10 223 2 3 -
11 152 3 - 2
. e 12 18.9 3 2 2
TABLE 7. Performance comparison between the proposed classifier with - -
other classifiers. Number of misclassified samples 9 11
Classification accuracy 86.6% 83.6%

Performance index Proposed RF SVM MLR
classifier classifier classifier
Training accuracy 100% 86.6% 83.6%
Testing accuracy 82.1% 66.7% 61.5%
Training DI 0.703 - 0.414
Testing DI 0.287 - 0.224
Number of close-to- 5 10 10
decision-boundary
misclassified samples
20.0
grade I - 2 1 0 17.5
15.0
©
c 12.5
E grade II - 1 9 3 - 10.0
=l
(2]
& -75
-5.0
grade 111 - 0 2 21
2.5
! ! -0.0
grade | grade 11 grade 111
True label

FIGURE 8. Confusion matrix for testing data.

with a Brix value of 21.3 was also misclassified into “grade
II.” Therefore, an enlarged dataset with more samples in
“grade I” region and in the regions close to the decision
boundaries (i.e., at 20 and 24 degrees Brix) might help
improve classification accuracy.

To confirm the outperformance of latent features over the
raw interactance responses, a similar grid search was per-
formed again for 100 iterations using the same parameter
configuration (Table 3). Ten models with the highest test-
ing accuracy were obtained and their DI values were also
calculated (Table 6). It was obvious that the highest testing
accuracy only reached 76.9%, less than the testing accuracy
of the best model (i.e., 82.1%). Also, the testing DI values of
these models were comparably smaller with the largest testing
DI value of only 0.219. These figures further supported the
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FIGURE 9. lllustration of classification results with testing data.

use of latent features for developing better classifiers and
DI for model selection. Therefore, by implementing RF as
a variable selector followed by PLS as a feature extractor,
significant latent features could be obtained from high-impact
spectral responses for noninvasive grading of fruit quality.

Using the same latent features T, an SVM classifier and a
multinomial logistic regression (MLR) classifier were devel-
oped to demonstrate the effectiveness of the proposed RF
classifier. The performance comparison of all classifiers was
provided in Table 7. The proposed RF classifier outperformed
the SVM and MLR classifiers in both training and testing
accuracies. Moreover, the training DI value of the RF clas-
sifier was much larger than that of the MLR.

The misclassified cases in training and testing were also
listed in Table 8 and Table 9, respectively. Most of the mis-
classified testing samples by the proposed RF classifier were
also wrongly graded by the other classifiers. More ““‘grade
I’ samples were misclassified by SVM and MLR classi-
fiers although they contributed up to 56.7% of the training

212379



IEEE Access

C.-N. Nguyen et al.: Precise Sweetness Grading of Mangoes (Mangifera indica L.) Based on Random Forest Technique

TABLE 9. Misclassified testing cases.

Brix True False predicted grade
Sample value grade Proposed SVM MLR
RF classifier  classifier  classifier
1 272 1 2 2 2
2 26.6 1 - 2 2
3 24.2% 1 - 2 2
4 20.4 2 3 3 3
5 21.3 2 3 - 3
6 23.8 2 1 - 1
7 222 2 - - 3
8 19.9 3 2 2 2
9 19.3 3 2 2 2
10 19.3 3 2 2 2
11 19.9 3 - 2 2
12 19.4 3 - 2 -
13 19.3 3 - 2 2
14 17.9 3 - 1 -
15 16.5 3 - 2 2
Number of
misclassified samples ! 12 13
Classification accuracy 82.1% 66.7% 61.5%

* Samples whose Brix values were close to decision boundaries were

denoted in bold font style.

dataset. Moreover, five more training and testing samples
were misclassified, probably because their Brix values were
close to the decision boundaries. Therefore, the RF classifier
demonstrated a higher classification power over the SVM
and MLR classifiers, and also showed its strong potential for
various classification purposes.

IV. CONCLUSION

Random forest classifier was successfully developed for
sweetness grading of Cat Hoa Loc mangoes (Mangifera
indica L.) using their interactance responses acquired from
low-cost VIS-NIR multispectral sensors. The proposed
three-phase RPR approach was very effective for the system-
atic development of the optimal RF classifier mainly due to
the following points:

1) Significant interactance responses could be deter-
mined.

2) Good PLS-based latent features could be extracted
from only significant interactance spectral responses
rather than the whole spectral data.

3) The best model could be identified among the can-
didates with identical training and testing accuracies
using the formulated discriminant index.

Experimental results showed that the discriminant index
(DI), formulated based on the class-prediction probability of
the RF classifier, was a very effective measure for perfor-
mance comparison between RF classifiers. Based on both
training and testing DI values, the best model was deter-
mined from three models with the same training and test-
ing accuracies of 100% and 82.1%, respectively. The clas-
sification accuracy of the model was remarkable in terms
of the relatively small and imbalanced training and testing
datasets, a high degree of sample variability due to differ-
ent mango harvest regions and time, and the low cost of

212380

the multispectral sensors. Therefore, it is very promising to
extend the proposed approach to more complicated quality
grading of fruit using cost-effective VIS-NIR multispectral
sensors, and using a larger dataset will be very helpful to
improve the generalization performance of the classifier.
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