
Received November 14, 2020, accepted November 18, 2020, date of publication November 24, 2020,
date of current version December 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3040136

Directional Neighborhood Topologies
Based Multi-Scale Quinary Pattern
for Texture Classification
ELMOKHTAR RACHDI1, (Member, IEEE), YOUSSEF EL MERABET 1,
ZAHID AKHTAR 2, (Senior Member, IEEE), AND ROCHDI MESSOUSSI1
1Laboratoire Systèmes Electroniques, Traitement de l’information, Mécanique et Energétique, Département de Physique, Faculté des Sciences, Université Ibn
Tofail, Kénitra 14000, Morocco
2Department of Network and Computer Security, State University of New York Polytechnic Institute, Utica, NY 13502, USA

Corresponding author: Youssef El Merabet (youssef.elmerabet@uit.ac.ma)

ABSTRACT This paper ideates a new computationally simple and effective local image feature descriptor,
referred to as Directional Neighborhood Topologies based Multi-scale Quinary Pattern (DNT-MQP) for tex-
ture description and classification. The essence of DNT-MQP is to encode the structure of local neighborhood
by analyzing the differential excitation and directional information using various directional neighborhood
topologies and new pattern encoding scheme. We first designed four different versions of single scale
DNT-QP features based on four directional neighborhood topologies based sampling sets which are then
combined together to build the effectivemultiscale DNT-MQPmodel. Unlike some existing parametricmeth-
ods that employ static thresholds to perform thresholding, the construction process of DNT-MQP includes
an automatic mechanism for dynamic thresholds estimation. Thanks to a richer local description ensured
by exploiting complementary information resulting from single scale DNT-QP operators’ combination,
DNT-MQP descriptor has high capability to elicit stable and discriminative feature representation than other
local feature descriptors. In addition, DNT-QP has the advantages of computational simplicity in feature
extraction and low-dimensionality in feature representation. The effectiveness of DNT-QP is evaluated on
sixteen challenging texture datasets and it is found that it maintains a high level of performance stability
where the achieved performances are competitive or better than several recent most promising state-of-the-
art texture descriptors as well as deep learning-based feature extraction approaches. Impressively, DNT-MQP
showed good tolerance to rotation as well as illumination, scale and viewpoint changes against certain
descriptors which are originally conceived to deal with these challenges. Furthermore, statistical hypothesis
testing through Wilcoxon signed rank test is applied to prove the statistical significance of the accuracy
improvement obtained in all the datasets.

INDEX TERMS Texture classification, texture recognition, texture descriptors, LBP, directional neighbor-
hood topologies, local features.

I. INTRODUCTION
The surface of objects and materials such as crops in a
field, natural scenes, human faces, palmprint, human skin and
many others have their own distinctive texture. The texture
analysis, which permits to provide constructive information
about the structural and spatial arrangement of surfaces, has
been extensively studied in the past few years and received
considerable attention in many various research subjects
such as pattern recognition, computer vision and image
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processing. Texture classification is suitable for many poten-
tial applications for instance face classification and recog-
nition, background subtraction, iris recognition, palmprint
recognition [1], pedestrian detection, hyperspectral image
classification [2], biomedical image analysis and image
retrieval.

In the literature, there are many approaches available for
texture analysis with excellent surveys given in [3]–[5].
One can cite human perception-based features [17], ran-
dom features [15], filter-based techniques like Gaussian
Markov random fields [13], Gabor [6] and wavelet [14],
co-occurrence matrix-based approaches [7], ranklet
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transform based approaches [16], fractal analysis based
approaches [20], Texton dictionary-based [18], etc. The
method proposed in [9] uses Fourier descriptors to extract
texture feature in spectrum domain. Even though these above
approaches, which take advantage of the merits of spectral
and statistical features, ensure improving the ability of texture
representation and modeling, their demerits lie in the fact
that they increase the computation cost in extracting features.
Therefore, local feature extraction methods have been pro-
posed and have additionally and impressively been employed
in texture analysis field. The main advantages of the local
hand-crafted descriptors are the simplicity in design and not
dependent upon a large volume of training data [39].

Among the local feature extraction approaches, local
binary pattern (LBP) developed by Ojala et al. [8], have
brightened up as one of the most eminent texture descriptor
and has gained more attention over the past decades. LBP as
an effective texture descriptor is, in fact, highly appreciated
by researchers due to its distinctive advantages including
its simplicity, its well invariability to monotonic gray level
changes and its suitability for real time applications due to
its low computing cost. The LBP method, even if originally
designed for texture modeling and classification, it showed
considerable performance in a wide range of applications like
medical and biomedical images analysis, motion detection,
image retrieval, face and facial description and recognition,
background subtraction, etc. Despite these merits, the basic
LBP descriptor has some limitations [49]: (1) the output is
very sensitive even if to small change in the input; (2) it is
not invariant to image rotation; (3) based on the employed
thresholding scheme, it is highly susceptible to noise inter-
ference; etc. In order to deal with these limitations and
thus enhance the classification performance of LBP, a great
number of improved LBP algorithms have been proposed in
recent years [21]–[23], [56], [69]. The authors in [5] provided
an exhaustive investigation and comprehensive experiments
assessing the performance of a great number of old and
recent state-of-the-art texture descriptors in face recognition
problem. The authors in [54] proposed one dimensional local
binary patterns (1DLBP) for stone porosity computing using
a new neighborhood topology and structure. Shiv et al. [53]
designed local wavelet pattern (LWP) descriptor for med-
ical image retrieval. LWP performs local wavelet decom-
position over local neighborhood of pixels to encode the
relation among the neighboring pixel. The LWP pattern for
the central pixel is computed by comparing its local wavelet
decomposed value with those of the neighboring pixels.
Chakraborty et al. [47] introduced the local quadruple pat-
tern (LQPAT) descriptor for using in facial image retrieval
and recognition. LQPAT computes two micro patterns from
the local relationships by encoding relations amongst the
neighbors in quadruple space. In another study in [51]
presented the center symmetric quadruple pattern (CSQP)
descriptor for facial image retrieval and recognition. As for
LQPAT, CSQP encodes the facial asymmetry in quadruple
space. CSQP computes an eight-bit pattern from 16 pixels

in the local neighborhood. Issam et al. [57] proposed local
directional ternary pattern (LDTP) for texture classifica-
tion. LDTP, which exploits both LDP’s and LTP’s concepts,
encodes both contrast information and directional pattern fea-
tures in a compact way based on local derivative variations.
Kas et al. [56] proposed mixed neighborhood topology cross
decoded patterns (MNTCDP) for face recognition.MNTCDP
adopts 5 × 5 block which allows combining radii (2) and
angles (4) compared to 3 × 3 block supporting only angle
variation.

The best position of hand-crafted descriptors has been
dominated by LBP-like methods for more than a decade. The
need to design an effective local texture descriptor with high
discrimination capability is no longer to be demonstrated.
Indeed, the development of methods based on local texture
descriptors in pattern recognition continue to be designed
still today, e.g., median local ternary patterns (MLTP) [50],
averaged local binary patterns (ALBP) [58], repulsive-and-
attractive local binary gradient contours (RALBGC) [52],
local concave-and-convex micro-structure (LCCMSP) [49],
attractive-and-repulsive center-symmetric local binary pat-
terns (ARCS-LBP) [63], multi-direction local binary pattern
(MDLBP) [37], improved local ternary patterns (ILTP) [55],
quaternionic local angular binary pattern (QLABP) [61],
selectively dominant local binary patterns (SDLBP) [62],
chess pattern (Chess-pat) [59], multi level directional cross
binary patterns (MLD-CBP) [60], synchronized rotation local
ternary pattern (SRLTP) [38], oriented star sampling structure
based multi-scale ternary pattern (O3S-MTP) [40], pattern of
local gravitational force (PLGF) [39] and so on.

Even though LBP and its modifications and extensions
achieve satisfactory performance, still an alternative tech-
nique to enhance the discriminative power in an image for
effective texture modeling and representation is essential.
In this paper, aiming at the further enhancement of texture
classification performance and keeping the simplicity and
effectiveness of the traditional LBP and addressing its fee-
bleness, we design a conceptually simple and yet robust
model of LBP, named directional neighborhood topologies
based multi-scale quinary pattern (DNT-MQP). The designed
texture operator has basically the following merits: As it will
be shown further, DNT-MQP has low computational com-
plexity and by offering highly-desirable features improves
both the discriminative capability of LBP-like methods and
their invariance to monotonic illumination changes as well as
their robustness to small variations, due to image noise. The
main contributions of this paper include the following:
• An automatic mechanism for dynamic thresholds
estimation for quinary pattern creation process is
proposed.

• A family of single scale descriptors named directional
neighborhood topologies based single-scale quinary pat-
tern (DNT-QP) is developed based on several direc-
tional neighborhood topologies (DNT) which are more
effective for image texture understanding and analysis
than large number of existing methods.
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• We further extend the obtained single scale DNT-QP
descriptors to incorporate multiscale by concatenating
them into a single vector feature to build the effective
directional neighborhood topologies based multi-scale
quinary pattern (DNT-MQP) descriptor which should be
more robust and stable.

• For performance evaluation, we restrict ourselves to tex-
ture classification as basic application of LBP. Extensive
experiments on sixteen challenging publicly available
texture database is performed.

• We provide a fair and systematic comparison and found
that the designed texture operator shows superior per-
formance to 34 recent powerful state-of-the-art texture
descriptors.

The rest of the paper is organized as follows. Section II
briefly introduces some typical existing texture descriptors.
Section III presents the designedDNT-MQP descriptor. Com-
prehensive experimental results and comparative evaluation
are given in Section IV. Section V concludes the study and
presents some solid future research directions.

II. REVIEW OF THE EXISTING REPRESENTATIVE
TEXTURE METHODS
In this part of study, we briefly introduce some of represen-
tative texture methods reported in the literature, our paper’s
core idea, contributions and organization. Given that the
designed local texture descriptor is based on local kernel
functions, it is appropriate to define the spatial arrangement of
the local structure used in this paper. In this work, the choice
was focused on the use of the 3 × 3 sized block given its
easiness-of-implementation consideration and which is by
far the most required neighborhood especially in real-time
applications. The mathematical presentation of the set of
gray-scale values of a 3×3 grayscale image patch I3×3m,n around
the central pixel ac of coordinates (m,n) is given in Eq. 1.

I3×3m,n =

 a3 a2 a1
a4 ac a0
a5 a6 a7

 (1)

apis the gray levels of the peripheral pixels (p ∈ {0, 1,...,
P-1}). P=8 is the number of local neighbors.

A. TRADITIONAL LOCAL BINARY PATTERNS
LBP method [8] characterizes the local spatial structure and
the local contrast of each 3 × 3 local region in the image
by thresholding the intensity of surrounding pixels ap; p ∈
{0, 1, . . . , 7} with the intensity of the central pixel ac. The
value of ap is turned into binary value 1; otherwise, it is turned
into 0. A code of 8 bits is obtained which is transformed
into decimal number to get the LBP code. Formally, for a
3 × 3 local region, the definition of the kernel function of
LBP operator is shown in the equation below:

fLBP(I3×3m,n ) =
P−1∑
p=0

ϑ(ap − ac)× 2p (2)

where ϑ(·) is the Heaviside step function (cf. Eq. (3)).

ϑ(x) =
{
1, if x >= 0
0, otherwise

(3)

Figure 1 shows the standard steps illustrating the process
of the LBP feature extraction as well as the quantification
of the difference between two texture images using LBP like
features.

FIGURE 1. The standard steps for quantification of the difference
between two texture images using LBP like features.

B. LOCAL QUINARY PATTERNS (LQP)
In local quinary patterns (LQP) [17], the difference of
the gray level value between the central pixel ac and its
neighboring pixels ap is encoded according to five levels
(i.e., 2, −1, 0, 1 and 2) calculated using two thresholds τ1
and τ2. The LQP is thus closely relevant to the LTP [24],
the only difference being that the number of coding levels is
five in the LQPwhile in the LTP it is three. The quinarymodel
is divided into four binary models according to the following
rule:

ϕLQP(ap, ac, τ1, τ2) =



+2 ap > ac + τ2,
+1 ac + τ1 6 ap < ac + τ2,
0 ac − τ1 6 ap < ac + τ1,
−1 ac − τ2 6 ap < ac − τ1,
−2 Otherwise,

(4)

where τ1 and τ2 are two user-specified parameters.
The LQP operator, by using the LTP’s concept, splits each
quinary pattern into four parts: LQP−2, LQP−1, LQP+1 and
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LQP+2 which can be computed as follows(cf. Eqs. 12, 13, 14
and 15):

LQP−2(I3×3m,n ) =
7∑

p=0

ϑ(ac − ap − τ2)× 2p (5)

LQP−1(I3×3m,n )=
7∑

p=0

(
ϑ(ap−ac+τ2)×ϑ(ac − ap − τ1)

)
×2p

(6)

LQP+1(I3×3m,n )=
7∑

p=0

(
ϑ(ap−ac−τ1)×ϑ(ac−ap + τ2)

)
×2p

(7)

LQP+2(I3×3m,n ) =
7∑

p=0

ϑ(ap − ac − τ2)× 2p (8)

The four descriptor histograms generated by the four
LQP−2, LQP−1, LQP+1 and LQP+2 operators are finally
concatenated to form the final hLQP future vector as illus-
trated in Eq. 9. LQP generates 4 × 28 possible different
patterns.

hLQP =
〈
hLQP−2 ,hLQP−1 ,hLQP+1 ,hLQP+2

〉
(9)

C. IMPROVED LOCAL QUINARY PATTERNS (ILQP)
Armi et al. [35] proposed the improved local quinary pat-
terns (ILQP) to overcome some disadvantages of LQP and
thus improve its performance. The definition of the local
quinary pattern in ILQP is the same as in the LQP operator.
By contrast, the thresholds τ1 and τ2 are dynamically defined.
τ1 and τ2 are computed as:

τ1 = median(|lmad − median(lmad)|); (10)

where lmad = {LocalMADk |k = 1, 2, . . . ,M × N },
LocalMAD = median(|G − median(G)|) and G = {ap|p =
0; 1; . . . ;P− 1}

τ2 =
1

M × N

N∑
i=1

M∑
j=1

LSVi,j; (11)

where M and N are the size of input image and LSVi,j is the
local significant value of the neighborhoodwith center pixel c
with coordination (i,j), given by LSVc = 1

P

∑P−1
p=0 (|ac − ap|).

The quinary pattern can be divided into the four local binary
patterns as follows:

ILQP−2(I3×3m,n ) =
7∑

p=0

ϑ(ac − ap − τ2)× 2p (12)

ILQP−1,−2(I3×3m,n )=
7∑

p=0

[(
ϑ(ap−ac + τ2)×ϑ(ac−ap−τ1)

)

| ϑ(ac − ap − τ2)
]
× 2p (13)

ILQP+1,+2(I3×3m,n )=
7∑

p=0

[(
ϑ(ac−ap+τ2)× ϑ(ap−ac−τ1)

)

| ϑ(ap − ac − τ2)
]
× 2p (14)

ILQP+2(I3×3m,n ) =
7∑

p=0

ϑ(ap − ac − τ2)× 2p (15)

Note that the vertical bar | and × symbol stand for ’OR’
and logical ’AND’ operations, respectively.

III. PROPOSED METHOD
A. DIRECTIONAL NEIGHBORHOOD TOPOLOGIES BASED
MULTI-SCALE QUINARY PATTEN
Considering the fact that a texture image is defined as
the local spatial variations in pixel orientation and intensi-
ties, we design directional neighborhood topologies based
multi-scale quinary patten (DNT-MQP) to describe the spa-
tial variations in pixel intensities and orientation in a local
neighborhood in the image. The essence of DNT-MQP is
to perform local sampling and pattern encoding in the most
informative directions contained within texture images. The
construction process of the proposed DNT-MQP descriptor
involves the following stages:
• STAGE #1 (Neighborhood topology): DNT-MQP
descriptor considers a unit distance radius since clos-
est neighboring pixels maintains more discriminat-
ing information for local texture descriptors keeping
thus low computational complexity. Thus, the whole
3 × 3 grayscale image patch is adopted to design the
DNT-MQP method which intends to explore the mutual
information with respect to the adjacent neighbors.
Consider the center pixel ac and its 8 neighborhood
pixels {a0,a1,. . .a7}. On the basis of the above consider-
ation, directional neighborhood topologies adopted by
DNT-MQP and which are expected to better describe
salient local texture structure are conducted as shown
in Figure 2. The neighbors of a reference pixel ak are cat-
egorized according to their angular position relative to
that pixel. On the one side, from the first row of Figure 2,
it can be inferred that the central pixel ac is sampled
each time with two pixels in each of four directions
(kπ)
4 ; k ∈ {0,1,2,3}. We consider four sets Sk;k∈{0,1,2,3}

of directional center-symmetric neighboring pixels with
respect to directions (kπ)

4 including the central pixel ac.
Mathematical definition of Sk is given by Eq. 16.

Direction
(kπ )
4
: Sk = {ak, ac, ak+4}; (16)

On the other side, from the second row of Figure 2,
it can be inferred that each peripheral pixel is sam-
pled with two of its sequential peripheral neighboring
pixels in each direction. We consider four new sets
S̃k;k∈{0,1,2,3} of directional sequential peripheral neigh-
bors with respect to directions (2k+1)π

4 . Mathematical
definition of S̃k is given by Eq. 17.

Direction
(2k+ 1)π

4
: S̃k = {a2k, a2k+1, a2k+2} (17)
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FIGURE 2. The adjacent neighbor relation for each of the 8 neighbors.
(Top) the four sets of directional center-symmetric neighboring pixels
and (Down) the four sets of directional peripheral neighboring pixels.

It appears from the literature that the average gray
level as well as the median of the grey-scale values
are widely accepted statistical parameters for texture
analysis. In view of this and aiming at enhancing the
thresholding range tolerance and thus finding a code
which is insensitive to noise andmore robust to illumina-
tion changes, several mean and median values (denoted
as aµ, aµ̃, aSk , aS̃k , a% and a%̃) are incorporated as virtual
pixels in the modeling of the proposed texture model.
aµ, aµ̃ are respectively the average local and global
gray levels of the whole 3 × 3 square neighborhood
and the whole image IM×N , aSk and aS̃k are the average
directional gray levels according to both sets Sk and S̃k
and a% and a%̃ are the median of the grey-scale values
of the 3 × 3 square region and the whole image IM×N ,
respectively (cf. Eqs. 18, 19, 20 and 21).

aµ =
1
9
(ac +

P−1∑
p=0

ap) (18)

aµ̃ =
1

M × N

M−1∑
i=0

N−1∑
j=0

a(i,j)

(19)

Direction
(kπ )
4
: aSk =

(ak + ac + ak+4)
3

(20)

Direction
(2k+ 1)π

4
: aS̃k =

(a2k + 2a2k+1 + a2k+2)
4

(21)

The pixel samples of both Sk and S̃k sets as well as
the considered virtual pixels are then arranged into two
directional neighborhood topologies based Sampling
Sets, denoted as SS1 and SS2 (cf. Eqs. 22 and 23).
The sampling set SS1 is constructed by considering
the four couples of directional center-symmetric pix-
els {(ak, ak+4); k ∈ {0, 1, 2, 3}}, the two couples of
the average directional gray levels {(aS2k ,aS2k+1 ); k ∈
{0, 1}} and the couple formed by the average local and
global gray levels (aµ and aµ̃). In contrast, the sampling
set SS2 is constructed by considering the four couples

of pixels {(a2k+1, aS̃k); k ∈ {0, 1, 2, 3}}, the couple
formed by the average local and global gray levels (aµ,
aµ̃) and the couple formed by the median of local and
global the grey-scale values (a%, a%̃). Mathematical def-
initions of both sampling sets SS1 and SS2 are given by
Eqs. 22 and 23.

SS1 = {(aµ, aµ̃), (aS0 , aS1 ), (aS2 , aS3 ), {(ak, ak+4)}}
(22)

SS2 = {(a%, a%̃), (aµ, aµ̃), {(a2k+1, aS̃k )}} (23)

where k ∈ {0, 1, 2, 3}.
• STAGE #2 (Pattern encoding): The local texture rela-
tionship between each couple of pixels within both sam-
pling sets SS1 and SS2 and the central pixel, is encoded
using a threshold values based LQP like coding scheme.
The employed indicator function δ0(·, ·) that converts the
couple relationship in quinary form is defined as follows
(cf. Eq. 24):

δ0(ax, ay) =


2, if (ax, ay) ∈ SRU

τ2

1, if (ax, ay) ∈ SRU
τ1

−1, if (ax, ay) ∈ SRL
τ1

−2, if (ax, ay) ∈ SRL
τ2

0, otherwise

(24)

where τ1 and τ2 (τ2 > τ1) are two positive user-specified
parameters (i.e., thresholds) which are introduced to
alleviate the effects of external factors such as noise
which destabilizes the patterns. SRU

τ1
, SRU

τ2
, SRL

τ1
and

SRL
τ2

are four Sets of pixels Relationship expressed in
the following ways:

SRU
τ1
= {(ax, ay)∈SS1|(ax>ac+τ1) & (ay>ac−τ1)}

(25)

SRL
τ1
= {(ax, ay)∈SS1|(ax6ac − τ1) & (ay6ac+τ1)}

(26)

SRU
τ2
= {(ax, ay)∈SS2|(ax>ac+τ2) & (ay>ac−τ2)}

(27)

SRL
τ2
= {(ax, ay) ∈ SS2|(ax6ac − τ2) & (ay6ac+τ2)}

(28)

It is acknowledged that the related information of
the locality structure can be provided using positive
and negative responses. The proposed descriptor splits
then, by using the LQP’s concept, each quinary pattern
into four distinct parts: two negative (i.e., lower) and
two positive (i.e., upper) parts to generate four binary
codes. With this convention, the four thresholding func-
tions that permit to obtain the two lower and the two
upper codes can be expressed in the following ways
(cf. Eqs. 29, 30, 31 and 32):

δ+1(ax, ay) =
{
1, if (ax, ay) ∈ SRU

τ1
0, otherwise

(29)

δ−1(ax, ay) =
{
1, if (ax, ay) ∈ SRL

τ1
0, otherwise

(30)
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δ+2(ax, ay) =
{
1, if (ax, ay) ∈ SRU

τ2
0, otherwise

(31)

δ−2(ax, ay) =
{
1, if (ax, ay) ∈ SRL

τ2
0, otherwise

(32)

The local information is encoded using two upper and
two lower directional binary dual-cross encoders noted
as ESRUτ1

, ESRUτ2
, ESRLτ1

and ESRLτ2
which are based on

thresholding functions δ+1, δ−1, δ+2 and δ−2 and asso-
ciated to the four sets of pixels relationship SRU

τ1
, SRU

τ2
,

SRL
τ1

and SRL
τ2
, respectively. Formally, the codes pro-

duced by the four encoders ESRUτ1
, ESRUτ2

, ESRLτ1
and

ESRLτ2
are computed as:

ESRUτ1
(I3×3m,n ) = δ+1(aµ, aµ̃)× 26

+

1∑
k=0

δ+1(aS2k , aS2k+1 )× 25−k

+

3∑
k=0

δ+1(ak, ak+4)× 2k (33)

ESRLτ1
(I3×3m,n ) = δ−1(aµ, aµ̃)× 26

+

1∑
k=0

δ−1(aS2k , aS2k+1 )× 25−k

+

3∑
k=0

δ−1(ak, ak+4)× 2k (34)

ESRUτ2
(I3×3m,n ) = δ+2(aµ, aµ̃)× 25

+δ+2(a%, a%̃)× 24

+

3∑
k=0

δ+2(a2k+1, aS̃k )× 2k (35)

ESRLτ2
(I3×3m,n ) = δ−2(aµ, aµ̃)× 25 + δ−2(a%, a%̃)× 24

+

3∑
k=0

δ−2(a2k+1, aS̃k )× 2k (36)

• STAGE# 3 (Features extraction): After encoding each
pixel in the input texture image using the four direc-
tional binary dual-cross encoders ESRUτ1

, ESRLτ1
, ESRUτ2

andESRLτ2
, four codemaps are produced. The histograms

used as features representing the texture are generated
from the obtained four code maps by the following
equations:

hESRUτ1
(k1) =

∑
I3×3m,n

δ̂(ESRUτ1
(I3×3m,n ),k1) (37)

hESRLτ1
(k1) =

∑
I3×3m,n

δ̂(ESRLτ1
(I3×3m,n ),k1) (38)

hESRUτ2
(k2) =

∑
I3×3m,n

δ̂(ESRUτ2
(I3×3m,n ),k2) (39)

hESRLτ2
(k2) =

∑
I3×3m,n

δ̂(ESRLτ2
(I3×3m,n ),k2) (40)

where k1 ∈ [0, 27] is the number of ESRUτ1
and ESRLτ1

patterns and k2 ∈ [0, 26] is the number of ESRUτ2
and

ESRLτ2
patterns. δ̂(·,·) denotes the Kronecker delta func-

tion defined as below:

δ̂(α, β) =
{
1, if α = β
0, otherwise

(41)

• STAGE #4 (Multi-scale scheme): At present, the his-
tograms from single scale analysis realized with the four
directional binary dual-cross encoders ESRUτ1

, ESRLτ1
,

ESRUτ2
and ESRLτ2

cannot meet the requirements for ulti-
mate recognition score.
Taking into consideration that various features have vari-
ous capabilities to demonstrate images and tomake them
more robust to scale variations, the richer detailed tex-
ture information can be captured by multi-scale fusion
operation that consists of performing a linear combina-
tion of these features. In current study, a novel hybrid
histogram is generated by combining the information
obtained by ESRUτ1

, ESRLτ1
, ESRUτ2

and ESRLτ2
encoders

into a single vector feature. Note that this new hybrid
texture description model is expected to be more effec-
tive as it permits to reduce the noise sensitivity and
improves the discrimination capability of ESRUτ1

, ESRLτ1
,

ESRUτ2
and ESRLτ2

operators through their complementary
informations. The constructed histogram feature vector
of multi-scale analysis is illustrated as follows:

hDNT-MQP =

〈
hESRUτ1

,hESRLτ1
,hESRUτ2

,hESRLτ2

〉
(42)

where 〈〉 is the concatenation operator.

B. PROPOSED DYNAMIC THRESHOLDS FOR DNT-MQP
Evidently, a parametric method evaluated with its user-
specified parameters optimized over each tested dataset
leads to achieving satisfactory classification results. In this
paper, to ensure a meaningful and reasonable comparison
with parameter-free state-of-the-arts methods, we propose
to define locally and dynamically both parameters τ1 and
τ2 for quinary pattern creation process of our method. For
that, we consider a local image patch of size 3 × 3 and the
neighbor to center difference denoted as df3×3 (cf. Eq. 43)
is first calculated. Then, the mean of all negative difference
values df mean

−

3×3 and the mean of all positive difference values
df mean

+

3×3 are calculated from the df3×3 set using Eq. 44.

df3×3 = [a1 − ac, a2 − ac, . . . , a7 − ac] (43)

df mean
+

3×3 =
1
pv

pv∑
k=1

df +k df mean
−

3×3 =
1
nv

nv∑
k=1

|df −k |

(44)
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where df +k and df −k are, respectively, the positive (i.e., ak −
ac ≥ 0) and negative (i.e., ak − ac < 0) difference values
in the df3×3 set, pv is the number of df +k elements and
nv is the number of df −k elements (pv + nv = P). Finally,
both parameters τ1 and τ2 are measured using the following
equation (cf. Eq. 45):

τ1 =
|df mean

+

3×3 − df mean
−

3×3 |

max(df mean
+

3×3 , df mean
−

3×3 )
τ2 =

df mean
+

3×3 + df mean
−

3×3

min(df mean
+

3×3 , df mean
−

3×3 )
(45)

The pseudo-code of the proposed DNT-MQP descriptor is
illustrated in algorithm 1.

C. ADVANTAGES OF DNT-MQP AND DISCUSSION
As a LBP and LQP texture operators variant, the designed
DNT-MQP descriptor preserves the same merits concerning
the invariance with the monotonic lighting change as well as
the low complexity. Furthermore, DNT-MQP presents other
merits that are discussed herein below.

Compared to some recent state-of-the-art texture descrip-
tors like LQPAT [47], LCCMSP [49] and ARCSLBP [63],
which suffer from an inborn defect of LBP, DNT-MQP
descriptor can better describe local texture characteristics of
the image with lower computational complexity. In order
to visually show the effectiveness of the coding strategy of
DNT-MQP, we illustrate in Figure 3 examples of histogram
based-matching of two sample texture images, selected from
USPTex database and belonging to two distinct texture
classes using DNT-MQP, LQPAT, LCCMSP and ARCSLBP.
It is easy to observe that DNT-MQP carries more information
than those of the other descriptors which permit to DNT-MQP
to have better discriminative ability compared to LQPAT,
LCCMSP and ARCSLBP. Moreover, the histograms of both
images using DNT-MQP are considered as not similar since
the distance (using L1-city block distance) between the two
samples, which is 1.1298 is higher compared to LQPAT,
LCCMSP and ARCSLBP where their measured distances
which are respectively 0.6173, 0.6924 and 0.7119, can be
considered similar (lower than those obtained byDNT-MQP).
To further highlight its effectiveness, DNT-MQP is applied
on various challenging representative texture datasets in the
Section IV.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
In this phase of study, we show the effectiveness and validate
the performance stability of the proposedDNT-MQP operator
with comprehensive tests on sixteen representative widely
used texture databases. Furthermore, DNT-MQP is compared
to a large number of recent most promising state-of-the-art
texture descriptors and several CNN-based features to high-
light its provided performance improvement. The evaluated
methods are summarized in Table 1. Note that, some of these
methods are implemented using the original available codes
while for the others we have used our own implementation
according to their respective papers and which are fine tuned

Algorithm 1 Computing DNT-MQP descriptor
Require: I ← input grayscale image IM×N .
Output: hDNT-MQP← the multi-scale histogram feature.
1: Calculate the average global gray levels aµ̃ of the whole

image IM×N using Eq. 19
2: Calculate the median of the grey-scale values a%̃ of the

whole image IM×N .
3: for Each image pixel ac of IM×N do
4: Consider a local square window I3×3m,n of dimension 3×

3 around ac.
5: Calculate the neighbor to center difference df3×3 and

then calculate both dynamic thresholds τ1 and τ2 using
Eq. 45.

6: Calculate the average directional gray levels aSk and
aS̃k according to both sets Sk and S̃k (cf. Eqs 16 and 17)
using Eqs. 20 and 21.

7: Calculate (using Eqs. 33, 34, 35 and 36, respectively):
• ESRUτ1

(I3×3m,n ) ← the upper directional binary code

based on thresholding function δ+1 and associated
to the set of pixels relationship SRU

τ1
.

• ESRLτ1
(I3×3m,n ) ← the lower directional binary code

based on thresholding function δ−1 and associated
to the set of pixels relationship SRL

τ1
.

• ESRUτ2
(I3×3m,n ) ← the upper directional binary code

based on thresholding function δ+2 and associated
to the set of pixels relationship SRU

τ2
.

• ESRLτ2
(I3×3m,n ) ← the lower directional binary code

based on thresholding function δ−2 and associated
to the set of pixels relationship SRL

τ2
.

8: end for
9: Calculate (using Eqs. 37, 38, 39 and 40, respectively):

• hESRUτ1
← histogram feature of ESRUτ1

code map.

• hESRLτ1
← histogram feature of ESRLτ1

code map.

• hESRUτ2
← histogram feature of ESRUτ2

code map.

• hESRLτ2
← histogram feature of ESRLτ2

code map.

10: Calculate the multi-scale histogram feature hDNT-MQP
using Eq. 42.

11: return hDNT-MQP

to get the same output results as given in the published
paper. The experiments herein follow the standard evaluation
protocol for each tested dataset (i.e., split-sample validation)
where 50% of the samples are randomly selected to be used
as the training set, and the remaining 50% of the samples are
regarded as the testing set. The samples of the test set are
then classified through the parameter-free nearest-neighbor
rule (1-NN) with L1-city block distance. We repeat each
experiment 100 times to remove any bias related to the divi-
sion of the dataset and the averaged results are considered
as estimated accuracies. In what follows, the texture datasets
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FIGURE 3. Comparison of DNT-MQP, LCCMSP, ARCSLBP and LQPAT
features on two sample texture images representing two distinct texture
classes from USPTex dataset, left and right columns present, respectively,
the histograms of the images (a) and (b) using the different descriptors.

considered in the experiments are first presented and the
obtained experimental results are then discussed.

A. TEXTURE DATASETS
For the sake of verification of the effectiveness and perfor-
mance stability of DNT-MQP, we carried out extensive tests
on sixteen well-known texture databases including Jerry Wu,
CUReT, KTH-TIPS, USPTex, Brodatz, KTH-TIPS2b, Bonn
BTF, MondialMarmi, TC-00, TC-01, TC-13, Kylberg and
XUH databases (the same datasets used in [52], [63]), New-
BarkTex1 and MBT2 databases. These well-known datasets
for texture classification (recognition) were selected to cover
various characteristics in terms of number of samples, num-
ber of classes and specific challenges posed by each texture
dataset. More information about each dataset is summarized
in Table 2. As can be seen from Table 2, each texture dataset

1https://www-lisic.univ-littoral.fr/~porebski/BarkTex_image_test_suite.
html

2https://multibandtexture.recherche.usherbrooke.ca/multi-band.html

TABLE 1. Texture descriptors tested and compared with our proposed
descriptor.

has its own specific challenges in terms of rotation, scale,
translation, illumination, view angle and other variations,
which will allow the performance of the proposed descriptor
as well as those of the evaluated state-of-the-art methods to
be assessed against these factors.

B. EFFECTS OF DIFFERENT COMPONENT COMBINATIONS
Generally, it is difficult to fulfill simultaneously several
qualities by a single encoder. The trend towards combin-
ing several texture representations generated using differ-
ent encoders seems to be the best way forward. Indeed,
the combination can be suitable in order to exploit advan-
tages of each encoders, reduce the problems that arise in
each individual method and, then, improve the classification
results. There are four main components in the designed
DNT-MQP descriptor, such as ESRUτ1

, ESRLτ1
, ESRUτ2

and ESRLτ2
(denoted as single scale DNT-QP1, DNT-QP2, DNT-QP3,
DNT-QP4, respectively in Figure 4) encoders where their
combination gives rise to the DNT-MQP descriptor (DNT-
MQP=

〈
DNT-QP1,DNT-QP2,DNT-QP3,DNT-QP4

〉
). In this

subsection, we evaluate their effects and impact on
the overall performance applied alone, in combina-
tion two by two (DNT-QP12=

〈
DNT-QP1,DNT-QP2

〉
and DNT-QP34=

〈
DNT-QP3,DNT-QP4

〉
), three by three

(DNT-QP123 =
〈
DNT-QP1,DNT-QP2,DNT-QP3

〉
and DNT-

QP124 =
〈
DNT-QP1,DNT-QP2,DNT-QP4

〉
) against the

DNT-MQP descriptor using the USPtex, MondialMarmi and
NewBarkTex databases. It can be seen from Figure 4 that
the classification accuracy has improved every time a new
component is added, demonstrating the effectiveness of each
component and thus justifying the fact of combining the
different components. The DNT-MQP descriptor which is
an hybrid texture description model that combines all the
four components achieves the best classification results as
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TABLE 2. Image datasets used in this study. The Table presents the properties of each dataset, including the number of classes and variety of samples in
view point, scale, illumination changes, rotation, etc.

FIGURE 4. Classification results of single-scale image descriptors with
their combinations.

it extracts complementary texture information from fused
components.

C. COMPARATIVE ASSESSMENT OF PERFORMANCE
1) EXPERIMENT #1: INVESTIGATION ON PERFORMANCE
STABILITY
Table 3 depicts the average classification scores (i.e., over the
100 subdivisions) of each tested method and for each texture
database as well as the global average performance (GAP)
and the mean of standard deviation (mean Std) of each
method over all the datasets. According to the results reported
in Table 3, we can readily make the following observations:
• It is easy to observe that descriptors like LDENP, LDV,
DC and EULLTP present the lowest performance on
almost all the used dataset. Indeed, these methods are
often found at the bottom of the ranking as they achieve
classification performance which are mostly poor or at
least lowest than the other evaluated descriptors.

• Results indicate that, except operators like LDENP,
LDV, DC and EULLTP which perform poorly, all the
other evaluated methods show promising results on
Brodatz database (dataset 2 in Table 3) where their

achieved score are above 96%. Descriptors like LDZP,
KLBP, ILQP, RALBGC, LCCMSP, ARCS-LBP, LDTP,
MNTCDP as well as the designed DNT-MQP operator
manage to differentiate all classes perfectly (score equal
to 100%) on Brodatz database, leaving then essentially
no room for improvement. This remark is also true
for KTH-TIPS database (dataset 9 in Table 3) where
DNT-MQP as well as several evaluated state-of-the-art
descriptors manage to differentiate all classes perfectly.

• It can be found that there is a notable performance drop
for all the tested operators on several datasets including
USPtex, MondialMarmi, KTH-TIPS2b, TC-13, New-
BarkTex and MBT (datasets 1, 3, 4, 7, 10, 13, and 16 in
Table 3). The overall classification accuracy achieved
on TC-13, NewBarkTex and MBT are below 90%. It is
worth mentioning that in this study the 1-NN classi-
fier was used for classification but more complicated
machine learning algorithms such as support vector
machine (SVM) and extended nearest neighbor (ENN)
may improve the overall performance.

• It is evident from the results reported in Table 3 that none
of the evaluated methods ensure obtaining satisfactory
classification results over all the sixteen tested datasets.
Considering for example the DC descriptor, it performs
nicely on Brodatz, KTH-TIPS (it gets a score of 100%)
and Kylberg datasets but shows poor performance on the
others tested datasets. We can express the same remark
for many other evaluated methods. LETRIST descrip-
tor which is ranked as the 4th best descriptor as will
be shown later, it allows achieving good classification
results on the majority of the considered datasets but
its weaknesses appeared in classifying the images of
the NewBarkTex dataset as the achieved score drops
dramatically and is about 63% vs 86.98% (difference
of around 23.86%) realized with the top 1 descriptor
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TABLE 3. Average classification accuracy. The last two columns represent, respectively, the global average performance (GAP) and the mean standard
deviation of each method over all the datasets. The SSN operator as a color image descriptor is only evaluated on color texture datasets.

(i.e., the proposed DNT-MQP descriptor). The same
comment is true for many other methods such as CSQP,
LOOP, LDEBP and so on.

• It can also be seen in Table 3 that DNT-MQP real-
izes a performance that is competitive or better than
all the evaluated state-of-the-art descriptors. Further-
more, according to literature review it can be found that
DNT-MQP universally is among one of the best descrip-
tors in terms of overall accuracy as it achieves outstand-
ing classification outcomes on nearly all the selected
datasets. The striking performance of DNT-MQP can
be judged by the fact that it realizes the highest global
average performance (GAP) against all the evaluated
methods.

• Remarkably, DNT-MQP achieves superior classification
results against SSN (Spatio-Spectral Networks) descrip-
tor, whichwas originally designed for color-texture anal-
ysis, on USPtex, TC-13, NewBarkTex and MBT color
texture datasets. The SSN method, like the majority of
the methods oriented to color texture analysis, tends to
be more sensitive to illumination and resolution [71].
Also, it chiefly either does not consider spatial rela-
tionships between the pixels in the image or give lower
weightages. Thereby, dominant color gives the distri-
bution of the features, which may lead to lower accu-
racy. While, DNT-MQP has several advantages, includ-
ing invariance with the monotonic lighting change,
low complexity and low-dimensionality in feature
representation.

• Noticeably, considering the ranking between the tested
descriptors within each used dataset, DNT-MQP stands
out as the best descriptor as it performs consis-
tently and significantly the best for ten texture

datasets: USPtex, Brodatz, KTH-TIPS2b, Mondial-
Marmi, TC-00, TC-01,TC-13, KTH-TIPS, NewBarkTex
and Kylberg datasets (1-7, 9, 10, and 15, respectively).
Furthermore, it is in the top 3 methods on four tested
datasets. It is interesting to note that when DNT-MQP
does not achieve the highest specific scores (i.e., it is
not the top texture descriptor), it provides an interest-
ing competitive average performance compared to the
score yielded by the top one texture operator. Consider-
ing for example Bonn BTF dataset (number 12) where
DNT-MQP has the sixth-highest average performance
(i.e., ranked at the 6th position), it allowed to reach a
score of 99.25% which is considered as very satisfac-
tory classification result (very close to the score of the
descriptors ranked before it: 100% for the top one).

• The outstanding results on KTH-TIPS2b, Mondial-
Marmi, TC-00, TC-01, TC-13, Jerry Wu and UMD
verify the fact that DNT-MQP can resist the rotation
variations. Note that DNT-MQP has good tolerance to
rotation against LETRIST and SBP2 which are orig-
inally conceived/developped for rotation-invariant tex-
ture classification. In particular, DNT-MQP achieves
95.12%, 93.64%, 99.70%, 86.59% on KTH-TIPS2b,
MondialMarmi, TC-01 and TC-13, respectively, where
the performance improvement over SBP2 and LETRIST
on these datasets are of (4.23%,5.04%), (3.93%,6.65%),
(2.05%, 1.19%) and (2.35%, 2.94%). Furthermore,
DNT-MQP has good tolerance to illumination changes
as it provides the best average performance on KTH-
TIPS2b, TC-00, TC-01, TC-13, KTH-TIPS, NewBark-
Tex and UMD datasets and interesting competitive clas-
sification results on CUReT, Jerry Wu, Bonn BTF and
Kylberg datasets. In addition, the obtained superior and
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or competitive satisfactory results on, on the one side,
UMD, TC-13 and KTH-TIPS2b, and on, on the other
side, UMD and XUH, indicate that DNT-MQP has
good tolerance to scale changes and viewpoint changes,
respectively.

Considering the above discussions, it can be noticed that
the designed DNT-MQP operator shows a significant per-
formance stability over the evaluated state-of-the-art tex-
ture methods on almost all the considered datasets. Indeed,
DNT-MQP has lower oscillation of performance as it keeps a
consistent performance throughout various texture databases
while most of the literature methods oscillate. The per-
formance stability can also be confirmed by the fact that
DNT-MQP has achieved the lowest mean standard deviation,
corroborating to its robustness against any bias related to the
division of the datasets. These indicate that the combination
of single scale DNT-QP features helped to construct a texture
operator that performs better on a wide selection of various
texture datasets.

2) EXPERIMENT #2: STATISTICAL SIGNIFICANCE OF THE
OBTAINED RESULTS IN TERMS OF ACCURACY
IMPROVEMENT
The major reason to carry out this experiment is to further
validate statistically the obtained classification results via the
designed method vs the evaluated state-of-the-art descriptors
using the Wilcoxon signed rank test based ranking technique
proposed in [49]. The technique is applied on all the pairwise
combinations of the 24 evaluated texture descriptors consid-
ered in this experiment on the sixteen used texture datasets.
Table 4 gathers the obtained ranking results according to the
normalized number of victories (number of wins/(number of
tested datasets*(number of tested descriptors - 1))) achieved
by each evaluated method on all the tested datasets. It is
easy to observe from the results shown in Table 4 that the
designed DNT-MQP operator is clearly the best performing
descriptor in comparison with the evaluated state-of-the-art
methods, which corroborate all the result analysis extracted
from Table 3. Remarkably, the normalized number of victo-
ries achieved by DNT-MQP is 0.80, vs. 0.71 with LETRIST
(top 2nd ), vs. 0.68 with LCCMSP (top 3th), vs. 0.67 with
ARCS-LBP (top 4th), etc. Particularly, if we consider the clas-
sification performance of LETRIST (the best second descrip-
tor) as baseline, DNT-MQP texture operator provides about
11.5% improvement over the sixteen tested texture datasets.

3) EXPERIMENT #3: COMPARISONS WITH CNN-BASED
FEATURES
To evaluate in depth the effectiveness of DNT-MQP at
the highest level, we also compared its performance to
that of the well-known CNN-based features using the
pre-trained deep learning models ResNet50, ResNet101,
AlexNet, VGG16 and VGG 19, with varying layers in some
of them. Note that the outputs of the evaluated CNN-based
features are treated as feature vectors that are exploited in
a manner similar to how handcrafted features are normally

TABLE 4. Ranking outcomes based on the normalized number of
victories achieved by each applied method on all the used
datasets after applying the Wilcoxon-based ranking test.

used. Table 5 summarizes the comparison results. Noticeably,
it can be found that DNT-MQP reaches the highest average
performance compared, similarly to the local descriptors,
to all tested CNN-based features on 10 datasets out of 16.
Note that, when DNT-MQP is not ranked at the first position,
it allowed, as shown in Table 5, to provide an interesting
average performance, although not achieving the highest
specific scores (i.e., it achieves similar accuracies to the
CNNs ranked before it), but with the advantage of DNT-MQP
being conceptually much easier to implement and training
free. Note that CNNs are more suitable when there is high
intraclass variability, whereas local descriptors works better
with homogeneous, fine-grained textures with low intraclass
variability. Indeed, when the images have similar contents
and fewer patterns, the deep models tend to extract redundant
feature values which make the classifier perform badly on
these features and make different models provide nearly the
same performance. On the other hand, when the images have
complex contents and various patterns, like in the USPtex
dataset, the deep features provide better presentation than the
local descriptors [70].

D. RESEARCH IMPLEMENTATION
A laptop, equipped with a 2.10 GHz Core i7 CPU, 8 GB of
RAM and having Ubuntu 14.04 trusty operating system was
used in the experiments. We implemented all the methods
using MATLAB R2013a. The implementation of the used
methods needed approximately 97 hours. Figure 5 demon-
strates the required time for processing (in minutes) con-
taining time for feature extraction, calculation of distance
and also 1-NN classification applied to 23940 images in the
16 datasets used in this study. According to Figure 5, it can
be seen that the proposed DNT-MQP method is faster than
the two best performing descriptors ranked after it which

VOLUME 8, 2020 212243



E. Rachdi et al.: Directional Neighborhood Topologies Based Multi-Scale Quinary Pattern for Texture Classification

TABLE 5. Performance comparison of DNT-MQP and CNN-based features. The last column represent the global average performance (GAP) of each
method over all the datasets.

FIGURE 5. Processing time (in minutes) of the top twelve tested texture
descriptors over all considered dataset.

confirms that DNT-MQP makes an admissible tradeoff
between speed and classification performance.

V. CONCLUSION
Herein, motivated by several state-of-the-art LBP-like
methods, a conceptually simple, easy-to-implement yet
highly discriminative texture operator so-called Directional
Neighborhood Topologies based Multi-scale Quinary Pat-
tern (DNT-MQP) is designed for texture description and
classification. DNT-MQP operator captures, thanks to the
use of several directional neighborhood topologies, richer
detailed and complementary texture information. As it has
been proved through the experimental results, DNT-MQP
showed its high ability to differentiate, with high precision,
different classes of a great number of benchmark texture
datasets, while enjoying a low-dimensional representation.
Furthermore, the discriminative power of DNT-MQP is
proved against 34 recent state-of-the-art methods, indicating
that DNT-MQP is a strong candidate for texture modeling.
Future work will concern the investigation of the use of other
well known classifiers to increase classification performance
of the proposed model. In addition, the proposed texture
operator holds potential for deployment across high-level
challenging applications related to texture classifica-
tion including dynamic texture classification, background
subtraction in complex scenes, object recognition and
video-based face analysis and so on.
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