IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 8, 2020, accepted November 18, 2020, date of publication November 24, 2020,
date of current version December 9, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3040209

Dictionary Learning via a Mixed Noise Model for
Sparse Representation Classification of Rolling
Bearings

JIALING ZHANG 1, JIMEI WU"“12, AND BINGBING HU"“2

ISchool of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China
2Faculty of Printing, Packaging and Digital Media Engineering, Xi’an University of Technology, Xi’an 710048, China

Corresponding author: Jimei Wu (wujimeil @ 163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 52075435, and in part by the Natural
Science Foundation of Shaanxi Province under Grant 20JY054.

ABSTRACT Rotating machinery contains a great number of rolling bearings, which play an indispensable
role. However, bearing vibration signals in complex environments are often mixed with various noises, which
makes it difficult to extract fault characteristics from original signals. It is still challenging to identify the fault
types of rolling bearings. To address this issue, a dictionary learning method based on a mixed noise model
for the sparse representation classification of rolling bearings (DLMN-SRC) is proposed. Our framework
constructs a dictionary learning method based on mixed noise, which has better robustness to complex
noise pollution than a single noise model. Then, an alternating direction method of multipliers (ADMM)
algorithm is used to solve the optimization problem of the proposed model. Eventually, the redundant
errors between the detected and reconstructed signals in the dictionary learning model are calculated for
sparse representation classification. The results of two examples prove that faults of the rolling bearing
are successfully extracted and classified by DLMN-SRC. Compared with traditional diagnosis methods,
the performance of this method has obvious superiority and good application prospects.

INDEX TERMS Dictionary learning, mixed noise, sparse representation classification, bearing fault

diagnosis.

I. INTRODUCTION
Rolling bearings are commonly applied to modern rotating
machinery and are a key component in ensuring the safe and
stable operation of the system. However, due to the work-
ing characteristics of the rotating machinery, the bearings
are often exposed to heavy load, high temperature, variable
load and harsh working environments. Bearings have become
one of the most vulnerable components [1], [2]. Therefore,
the condition monitoring and fault diagnosis (CMFD) of
bearings has attracted widespread attention in the scientific
and engineering communities [3]. This has significance in
reducing operation and maintenance costs and improving the
reliability of rotating machinery.

Most fault signals cannot be measured or can only be mea-
sured under noisy conditions because of complex mechan-
ical structures and nonstationary operating conditions [4].
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When a rolling bearing is damaged by wear and impact,
the damping and stiffness are changed, resulting in non-
linear and nonstationary vibration signals. Therefore, it is
important to extract the implicit useful state variables through
a series of noisy data. The existing literature about sig-
nal denoising and fault feature extraction usually includes
a time domain analysis, frequency domain analysis and
time-frequency analysis, such as, the Kalman filter [5],
Fourier transform [6], wavelet transform [7] and empiri-
cal mode decomposition [8]. The above methods require
experts to accurately identify fault types under the premise
of retaining professional knowledge. In recent years, as a
derivative of signal processing, sparse representation (SR)
based on the sparse modeling of vibration signals has been
used. SR constructs the sparsest or nearly sparse signal rep-
resentation through atomic linear representation in overcom-
plete dictionaries. SR has been one of the important research
areas in signal processing [9], image denoising [10] and face
recognition [11].

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

213416

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 8, 2020


https://orcid.org/0000-0001-5484-3511
https://orcid.org/0000-0002-4695-1376
https://orcid.org/0000-0002-1754-3736
https://orcid.org/0000-0003-0261-4068

J. Zhang et al.: Dictionary Learning via a Mixed Noise Model for SR Classification of Rolling Bearings

IEEE Access

To date, many successful applications have been reported
for CMFD. A popular way to design a dictionary is called
dictionary learning. The selection of a dictionary is the key
part of signal sparse representation and feature extraction.
At present, existing dictionary learning methods are generally
divided into two categories: analysis dictionary and learn-
ing dictionary [12]. The design of an analysis dictionary
mainly depends on prior knowledge of the target signal.
Nevertheless, the fault characteristics may be unknown and
unpredictable. At present, the learning dictionary has become
a common dictionary because of its strong adaptability, good
sparsity and reconstruction accuracy. Chen er al. [13] studied
the characteristics of fault signals under strong background
noise. A pulse sparse dictionary was proposed for a sparse
model based on compression perception. Yang ef al. [14]
developed a sliding-window dictionary learning denoising
method with time-domain signals. Zhou et al. [2] and
Sun et al. [15] established an overcomplete dictionary (or
overcomplete atomic library) of attended cosines basis and
a parameter pulse dictionary that highly match the bearing
fault waveform. Jiao et al. [16] presented a hierarchical
discrimination sparse coding (HDSC) method, which suc-
cessfully extracted weak fault features under strong noise
and environmental interference. Although the above methods
have made satisfactory contributions to feature extraction,
it is difficult to extract feature signals with different types
of noise pollution in actual working conditions [17]. If we
directly analyze the original sample as a dictionary, then the
noise destroys the structure of the subspace, thereby reduc-
ing the performance of the dictionary. It should be noted
that the above methods mostly construct dictionaries based
on the characteristics of fault signals, but there are few studies
from the perspective of noise. Xiao et al. [18] proposed a
double sparsity approach on the basis of an /-/y denoising
model. This method combined a median filter with K-SVD to
recover the image of a Gaussian plus impulse noise. Chen and
Wu [19] presented a new robust dictionary learning approach
that decomposed the noise into Gaussian noise and Laplacian
noise. Zhou et al. [20] designed a structured dictionary in
which the noise was composed of interference signals and
reconstruction residuals. The algorithm adopted ADMM to
extract the image feature samples. Most of the above research
results were focused on face recognition and image process-
ing, but there are few reports on mechanical equipment fault
diagnosis.

In actual working conditions, the noise of bearings is
caused by the inherent noise of the bearings, design and
processing errors and scars. In addition, the noise also comes
from noise produced by other components, the sensor’s noise
in the transmission process and the noise of the measuring
instrument system. Traditional dictionary learning assumes
that the noise obeys a Gaussian distribution and Laplace
distribution [21], [22]. Nevertheless, industrial process data
are often affected by abnormal values due to environmental
influences, erroneous measurements and the inherent charac-
teristics of sensors. These outliers make the noise distribution
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no longer obey the Gaussian distribution, which seriously
affects the performance of dictionary learning and fault clas-
sification. These phenomena make the noise distribution of
the system show heavy tail characteristics, that is, the prob-
ability density function distribution has a thicker tail statis-
tic [23], [24]. Fortunately, the T distribution has thicker or
higher tail than the Gaussian distribution, so it has better mod-
eling ability for the thick-tailed noise than the Gaussian distri-
bution. T distribution usually describes the noise distribution
in the presence of abnormal values [25], [26]. To address
these problems, a dictionary learning method based on a
mixed noise model is proposed that aims to classify the sparse
representation of rolling bearings from another perspective.
First, a real noise model based on a Gaussian distribution,
Laplace distribution and T distribution is constructed. This
makes the sparse representation dictionary more robust to
complex noise pollution than single distribution. Then, an
effective ADMM algorithm is the solution to the optimiza-
tion problem of the mixed noise model. The problem is
decomposed into several subproblems with closed solutions.
Finally, the fault types of bearings are identified by sparse
classification according to the constructed model. The main
innovations and contributions are as follows:

(1) A novel dictionary learning method that constructs
a mixed noise model is proposed. This uses a low
rank representation learning dictionary and a mixed
noise model based on Gaussian distribution, Laplace
distribution and T distribution.

(2) The ADMM algorithm is adopted to solve the opti-
mization problem of the mixed noise model.

(3) The proposed DLMN-SRC method does not require
complicated functional design or selection, and the
redundant errors between the detected and recon-
structed signals in the dictionary learning model
are calculated for sparse representation classification,
which provides a basis for fault identification.

The remainder of this paper is organized as follows.
Section II introduces the dictionary learning methods based
on noise assumptions. In Section III, the proposed diagnosis
algorithm via DLMN and sparse-representation-based clas-
sification is described in detail. The overall procedures of
the DLMN-SRC framework are illustrated in Section IV.
Section V presents the effectiveness and superiority in this
method, which are verified by two cases and compared with
existing diagnosis methods. Conclusions are reached in the
last section.

Il. RELATED WORK

We use the N n-dimension signal set Y = [y1,y2,...,yn] €
RN and redundant dictionary D = [dy,d>, ..., dx] €
R™K_ The dictionary learning (DL) method is achieved by
learning a distinct overcomplete dictionary D from the orig-
inal signal set Y, which is robust to various noises in the
fault diagnosis. DL is completed under the assumption that
the noise obeys the Gaussian distribution [27], [28]. The
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noise distribution is described by the l,-norm or /r-norm. The
classic DL model is expressed as follows:

min [|¥ —DA|If subject to [[dy 5 < 1. fori=1.2.....K

lagl, < T, forj=1,2,...,N (1)

where A = [a, a», ..., aN] € REXN i the sparse represen-

tation coefficient vector. T represents the sparsity, aiming to
make the number of nonzero atoms in the sparsity coefficient
ag) notexceed 7. K-SVD [29] and MOD [30] are typical dic-
tionary learning algorithms based on a Gaussian distribution
hypothesis. However, in order to solve the NP-hard nature of
Eq. (1), Mairal et al. [31] used /1-norm instead of /y-norm,
and Eq. (1) is rewritten as follows:

in||Y — DA| A
rg)lfr‘l Il g + « Al

subjuct to || 2 <1, fori=1,2,....K (2)

where « is a positive constant to weigh sparse terms. Inspired
by this idea, Zhao et al. [22] and Qin et al. [32] added con-
straint terms on the basis of Eq.(1) and (2) to extract and clas-
sify bearing fault characteristics. Nevertheless, the method
based on Gaussian noise may lose some useful feature infor-
mation because they are too smooth [27]. To overcome the
above shortcomings, scholars proposed DL methods based on
Laplace distribution [33]. Eq. (2) can be rewritten as:

in ||Y — DA A
min Y — DAJ, + o ],

subjuct to |2 <1, fori=1,2,....K (3

Although the DL methods based on Laplacian noise have
achieved clustering and noise reduction effects, the noise
in practical application is not only composed of a single
noise distribution. In Ref. [19] and [34], Chen and Selesnick
constructed the DL method based on the addition of Gaussian
noise and Laplacian mixed noise, such that

min ||Y — DA — B3 A B
D’A’BII Iz +allAll; + BBl

subjuct to ||d || ; <1, fori=1,2,....,K (4
where o and B are two the sparse regularization terms. B
denotes Laplacian noise. Unfortunately, industrial data are
often affected by abnormal noise, and it is not comprehensive
to use Gaussian and Laplace distributions to characterize
noise, which limits dictionary learning methods.

lIl. DICTIONARY LEARNING BASED MIXED NOISE
MODEL FOR SPARSE REPRESENTATION

CLASSIFICATION

As mentioned above in the dictionary learning theory back-
ground, a novel fault diagnosis method via dictionary learning
of mixed noise and low-rank sparse classification is proposed.
The DLMN-SRC framework involves three key issues, as
follows.
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A. DLMN OF STRUCTURES

In the past, most DL methods have assumed that noise comes
from a Gaussian distribution, Laplacian distribution, or a
mixture of these types. Nevertheless, a Gaussian-based dic-
tionary is sensitive to abnormal values, resulting in outliers
in noise measurement. In addition, original signals are often
affected by abnormal values due to environmental influences,
erroneous measurements and inherent characteristics of sen-
sors in complex background conditions. The noise distribu-
tion of the system becomes a heavy-tailed characteristic that
no longer only satisfies the above noise distribution. This
may reduce the performance of dictionary learning [35].
The T distribution has a better ability to describe nonlinear
and thick-tailed noise [36], [37]. Furthermore, in order to
strengthen the correlation between the subspace dictionary
and the representation coefficient vectors, the constructed
dictionary has low rank. Motivated by this, the mixed noise
model can be formulated as follows:

where «, B and X are the sparse regularization terms. A is
the sparse representation coefficient vector of signal set Y’s
redundant dictionary D. B, T and E=Y-DA-B-T represent the
Laplacian, T distribution and Gaussian noise, respectively.
[[A]l, is equal to the sum of the singular values of the sparse
representation coefficient vectors.

B. SOLVING DLMN VIA ADMM

The mixed noise model is decomposed into several subprob-
lems by the alternating direction of multipliers (ADMM)
method [38]. Eq. (5) can be rewritten as:

in |Y—DA—B—T|> H B AT
D,IEIQTH Iz +allHl+ BBl +A 0TI,

subjuctto A = H (6)
The augmented Lagrangian function L, is defined as:

L, (D.A,B,T,H,M)
=Y —DA—B—TIg+alH|,+ BBl + Tl
+ (M, A—H)+uplA—HIE )
where (M,A —H) = tr {M" (A—H)}. M represents the
Lagrangian multiplier.  represents a penalty parameter.

The ADMM iteration process is decomposed into subprob-
lems.

1) Updating A:

Ak+ argrrEnLM (Dk’A,Bk’ Tk,Hk,Mk)

2
R s

*

+ 8B + 20T
o el o
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Eq. (8) obtains a closed solution
Ak+1 — (DkTDk + '[,LI)_I

M
x [DkT (X . Tk) + puH* — 7} 9)
2) Updating H:
H** ! =argmin [a IH |l A+MT (A—H)+p ||A—H||%]
(10)

A singular value threshold algorithm is used to solve the
problem

B qa (AR 4 M an
2

m
where I« is the shrinkage factor.
m
3) Updating B:
B! = argmin (8 1Bl + Y — DA — B~ TI)
12)
The solution of Eq. (12) is
B =5, (Y _ pkak+l _ Tk) (13)
where Sg is the Laplace’s soft-thresholding operator.
4) Updating T':
74! = argmin (x Tl + Y —DA — B — T||l%)
(14)
The solution of Eq. (14) is
T = §, (Y e DkAk+1) (15)

where S, is the T distribution’s soft-thresholding
operator.
5) Updating D:

D! = argmin ||Y — DA — B — T||% (16)
Eq. (16) obtains a closed solution

Dl — [Y _ (Bk-H + Tk+l)]Ak+l
711

C. SPARSE CLASSIFICATION

Another key process of the DLMN-SRC framework is the
sparse classification of fault signals. The sparse coefficient
vector A and dictionary D are decomposed into a series of sub-
vectors a(j) and d;), respectively. Among them, only the vec-
tors mapped to the subdictionary coordinates are invariant,
while the nonzero values are zero elsewhere. The principle of
sparse classification is visualized in Fig. 1. The calculation
formula for each redundant error of the component part on
the subdictionary is as follows:

si=|Y-Dagls, j=12...,N (18)
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— d; d, dy
Vi V> Iy
X = oo .o .o eee

FIGURE 1. Visual sparse classification principle.

The atoms corresponding to the matching subdictionary
sparsely represent samples of each category. Therefore,
the minimum value &; nx corresponds to the fault type of the
test signal.

IV. OVERALL PROCEDURES OF DLMN-SRC FRAMEWORK
FOR FAULT CLASSIFICATION

In this paper, a dictionary learning method based on low-
rank representation of mixed noise model is proposed. This is
applied to the sparse representation classification of common
fault types in rolling bearings. The framework is divided into
vibration signal acquisition, mixed-noise model dictionary
learning and sparse representation-based classification. The
corresponding flowchart is illustrated in Fig. 2.

I Collect rolling bearing vibration signals

Normal  Tnner-race faull iw
DO e

— Original signals | = = = =

ter-race fault Rolling clement fault

i']]_(%n_stﬁ& the dictionary learning method basedon ~

. _mixednoisemodel . _ __________ :

| i [ - DA - BT |+ «la]. + ” |
3

|

|Laplacian noise| |T—distributed noise| |

Redundant error: g, = Hy - D“(J)szj =12, N

| |
| s

Fault classification results _ » P |
: — _T I I
I " |
I_ 12 e K Sle |

FIGURE 2. DLMN-SRC process.

Step 1: Collect the vibration signals of experimental
objects in different health conditions as test and training
samples for subsequent experiments.

Step 2: Update the variables A, H, B, T and D in the dic-
tionary model according to Section III-B. Update Lagrange
multipliers M¥*! = M* + p* (A¥+1 — H*¥+1) and penalty
parameter u**! = min (108, 1.01x%) until convergence
max {||A — H||5} < 10° is satisfied. Then, stop the iterations
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to obtain dictionary D and sparse coefficient A of the training
samples.

Step 3: Calculate the redundant errors between the detected
and reconstructed samples. The fault types of rolling bearings
are identified by judging the minimum redundant error.

V. EXPERIMENTS AND DISCUSSION

A. CWRU CASE

The experimental data of the bearing vibration signals were
obtained from CWRU. As shown in Fig. 3, the experi-
mental facility consists of a 2-hp induction motor, torque
sensor, electric motor and control electronic (not shown).
The test bearings are installed on the driving end of the
motor to support the motor shaft, and the acceleration sensor
is fixed above the bearing seat to collect the acceleration
data. The sampling frequency is 12 kHz. The test object is
an SKF6205 deep-groove ball bearing. SFK bearings status
types include normal (N), outer race fault (ORF), inner race
fault (IRF) and rolling element fault (REF). The single point
faults produced by electrodischarge machining on the rolling
bearings are 0.007, 0.014 and 0.021 inches, respectively.

Driveend Torque sensor  Indicator
— = |

b [ —]

Base

Fan end ——

Electric
motor

FIGURE 3. Schematic diagram of CWRU signal acquisition device.

In this subsection, the vibration signals of each type are
divided into 160 time series without overlapping sampling
points as the experimental samples. Without loss of gener-
ality, we classify the samples of the four health states in the
experiment according to the failure types of IRF, ORF, REF
and N status. The sample set for each fault contains 100 sam-
ples. A total of 800 samples are randomly selected as training
and test samples according to a proportion of 1:1. In the next
case, the experimental samples are selected according to this
rule. A detailed description of the CWRU dataset is shown
in Table 1. The corresponding waveform of the test samples
are shown in Fig. 4 (e.g., 0.007 inches). Although there are
some differences between the fault impulse characteristics
of the four fault signals in the time waveform and Fourier
spectrum, the periodic characteristics related to the fault sig-
nals are difficult to extract because of the coupling and noise
interference among the components.

The algorithm initialization parameters of the DLMN-SRC
framework are set as follows. The sparse regularization terms
o, B,2 > 0 are used to balance the weights of differ-
ent regularization terms, which have little influence on the
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FIGURE 4. (a) Time waveform of 0.007-inch CWRU bearing data.
(b) Corresponding Fourier spectrum.

TABLE 1. CWRU rolling bearing data set.

Fault Fa_lult Training Test Sample Class-
location s1ze sample sample length label
(inches) number number g
[nner 0.007 100 100 160 1
race
Outer 4 597 100 100 160 2
race
Rolling - 57 100 100 160 3
element
Normal 0 100 100 160 4
fnner 0.014 100 100 160 1
race
Outer 0.014 100 100 160 2
race
Rolling = 4 100 100 160 3
element
Tnner 4 571 100 100 160 1
race
Outer 11 100 100 160 2
race
Rolling = 0 100 100 500 3
element

proposed method. The penalty parameter 1 = 107>. The ini-
tial values of other parameters of the mixed noise dictionary
learning model are set to zero A=B=T=H =M =0.
As in Section IV, all kinds of fault samples are trained to
obtain four types of subdictionaries d(1y ~ d4), where
each type of subdictionary contains 300 atoms. The trained
subdictionaries are combined to form the final dictionary
D, which contains 1200 atoms. The atoms learned from the
dictionary represent almost all of the samples of fault types
sparsely. Fig. 5 shows the sparse representation coefficients
of the CWRU bearing on the basis of the mixed noise model
dictionary learning. It can be seen from the coefficient distri-
bution diagram that the amplitude of the sparse coefficients
in each region is related to the type of fault, and most of
the coefficients come from the matching group. As shown
in Fig. 5-(a), the higher amplitude of sparse coefficient is
distributed in the first 300 items of the coefficient diagram,
and their corresponding weight is the largest, which indicates
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FIGURE 5. Sparse representation coefficients of CWRU bearing. (a) IRF
(b) ORF (c) REF (d) N.

that the test data represent the inner race fault. Likewise,
the sparse coefficients in Fig. 5-(b)~Fig. 5-(d) respectively
indicate the ORF, REF and N states.

Moreover, the relationship between the training sparse
matrix and the original sample is represented by the Ir-
norm of y — y;. The minimum redundancy error of the test
sample is calculated and denoted as &; in Eq. (18). The
sparse classification results are shown in Fig. 6~Fig. 8.
It can be seen from Fig. 6-(a) that there are only three
misclassified target categories in the 400 test samples.
In the experiment, one outer race fault is considered an
inner race fault, and two rolling element faults are con-
sidered as outer race faults. Fortunately, the identifica-
tion results of the inner race fault and the normal are all
correct.
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FIGURE 6. (a) Recognition results of 0.007-inch bearing health state.
(b) Confusion matrix of 0.007-inch bearing health state detailed
classification.

I3 IRF 100 0 0 0 100%
25.00% | 0.00% | 0.00% | 0.00% | 0.00%
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FIGURE 7. (a) Recognition results of 0.014-inch bearing health state.
(b) Confusion matrix of 0.014-inch bearing health state detailed
classification.
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FIGURE 8. (a) Recognition results of 0.021-inch bearing health state.
(b) Confusion matrix of 0.021-inch bearing health state detailed
classification.

For further analysis, we combine Fig. 6-(a) with
Fig. 6-(b). On the one hand, the 100 inner test samples are
correctly identified with a recognition accuracy of 100%.
Among the outer race test samples, 99 samples are identified
correctly, and only one sample is misdiagnosed as an inner
race fault. Therefore, the accuracy of the outer race fault
test sample is 99%. Among the rolling element test samples,
98 samples are identified correctly, and two samples are
misdiagnosed as outer race faults. The accuracy of the rolling
element fault test sample is 98%. All 100 normal test samples
are identified correctly, and the test accuracy of the normal
sample is 100%. Overall, 397 samples are correctly identified
and 3 samples are incorrectly identified in the total of 400 test
samples. Therefore, the comprehensive accuracy of bearing
fault identification is 99.25%. On the other hand, there are
101 samples diagnosed as inner race faults in total, of which
100 samples are identified correctly and the other error
sample comes from an outer race fault. There are 101 samples
diagnosed as outer race faults, of which 99 samples are
correct, and the other two samples are misdiagnosed from
rolling element faults. The 98 test samples are diagnosed as
rolling element faults, all of which are correctly identified.
The 100 test samples are diagnosed as normal state, all of
which are correctly identified. Therefore, the same average
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Acceleration sensor

Feed roller Test bearing

o Data acquisiti
instrument

FIGURE 9. (a) Printing press bearing experimental platform. (b) Rolling
bearings with four different health states.

testing accuracy of fault identification on the basis of the
DLMN-SRC framework is 99.25%. In like manner, Fig. 7 and
Fig. 8 show the sparse classification results with fault depths
of 0.014 and 0.021 inches, respectively. Fortunately, their
average correct rates are 99.25% and 99%, respectively, and
the error rate did not exceed 1%. These quantitative results
prove the correctness of the proposed DLMN-SRC in the
detection of the bearing fault type under a complex noise
background.

B. PRINTING PRESS BEARING CASE

Printing equipment contains massive bearings, which are
crucial to ensure the accurate operation of the equipment.
The paper feed roller of the printing press serves as a feed
module to provide a continuous substrate for the printing
components. Bearings mounted on the paper feed roller are
chemically corroded by ink, alcohol and moistening liquid
during operation. Failure of the bearing will lead to two
or more sheets of paper, paper skew, paper wrinkling and
other abnormal phenomena, which seriously affect the whole
printing process. Experimental data of the rolling bearing
are collected from the feed spindle of the FR400 gravure
printing machine. As shown in Fig. 9-(a), the experimen-
tal facility is mainly composed of an AVANT data acqui-
sition instrument, gravure printing press, laptop, feed roller
and EA-YD-186 acceleration sensor. The vibration signal of
the test bearing is captured by the EA-YD-186 acceleration
sensor with a sensitivity of 9.78 mV/ms~2. Four kinds of
single-point park damage bearings [i.e., inner race fault (IRF),
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TABLE 2. Bearing parameters.

Bearing Inner diameter ~ Outer diameter Width Number of
type (mm) (mm) (mm) rollers
JYB6004 20 42 12 9

TABLE 3. Printing press bearing data set.

Fault Fault size 1:::1?5 sa:rniStle Sample  Class-
location (mm) P P length label
number number
Inner race 0.4 200 200 300 1
Outer race 0.4 200 200 300 2
Cage 0.4 200 200 300 3
Normal 0 200 200 300 4
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FIGURE 10. (a) Time waveform of printing press bearing data.
(b) Corresponding Fourier spectrum.

outer race fault (ORF), cage fault (CF) and normal (N)]
were machined by electrical discharge machining (EDM),
as illustrated in Fig. 9-(b). The specific parameters are listed
in Table 2. During the experiment, the spindle rotation fre-
quency is 40 Hz, and the experimental data are collected by
the acceleration sensor mounted on the vertical direction of
the analysis bearing. The sampling frequency is 12 kHz.

As in Section V-A, 800 samples are randomly selected
as test and training data from ORF, IRF, CF and N status,
respectively. Each sample contains 300 points, and there is
no overlap between these data. Thus, 800 training samples
and 800 test samples (1600 samples in total) are formed.
In essence, this is a four-type fault identification issue that
needs to be solved. Detailed descriptions of the experimental
data are presented in Table 3. Fig. 10 shows the time wave-
form and frequency domain of the four health states.

The algorithm initialization parameters have little influ-
ence on the DLMN-SRC method. The parameter value is the
same as that in Section V-B. The training sample dictionary
D is a redundant dictionary matrix of 300 x 2000, and four
types of subdictionaries d(1) ~ d4) of four different health
states are constructed. Fig. 10 shows the sparse representation
coefficients of the printing press bearings. From the coeffi-
cient distribution diagram, it can be seen that a majority of
the coefficients come from the corresponding type, and the
amplitude of the sparse coefficient in each region is related to
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FIGURE 11. Sparse representation coefficients of printing press bearing.
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FIGURE 12. (a) Recognition results of printing press bearing health state
(b) Confusion matrix of printing press bearing health state detailed
classification.

the fault type. Fig. 11-(a)~(d) indicate that almost all of the
coefficients come from matching groups, and the weight of
the sparse coefficients correspond to each fault type.

In addition, the printing press bearing states can be iden-
tified by calculating the minimum redundancy error of the
test sample on the dictionaries. Fig. 12 presents the sparse
classification results. As we can see from Fig. 12-(a) and
Fig. 12-(b), there are only seven misclassified target
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TABLE 4. Accuracy rates of different fault classification.

IRF ORF CF N Overall
Average g g0, 99.20%  97.45%  100%  99.03%
accuracy
Standard 0.0022 0.0045 0.0112 0 0.0019
deviation

categories in the 800 test samples. All 200 normal test sam-
ples are identified correctly, and the identification accuracy
of the normal sample is 100%. Among the inner race test
samples, 200 samples are correctly identified. The accuracy
of the inner race fault test sample is 100%. Among the outer
race fault test samples, 198 samples are identified correctly,
and only two samples are misdiagnosed as cage faults. The
accuracy of the outer race fault test sample is 99%. There
are five misclassified target categories in the cage fault test
samples. The classification accuracy for detecting rolling
bearings with cage faults in 200 samples is 97.5%. Therefore,
the comprehensive accuracy of bearing fault identification
i 99.13%.

From another perspective, there are 200 samples diagnosed
as inner race faults in total, and they are all correct. There are
203 samples diagnosed as outer race faults, of which 198 sam-
ples are correct, and the other five samples are misdiagnosed
from cage faults. A total of 197 test samples are diagnosed as
cage faults, of which two error samples came from outer race
faults. In addition, 200 test samples are diagnosed as normal
state, all of which are correctly identified. In general, the aver-
age accuracy of the proposed DLMN-SRC can reach 99.13%
for bearing type fault identification. In addition, each test is
repeated ten times to acquire the average accuracy and stan-
dard deviation in Table 4. In terms of stability, the standard
deviation of all test accuracies with DLMN-SRC is 0.0019.
Among them, the Normal type has the highest recognition
accuracy and is the most stable. Thus, DLMN-SRC retains a
stable diagnosis behavior.

C. COMPARISON WITH DIFFERENT

DIAGNOSIS METHODS

In this subsection, three popular and representative methods,
namely, K-SVD, D-KSVD and SRC, are used to further
prove the superiority of the DLMN-SRC method in bearing
fault type identification under a complex background. As a
classical dictionary learning algorithm, K-SVD uses a sparse
representation dictionary update interactive iterative two-step
method to obtain an adaptive redundant dictionary [39].
On the basis of K-SVD, the D-KSVD method inserts a
discriminant item into the target function during dictionary
learning to obtain a classifier and dictionary that contain
both representation ability and discriminant ability. Wright
proposed a sparse representation classification (SRC) algo-
rithm and applied it to face recognition [40]. To ensure a fair
comparison between the three algorithms, the experiments
are run in MATLAB R2015b. The comparison data is from
the CWRU case, which contains four different health states
with fault depths of 0.007, 0.014 and 0.021 inches under a
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FIGURE 13. Classification performance of the four methods.

0-hp load. We randomly selected 400 samples (100 for each
state) as test and training data. In addition, the atomic number
K, sparsity threshold 7" and iteration number / are set as 1200,
20 and 30, respectively.

Fig. 13 presents the recognition results of different classi-
fication algorithms based on sparse representation after ten
repeated experiments. The comparison results show that the
average identification accuracy of DLMN-SRC is 99.17%,
which is higher than the three traditional methods. The clas-
sification accuracy of SRC and K-SVD are less than 90%,
while the recognition rate of D-KSVD is 90.40%. The main
reason for the unsatisfactory classification performance of
the traditional K-SVD algorithm is that dictionary learning
is susceptible to the interference of complex noise and the
mixing with false atoms, which affects the performance of
dictionary learning. Although the identification accuracy of
SRC isnot low in the CWRU case, SRC uses all of the training
samples to form the dictionary, which is disadvantageous
to solving the problem of the sparse coefficient, especially
for a larger dataset. The D-KSVD algorithm is sensitive to
the initial dictionary, which affects the representation and
distinguishing ability of the dictionary.

VI. CONCLUSION

A low-rank representation dictionary learning method on the
basis of the mixed noise model was proposed and applied
to the sparse representation classification of fault signals to
effectively identify rolling bearing fault types. Within the
proposed method, a real noise model based on a Gaussian
distribution, Laplace distribution and T distribution was con-
structed in the dictionary learning process. The mixed noise
model for complex noise expression had stronger robustness
than the single distribution model. The ADMM algorithm
was adopted to solve the optimization problem of the mixed
noise model. To distinguish different rolling bearing faults,
the query signal should belong to the state corresponding
to the minimum redundancy error, without additional classi-
fiers or preprocessing. The experimental results showed that
the average fault identification accuracy of the two experi-
mental cases was over 99%, among which the single fault
type identification accuracy was up to 100%. In addition,
compared with the traditional SRC, K-SVD and D-KSVD
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methods, the DLMN-SRC method has better identification
accuracy for rolling bearing faults. The DLMN-SRC method
not only extracts the fault feature information in a complex
noise environment but also accurately distinguishes the fault
types. In the future, we need to improve the calculation effi-
ciency of the proposed DLMN-SRC method when analyzing
large-scale data.
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