
Received October 16, 2020, accepted November 15, 2020, date of publication November 24, 2020,
date of current version December 10, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3040246

Automated Excavator Based on Reinforcement
Learning and Multibody System Dynamics
ILYA KURINOV 1, GRZEGORZ ORZECHOWSKI 1,2, PERTTU HÄMÄLÄINEN 3,
AND AKI MIKKOLA 1
1Department of Mechanical Engineering, LUT University, 53850 Lappeenranta, Finland
2Mevea Ltd., 53850 Lappeenranta, Finland
3Department of Computer Science, Aalto University, 02150 Espoo, Finland

Corresponding author: Ilya Kurinov (ilya.kurinov@lut.fi)

This work was supported in part by the European Union’s Horizon 2020 Research and Innovation Programme through the Marie
Sklodowska-Curie Project under Grant 845600 (RealFlex) in part with Academy of Finland #316106.

ABSTRACT Fully autonomous earth-moving heavy equipment able to operate without human intervention
can be seen as the primary goal of automated earth construction. To achieve this objective requires that
the machines have the ability to adapt autonomously to complex and changing environments. Recent
developments in automation have focused on the application of different machine learning approaches,
of which the use of reinforcement learning algorithms is considered the most promising. The key advantage
of reinforcement learning is the ability of the system to learn, adapt and work independently in a dynamic
environment. This article investigates an application of reinforcement learning algorithm for heavy mining
machinery automation. To this end, the training associated with reinforcement learning is done using the
multibody approach. The procedure used combines a multibody approach and proximal policy optimization
with a covariance matrix adaptation learning algorithm to simulate an autonomous excavator. The multibody
model includes a representation of the hydraulic system, multiple sensors observing the state of the excavator
and deformable ground. The task of loading a hopper with soil taken from a chosen point on the ground
is simulated. The excavator is trained to load the hopper effectively within a given time while avoiding
collisions with the ground and the hopper. The proposed system demonstrates the desired behavior after
short training times.

INDEX TERMS Autonomous agents, discrete event dynamic automation systems, learning and adaptive
systems, real-time simulation, multibody system dynamics, reinforcement learning, PPO-CMA.

I. INTRODUCTION
Mobile earth-moving machinery is widely used in the con-
struction, forestry and mining industries. The operation of
such machinery is challenging and often hazardous, because
the machines are used in dangerous environments like
open-pit mines and large infrastructure projects. From the
performance perspective, machine operators are often the
weakest link, as they introduce delays in the form of statutory
rest periods, transportation to and from the worksite, and
fatigue-induced errors. Consequently, manymanufacturers of
heavy machinery have begun to explore greater automation
of machine operations. Tele-remote operation [1] is nowa-
days possible, which eliminates the aspect of the dangerous
environment, but other issues remain. To fully address the

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Zhang.

challenges associated with heavy earth-moving operations,
there is a need for fully automated and operator-independent
machines.

Use of autonomous earth-moving machinery can increase
safety and productivity, but production and development
of such equipment is a formidable task. The main chal-
lenge facing earth-moving machinery automation is the com-
plexity of the working environment. In mining and other
earth-moving operations, the environment is characterized by
diversity, variable geometry, the effects of the machine or
other machines on the environment itself, the properties of
the soil or media to be excavated, and external factors such
as ambient temperature and climatic conditions. Control of
machine operations using conventional methods is therefore
a challenging enterprise [2]. The autonomousmachine should
be able to adapt to the sum of external factors and make
decisions based on the task and state of the environment.

213998 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-1477-3114
https://orcid.org/0000-0002-3252-1236
https://orcid.org/0000-0001-7764-3459
https://orcid.org/0000-0003-2762-8503

I. Kurinov et al.: Automated Excavator Based on RL and Multibody System Dynamics

In view of the complexity of the task and environment,
utilization of machine learning can be considered a com-
pelling option [3]. Reinforcement learning (RL) is a machine
learning method that can be adopted for efficient learning
of interactions with a complicated environment. RL uses
the concept of an agent – a program capable of performing
actions in the environment [4] – to determine actions with
the aim of maximizing a pre-defined expected cumulative
future reward. The learning process in RL consists of constant
exploration of possible actions, acquiring information about
the environment from observations, and receiving an evalua-
tion of an action by a reward [4]. The observation and reward
functions allow programming of the behavior of the model
to adapt to changes in the environment: a positive reward is
provided for the right behavior and a negative reward given
after incorrect behavior. In addition, the agent can be eas-
ily retrained for different behavior patterns, which provides
opportunities for enhancement of the automated machine.

Machine automation can be addressed in multiple ways,
as reported in previous studies. In [5], the automation was
based on training a fuzzy logic algorithm to mimic the
behavior of a skilled human operator. Another study [6]
utilized laser rangefinders mounted onto the excavator for
automation of digging and loading procedures. In [7],
a tele-operated assistant system controlled a real excavator
via a wireless local area network. Amultibody simulation and
behavior-based excavation control approach for application
with excavators performing landscaping tasks was introduced
in [8].

In recent years, numerous publications have focused on
the topic of artificial intelligence in automation. An example
from the area of automation of heavy machinery is a study
examining the application of Proximal Policy Optimization
to teach an agent to operate an excavator [9]. The main goal
of the study was to train the neural network to accomplish a
leveling task known as bucket dragging. The research used
a Dynasty simulation engine (propriety software of Cater-
pillar Inc.) in combination with the Open AI Gym frame-
work [9]. Another study applied a machine learning approach
to automation of a wheel loader [10]. Experimental data
were collected on an expert driver filling the bucket of a
Volvo L110G wheel loader and a regression model was then
optimizedwith a reinforcement learning algorithm in terms of
bucket filling and fuel efficiency [10]. It should be noted that
utilization of reinforcement learning for heavy machinery is
not limited to controlling the movements of the machine. For
example, reinforcement learning has been used in develop-
ment of a real-time energy management system of a hybrid
excavator to control energy flow and optimize efficiency [11].

The approach of mimicking the behavior of a human oper-
ator can have negative effects on efficiency, because the oper-
ator might not operate the machine optimally. Methods based
on training with a virtual simulation model use simplistic
representations of the environment and machine, which may
result in difficulties when adopted for implementation on real
machines.

There is increasing evidence that neural network con-
trol policies trained in simulation can also work in the real
world if the training scheme is designed correctly [12]–[14].
However, conducting real-world tests on heavy machinery
such as an excavator is expensive, and simulation experi-
ments are first needed to lay the groundwork. This article
extends the only prior study on neural network excavator
control [9] by learning to control a more detailed multibody
excavator model in a more complex task, demonstrating the
scalability of the approach. We also describe the multibody
simulation in detail, whereas [9] treats the simulator as a
black box. A multibody model is a computer-based simu-
lation model replicating the physical structure and behav-
ior of a machine with interconnected rigid or flexible bod-
ies. Use of a multibody machine model is beneficial for
training, because it eliminates risks of damaging the real
machine and objects on the construction site and endangering
personnel.

This study applies five methods for achieving train-
ing of the autonomous agent. The reinforcement learning
method applies Proximal Policy Optimization with Covari-
ance Matrix Adaptation (PPO-CMA) algorithm [15]. The
agent is operating the excavator model that was based on the
use of the multibody system dynamics. The current study
employs the semi-recursive multibody approach, in which
relative joint coordinates are used to minimize the number of
differential equations [16]–[19]. The excavator is actuated by
hydraulics. In this study, the hydraulic systems of the exca-
vator are modeled using lumped fluid theory, in which the
hydraulic system is discretized to volumes [20], [21]. To sim-
ulate real-life tasks of the excavator, deformable ground
model based on a combination of the cellular automata and
particle method is implemented [22]–[25]. The agent and
the multibody solver are connected by ZeroMQ [26] asyn-
chronous messaging library, where reinforcement learning
algorithm is the server side and simulation environment is the
client side.

The objective of this study is to computationally combine
efficient multibody simulations with the reinforcement learn-
ing algorithm. This combination, in turn, enables the creation
and training of an autonomous agent. In this way autonomous
agents can be designed effectively without endangering per-
sonnel or machinery.

II. METHODS
This study combines five elements. The first element is
reinforcement learning implemented using the PPO-CMA
algorithm [15]. The second element is a multibody system
dynamics solver that uses a semi-recursive method [16]–[19].
The third method is the hydraulics simulation using lumped
fluid theory [20], [21]. The fourth method is a deformable
ground implemented in the multibody simulation by combin-
ing cellular automata and particle methods [22]–[25]. The
last element focuses on connecting the RL algorithm with
the multibody simulation via a custom application program
interface (API) in Python based on ZeroMQ [26].

VOLUME 8, 2020 213999

I. Kurinov et al.: Automated Excavator Based on RL and Multibody System Dynamics

A. REINFORCEMENT LEARNING AND PROXIMAL POLICY
OPTIMIZATION WITH COVARIANCE MATRIX ADAPTATION
ALGORITHM
Reinforcement learning is a machine learning paradigm in
which learning is realized by a trial and error process. Unlike
the other two main machine learning techniques, supervised
learning and unsupervised learning, RL does not require
a predefined dataset and uses the environment directly for
learning. The environment and agent are usually simulation
models that enable observation – a vector of data about the
environment and reward – which is the score of a performed
action. The agent is the part of the simulation capable of
taking action. The action is a set of inputs for interaction with
the environment. The agent interacts with an environment by
providing an action vector, getting an observation vector and
receiving evaluation via a reward function.

Reinforcement learning algorithms can be divided into
model-based and model-free algorithms [27]. The differ-
ence between model-based and model-free approaches is
the knowledge of the agent about the reward function
and transition matrix which maps observations to actions.
In model-based approaches, the transition matrix and reward
function define the model of the world. On the other hand,
in model-free methods, the agent does not have knowledge
about the transition matrix and reward function and, thus,
the agent must estimate state-action pairs according to pre-
vious experience.

This research focuses on application of a model-free policy
optimization method. The policy defines the behavior of the
agent. In reinforcement learning, the policy is parametrized,
e.g., by weights and biases of the neural network, which can
be adjusted to change the behavior of the agent. A common
policy optimization method is Proximal Policy Optimization
(PPO), which has been shown to be able to operate in complex
environments [28]. The basic idea of PPO is to optimize
the policy with a gradient and limit changes to the area of
sampled actions [28]. Nevertheless, PPO has a tendency to
slow down or get stuck at local optima, because of prema-
ture shrinkage of the exploration area [15]. The algorithm
called Proximal Policy Optimization with Covariance Matrix
Adaptation was designed to alleviate this problem [15].
The PPO-CMA algorithm is presented in the PPO-CMA
study [1].

B. MULTIBODY SYSTEM DYNAMICS
Semi-recursive formulation is an efficient multibody-
based method for simulating complex mechanical sys-
tems [16]–[19]. It enables dynamic responses to be solved
in real-time and sometimes even faster than real-time [16].
Next, the formulation is briefly introduced.

Consider two rigid bodies n and n−1with reference frames
located at their center of mass as depicted in Fig.1. The bodies
produce an open-chain system with Nb = 2 bodies connected
by a joint. The locations of the joint in body n − 1 and n
are denoted Q and P respectively. The relative displacement

FIGURE 1. Multibody system of two rigid bodies.

vector between points Q and P can be described using vector
dn−1,n.

The position of the joint fixture point P in the body n can
be expressed as [16]:

rn = Rcm
n−1 + An−1ūn−1 + dn−1,n (1)

where Rcm
n−1 is the position vector that describes the center of

mass of body n−1,An−1 is the rotation matrix of body n−1,
and ūn−1 is the location of point Q with respect to the body
frame of reference n−1. The rotation matrixAn of body n can
be expressed using a concept of successive rotations as [16]:

An = An−1An−1,n (2)

where An−1,n is the relative rotation matrix between two
neighboring bodies. In this study, the rotation of the bodies
is expressed by Euler parameters. Velocity of point P can be
expressed as [16]:

ṙn = Ṙcm
n−1 + ωn−1 × An−1ūn−1 + ḋn−1,n (3)

where Ṙcm
n−1 is the velocity vector of the center mass of body

n−1 and ωn−1 is the angular velocity of body n−1. Angular
velocity of body n can be expressed as [16]:

ωn = ωn−1 + ωn−1,n (4)

where ωn−1,n is the relative angular velocity between body
n− 1 and body n.

By employing the principle of virtual work, equations of
motion for a multibody system can be expressed [16]:

δW = δq̇T (Mq̈+ C−Q) (5)

where δW is the virtual work of multibody system, δq̇ is the
vector of 6Nb generalized virtual velocities, M is the 6Nb ×
6Nbmassmatrix, q̈ is the vector of acceleration of generalized
coordinates, C is the quadratic velocity vector, and Q is the
vector of generalized external forces. Vectors q̈,C andQ have
6Nb dimensions and have the form [16]:

q̈ =
[
q̈T1 q̈T2 . . . q̈TNb

]T
(6)

C =
[
CT
1 CT

2 . . . CT
Nb

]
(7)

214000 VOLUME 8, 2020

I. Kurinov et al.: Automated Excavator Based on RL and Multibody System Dynamics

Q =
[
QT

1 QT
2 . . . QT

Nb

]
(8)

where q̈n=
[
R̈cmT
n ω̇T

n

]T
. The vector of virtual velocity δq̇

can be related to virtual joint velocities δż as [16]:

δq̇ = Rδż (9)

where R is the velocity transformation matrix. For open-loop
systems, the joint coordinates represents a set of minimal
coordinates. By taking the derivative of (9), generalized
accelerations can be expressed as [16]:

q̈ = Rz̈+ Ṙż (10)

Using (10) and (11), the equations of motion can be rewritten
as [16]:

δżTRT [M (
Rz̈+ Ṙż

)
+ C−Q

]
= 0 (11)

(11) also holds for independent virtual velocities δż; there-
fore, virtual velocities can be eliminated [16]:

RTMRz̈ = RT (Q− C)− RTMṘż (12)

The velocity transformation matrix R plays an important
role in the formulation as it directly affects the efficiency
of the method. One of the most efficient ways to compute
the velocity transformation matrix R is application of the
element-by-element technique [17]:

RNb = [R1
Nb R2

Nb . . . RPb
Nb] (13)

Closed-loop systems can be computed by expressing the
system in the form of an open-loop system and then closing
it be employing constraints [16]. Accordingly, the equation
of motion takes the form [17]:

(RTMR+ αφT
z φz)z̈ = RT (Q− C)− RTMṘż

−αφT
z

(
β2φ+ µφ̇+ φ̇zż+ φ̇t

)
(14)

where α is a constant penalty factor, β2 and µ are constants
representing natural frequency and damping ratio respec-
tively, φ is the loop closure constraint equations, φz is a
Jacobian matrix of the constraints, and φ̇ and φ̈ are the first
and second order derivatives of the constraint equations.

C. HYDRAULICS
In this study, the hydraulic system is modelled using the
lumped fluid theory [20]. The approach is based on partition-
ing the system into discrete volumes in which the pressure is
assumed to be equally distributed. The pressure in one volume
can be computed as:

ṗs =
Bes
Vs

∑nc

k=1
Qsk (15)

where Vs is a volume, Qsk is the sum of the flows going in
or out of the volume, nc is the number of hydraulic compo-
nents belonging to the volume, and Bes is the effective bulk
modulus corresponding to the volume. In this study, hydraulic

valves are modelled by semi-empirical approach [20]. In this
approach, flow through a throttle valve can be described as:

Q =

Cv
√
|dp|, dp > 0

0, dp = 0
−Cv
√
|dp|, dp < 0

(16)

where Cv is the flow rate constant of the valve, and dp
is pressure difference between the input and output. Flow
through a directional valve can be described as [21]:

Q =

CvU
√
|dp|, dp > 0

0, dp = 0
−CvU

√
|dp|, dp < 0

(17)

where U is the relative spool position, which is
described [21]:

U̇ =
Uref − U

τ
(18)

whereUref is a control signal and τ is a time constant describ-
ing the spool dynamics of the valve.

D. DEFORMABLE GROUND
Together with the multibody approach and hydraulics sim-
ulation, the deformable ground forms the basis for devel-
opment of the autonomous agents. The deformable ground
provides a representation of soil behavior and allows sim-
ulation of working scenarios of the machine. In this study,
the environment of the excavator is described by employing
a combination of the cellular automata-based [22], [23] and
particle-based methods, as in [24], [25]. This combination
of techniques defines an accurate deformable ground and
enables ground material to be moved from one location to
another as shown in Fig.2.

FIGURE 2. Deformable ground working principle [25].

In the cellular automata-based method [22], [23], the soil
is described as cells in a grid (heightfield) which allows the
formation of the landscape, as shown in Fig. 2. The cells are
vertically divided into piles of blocks. The pressure over the
base of one cell is obtained as a combination of the pressure
received from their own block and the pressure from a finite
number of nearby blocks above the base cell.

In this model, the displacement of the soil can occur for two
reasons: 1) A large difference in the heightfield of two neigh-
boring cells, resulting in avalanches; and 2) A large difference
between the vertical forces applied to the neighboring cells,
resulting in soil compression and displacement. In this study,
the deformation of the heightfield depends on the interaction
between the ground and external objects, such as an excavator

VOLUME 8, 2020 214001

I. Kurinov et al.: Automated Excavator Based on RL and Multibody System Dynamics

bucket or tracks. Depending on the amount of force induced
on the soil, the cellular automata redefine the heightfield of
the cells, i.e. adding the vertical deformation.

The particle-based method allows one to simulate the
behavior of the soil when it is sheared with an external
force [25]. In this method, particles are generated when the
horizontal component of the applied force exceeds the shear
impulse limit. During this event, the portion of the cor-
responding heightfield is substituted with spherical shaped
particles, which have six degrees of freedom. The dynam-
ics of the particles can be expressed by methods discussed
in the multibody system dynamics subchapter [25]. Particle
swarm has a void factor, which is responsible for the space
between generated particles, i.e. soil compaction [24]. The
soil compaction allows accurate dynamics representation of
the soil compared with nature [24]. When the particles reach
an equilibrium state, they merge back to the heightfield with
a volume update [24].

E. DESCRIPTION OF APLICATION PROGRAMMING
INTERFACE
RL training and simulation are performed by separate pro-
grams. Therefore, a connection between the simulation mod-
els and the reinforcement learning algorithm was developed
using a custom Application Programming Interface (API).
In this study, the API was implemented using the ZeroMQ
asynchronous messaging library to send data between the
applications. The client-server messaging pattern, which
allows multiple clients to be connected to the server [26],
was used as the base of the API. The RL side was used as
a server and the simulation side as a client. The server side
is shown in Algorithm 1 and the simulation side is shown
in Algorithm 2. This structure allows simultaneous use of
multiple simulations for training as depicted in Fig.3.

FIGURE 3. Structure of the API based on Gym, State and Parameters
classes.

The API consists of the three main classes: Gym, Parame-
ters and State. The Gym class is used to control the simulation
and handle the connection to the algorithm. The class consists
of themake, step and reset methods. Themakemethod is used
for initialization of the variables in the simulation. The step
method is called for each time step of the simulation. It sends
the observation vector, receives the action vector and assigns

Algorithm 1 PPO-CMA (Server Side)
1: call function make:
2 for iteration = 1, 2, . . . do
3: while iteration simulation budget N not exceeded do
4: call function reset
5: for T timesteps run agent on current policy

or until a terminal state
6: call function step
7: end while
8: Train critic network and policy
9: Save (serialize) agent
10: end for

Algorithm 2 Step Function in Simulation Environment
(Client Side)
function step (simulation parameters list):
1: Receive action vector from agent (server)
2: Set actions to simulation model inputs
3: for action
4: Set action value to the hydraulic system input
5: end for
6: for observation parameter
7: Get simulation variables from Solver
8: Compose observation vector
9: Calculate reward
10: Encode reward and observation to a single message
11: end for
12: Send encoded observation vector, reward and done to

the agent
end function

it to the corresponding inputs. The reset method is used to
restart the simulation when the simulation budget is exceeded
or the termination state has been reached. The Parameters
class is used for transfer of simulation-related parameters to
the RL algorithm. The State class obtains the observation
vector from the simulation and calculates the reward value
of the provided action.

III. PROBLEM STATEMENT
The above procedure was applied to an excavator model
with a complicated environment with deformable ground.
Fig.4 shows the structure of the model. The model is a system
with closed loops and has 4 Degrees of Freedom (DOF). The
model consists of a total of nine rigid bodies interconnected
by 10 joints.

The model is equipped with the hydraulic circuit shown
in Fig.5. The excavator model has 4 inputs controlling inputs
rotation of the upper carriage, boom lift, boom tilt and bucket.
The resulting action vector takes the form:

a = [uuc ulb uda ub]T (19)

where uuc is the upper carriage input, ulb the lift boom input,
uda the dipper arm input and ub the bucket rotation input. The
input uuc controls the hydraulic motor slew, which rotates the

214002 VOLUME 8, 2020

I. Kurinov et al.: Automated Excavator Based on RL and Multibody System Dynamics

FIGURE 4. Topological structure of the excavator model with hydraulic
actuators.

FIGURE 5. Hydraulic circuit schematics of the excavator.

upper carriage around Y-axis relative to the under carriage.
The lift boom input ulb controls the boom lift hydraulic cylin-
ders, which rotates the lift boom around Z-axis relative to the
upper carriage. The dipper arm input uda controls the dipper
arm hydraulic cylinder, which rotates the dipper arm around
Z-axis relative to the lift boom. The bucket input ub controls
the hydraulic cylinder, which rotates the bucket around Z-axis
relative to the dipper arm, please see Figure 4.

For evaluation of the performed actions, the agent must
access the observation vector and reward function. The
observation vector of the excavator model is different for
each reward function type but contains the same parameters
groups, which are set as bodies, task and goal position. The
first group consists of the global coordinates of the bodies in
meters and the rotations of the bodies in Euler parameters.
In the case of an excavator, this group includes the upper
carriage, lift boom, tilt boom and bucket bodies. Task-related

observations are represented by values from sensors. Normal-
ized mass in the hopper and bucket, a number of collisions of
the bucket with the hopper are used as the goal group. Com-
bination of these groups results to the following observation
vector:

s =
[
t mh mb lt−1 lt 1l rT rTg nc ng

]T
(20)

where, t is elapsed time,mh is normalized mass in the hopper,
mb is normalized mass in the bucket, lt−1 is the distance
to current goal on the previous time step, lt is the distance
to the goal, 1l is the difference between lt and lt−1, r is
position vector of bodies, rg is position vector of goals, nc is
the number of the collisions during one episode and ng is the
number of the goals already reached. The r vector has a size
of 28, which is equal to the number of positions and rotations
of the 4 main moving bodies. It consists of:

r =
[
rTb1 rTb2 rTb3 rTb4

]T (21)

where, rbn is the vector of the body n positions. The rbn vector
has the following form:

rbn =
[
x y z e0 e1 e2 e3

]T (22)

where x, y and z are XYZ-axes positions of the body, e0,
e1, e2 and e3 are the Euler parameters of the body. In rbn
vectors stored locations and rotations of the Upper Carriage,
Lift Boom, Dipper Arm and Bucket bodies. The rg stores the
positions of the goals and have a size of 6. It has the following
form:

rg =
[
xg1 yg1 zg1 xg2 yg2 zg2

]T (23)

where xg1, yg1, zg1 are positions of Goal To Soil and
xg2, yg2, zg2 are positions of Goal ToHoppermarkers. In total,
the observation vector consists of 42 parameters.

Before development of the reward function, it is important
to understand the task given to the agent. Multiple excavator
operations exist in real life. For instance, in construction of
underground pipelines, the excavator must create a trench,
which requires so-called bucket leveling. On the other hand,
mining work requires movement of soil from the ground
into a truck without hitting the truck. Clearly, each operation
requires a different approach, but they all involve movement
of soil from one point to another. Therefore, movement of soil
was chosen as the basis of the experiment.

The selected task consists of three steps: loading the bucket
near the loading point, moving to the unloading point, and
unloading the bucket. In the first step, the agent moves the
bucket to the loading position and grabs the soil. During this
step, it is important to move the bucket quickly and to grab the
maximum amount of soil. After loading of the bucket, the soil
must be moved to the unloading point over the hopper. This
step requires the agent to move the bucket with little or no loss
of soil. In the final step, the agent must unload the maximum
amount of soil without hitting the hopper.

The setup of the simulation is shown in Fig.6. The environ-
ment consists of the soil model, points of interest for the task,

VOLUME 8, 2020 214003

I. Kurinov et al.: Automated Excavator Based on RL and Multibody System Dynamics

FIGURE 6. Simulation setup. The excavator is located uphill of the hopper
and the unloading hopper is positioned to the right of the excavator.

and a hopper. The soil model allows collection and transfer
of soil, which is essential information for training. Points
of interest provide the agent with information about soil
grabbing and unloading positions. The hopper is equipped
with two sensors. The first sensor collects data about the mass
in the hopper, and the second sensor tracks the number of
collisions with the bucket. Using this setup, it is possible to
track all the variables needed for formulation of a reward
function.

The reward function of the excavator model utilizes three
components. The first component is a reward for reaching
the point where the bucket should be loaded. This point is
marked as a blue dot in Fig.6. The second component is a
reward for the mass collected in the bucket during loading.
For preventing abuse of soil mass reward, it is inverse propor-
tional to episode time. The third component utilizes the mass
in the hopper, which is penalized by the number of collisions
between the hopper and bucket. Thus, the reward function can
be written as:

r (t) = e−l + kmbntn +
1
nc
mhn (24)

where r(t) is a reward at the time t , k is the mass reward coef-
ficient, l is the distance to the current point of interest, mbn
is the normalized mass in the bucket, mhn is the normalized
mass in the hopper, and nc is the number of collisions with
the hopper.

IV. RESULTS
The excavator model is highly nonlinear and includes
mechanics, hydraulics, sensor measurements, a chang-
ing environment and process visualization. Consequently,
the training process is challenging. In the simulation,
the agent learnt acceptable performance after 105 steps,
which took around two days of continuous training. Comput-
ing efficiency was affected by the deformable ground sub-
model, which could not be updated without reloading the
simulation. Therefore, a significant amount of training time
was spent on reloading the simulation file.

FIGURE 7. Result of the training process.

Fig.7 shows the result of the training process. As can be
seen from the figure, the excavator grabs soil at the desired
loading position. At the start of the training, during the
loading stage, the excavator used a slightly higher angle of
attack to the soil compared to the middle of the training,
which resulted in a small inclination of the undercarriage
when applying of the dipper arm force. Within the scope of
this work, this behavior of the model is not dangerous, but in
real-life applications, it can damage the machine. Therefore,
in subsequent work, the reward function should penalize
changes in the undercarriage rotation using data from an incli-
nometer. Interesting behavior of the agent was also noticed
prior to the addition of collision sensor data. Without the col-
lision penalty, the agent tends to pushwith force on the hopper
to achieve a higher reward. Complications with the reward for
soil in the bucket are also worth mentioning. The agent had a
tendency to abuse the reward for soil in the bucket and stop
moving after filling the bucket. Therefore, the coefficient k
with value of 0.2 was introduced to reduce the effect of the
soil-based reward.

An agent with a reward function, presented in (24), was
able to grab soil and move it to the hopper, as shown in
the plot of the average mass in the hopper in Fig.8. It can
be clearly observed that the agent started moving ground at
around 2 × 104 steps. The bucket is able to hold around
1200 kg of soil. As can be seen from Fig.9, on average the
agent learnt to move 67% of the initial mass to the hopper.
The maximum value of soil in the hopper was 1168 kg.
Therefore, at maximum, the agent was able to deliver 97%
of the initial mass in the bucket. In the Fig.8 and Fig.9 can be
observed high standard deviation caused by the soil transfer

FIGURE 8. Average and standard deviation of episode mass in the hopper.

214004 VOLUME 8, 2020

I. Kurinov et al.: Automated Excavator Based on RL and Multibody System Dynamics

FIGURE 9. Average and standard deviation of episode mass in the bucket.

FIGURE 10. Average and standard deviation of episode return.

during simulation cycles, such as loading and unloading of
the bucket.

As shown in Fig.10, the average episode return increased
over the course of the training, indicating that the agent was
learning the policy correctly. Nevertheless, the high ampli-
tude of the average reward shows that the agent did not
reached the convergence.

V. CONCLUSION
This article introduced a method for development of
autonomous machines based on reinforcement learning and a
semi-recursive multibody method. The approach was tested
on an excavator model with hydraulics and a deformable
ground. The research concentrated on the learning agent used
to operate the excavator model and move ground from a pre-
defined point to the unloading point. The study used the PPO-
CMA model-free algorithm. The algorithm and environment
were connected via an API built based on the ZeroMQ library.

The agent was able to learn a policy for working with the
simulation models. The agent of the excavator was trained to
load and unload the excavator with satisfactory accuracy. The
agent was able to move 67-97% of the maximum mass of the
bucket. Nevertheless, as was seen from the learning curves,
the reward function still fluctuated. Thus, it can be concluded
that increasing the number of episodes will likely result in
enhanced excavator performance.

The setup presented extends opportunities for development
of automated machines using reinforcement learning. The
multibody system dynamics allows the creation of machinery

model and its environment with a little effort. This makes
possible training of agents on the wide variety of machines.
Therefore, the method allows highly customized simulation
models to be created which can be used for training machine
learning algorithms or neural networks. Hence, it will be
possible to generate agents for existing machines effectively
without endangering the machine or personnel. Furthermore,
the approach provides a solid foundation for extension of
RL learning to new types of machines, which can be easily
reprogrammed by downloading agents to the machine model.

REFERENCES
[1] S. Dadhich, U. Bodin, F. Sandin, and U. Andersson, ‘‘From tele-remote

operation to semi-automated wheel-loader,’’ Int. J. Electr. Electron. Eng.
Telecommun., vol. 7, no. 4, pp. 178–182, 2018, doi: 10.18178/ijeetc.7.4.
178-182.

[2] S. Dadhich, U. Bodin, and U. Andersson, ‘‘Key challenges in automation
of Earth-moving machines,’’ Autom. Construct., vol. 68, pp. 212–222,
Aug. 2016, doi: 10.1016/j.autcon.2016.05.009.

[3] T. Hester, TEXPLORE: Temporal Difference Reinforcement Learning for
Robots and Time-Constrained Domains, vol. 503. Cham, Switzerland:
Springer, 2013, p. 164, doi: 10.1007/978-3-319-01168-4.

[4] R. Sutton, F. Bach and A. Barto, Reinforcement Learning, 2nd ed. Cam-
bridge, MA, USA: MIT Press, 2018, pp. 1–4.

[5] X. Shi, P. J. A. Lever, and F.-Y. Wang, ‘‘Experimental robotic excavation
with fuzzy logic and neural networks,’’ in Proc. IEEE Int. Conf. Robot.
Autom., Apr. 1996, pp. 957–962, doi: 10.1109/robot.1996.503896.

[6] A. Stentz, J. Bares, S. Singh, and P. Rowe, ‘‘Robotic excavator for
autonomous truck loading,’’ Auto. Robots, vol. 7, no. 2, pp. 175–186, 1999,
doi: 10.1023/A:1008914201877.

[7] H. Shao, H. Yamamoto, Y. Sakaida, T. Yamaguchi, Y. Yanagisawa, and
A. Nozue, ‘‘Automatic excavation planning of hydraulic excavator,’’ in
Intelligent Robotics and Applications (Lecture Notes in Computer Sci-
ence), vol. 5315. Berlin, Germany: Springer, 2008, pp. 1201–1211, doi:
10.1007/978-3-540-88518-4_128.

[8] D. Schmidt, M. Proetzsch, and K. Berns, ‘‘Simulation and control of
an autonomous bucket excavator for landscaping tasks,’’ in Proc. IEEE
Int. Conf. Robot. Autom., May 2010, pp. 5108–5113, doi: 10.1109/
ROBOT.2010.5509546.

[9] B. J. Hodel, ‘‘Learning to operate an excavator via policy optimization,’’
Procedia Comput. Sci., vol. 140, pp. 376–382, Jan. 2018, doi: 10.1016/j.
procs.2018.10.301.

[10] S. Dadhich, U. Bodin, F. Sandin, and U. Andersson, ‘‘Machine learn-
ing approach to automatic bucket loading,’’ in Proc. 24th Medit. Conf.
Control Autom. (MED), Jun. 2016, pp. 1260–1265, doi: 10.1109/MED.
2016.7535925.

[11] Q. Zhu and Q.-F. Wang, ‘‘Real-time energy management controller
design for a hybrid excavator using reinforcement learning,’’ J. Zhejiang
Univ.-Sci. A, vol. 18, no. 11, pp. 855–870, Nov. 2017, doi: 10.1631/
jzus.A1600650.

[12] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
‘‘Domain randomization for transferring deep neural networks from simu-
lation to the real world,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), 2017. Accessed: Nov. 25, 2020, doi: 10.1109/iros.2017.8202133.

[13] J. Xu, T. Du, M. Foshey, B. Li, B. Zhu, A. Schulz, and W. Matusik,
‘‘Learning to fly?: Computational controller design for hybrid UAVs
with reinforcement learning learning to fly?: Computational controller
design for hybrid UAVswith reinforcement learning,’’ACMTrans. Graph.,
vol. 38, no. 4, pp. 1–12, Jul. 2019, doi: 10.1145/3306346.3322940.

[14] Z. Xie, P. Clary, J. Dao, P. Morais, J. Hurst, and M. Van De Panne,
‘‘Iterative reinforcement learning based design of dynamic locomo-
tion skills for cassie,’’ 2019, arXiv:1903.09537. [Online]. Available:
https://arxiv.org/abs/1903.09537

[15] P. Hämäläinen, A. Babadi, X. Ma, and J. Lehtinen, ‘‘PPO-CMA: Prox-
imal policy optimization with covariance matrix adaptation,’’ 2018,
arXiv:1810.02541. [Online]. Available: http://arxiv.org/abs/1810.02541

[16] J. de García Jalón, E. Álvarez, F. A. de Ribera, I. Rodríguez, and
F. J. Funes, ‘‘A fast and simple semi-recursive formulation for multi-rigid-
body systems,’’ in Advances in Computational Multibody Systems. Dor-
drecht, The Netherlands: Springer, 2005, pp. 1–23.

VOLUME 8, 2020 214005

http://dx.doi.org/10.18178/ijeetc.7.4.178-182
http://dx.doi.org/10.18178/ijeetc.7.4.178-182
http://dx.doi.org/10.1016/j.autcon.2016.05.009
http://dx.doi.org/10.1007/978-3-319-01168-4
http://dx.doi.org/10.1109/robot.1996.503896
http://dx.doi.org/10.1023/A:1008914201877
http://dx.doi.org/10.1007/978-3-540-88518-4_128
http://dx.doi.org/10.1109/ROBOT.2010.5509546
http://dx.doi.org/10.1109/ROBOT.2010.5509546
http://dx.doi.org/10.1016/j.procs.2018.10.301
http://dx.doi.org/10.1016/j.procs.2018.10.301
http://dx.doi.org/10.1109/MED.2016.7535925
http://dx.doi.org/10.1109/MED.2016.7535925
http://dx.doi.org/10.1631/jzus.A1600650
http://dx.doi.org/10.1631/jzus.A1600650
http://dx.doi.org/10.1109/iros.2017.8202133
http://dx.doi.org/10.1145/3306346.3322940

I. Kurinov et al.: Automated Excavator Based on RL and Multibody System Dynamics

[17] A. Avello, J. M. Jiménez, E. Bayo, and J. G. de Jalón, ‘‘A simple and
highly parallelizable method for real-time dynamic simulation based on
velocity transformations,’’ Comput. Methods Appl. Mech. Eng., vol. 107,
no. 3, pp. 313–339, Aug. 1993, doi: 10.1016/0045-7825(93)90072-6.

[18] J. G. de Jalón and E. Bayo, Kinematic and Dynamic Simulation of Multi-
body Systems: The Real-Time Challenge. New York, NY, USA: Springer,
1993.

[19] Y. Pan, W. Dai, Y. Xiong, S. Xiang, and A. Mikkola, ‘‘Tree-topology-
oriented modeling for the real-time simulation of sedan vehicle dynam-
ics using independent coordinates and the rod-removal technique,’’
Mechanism Mach. Theory, vol. 143, Jan. 2020, Art. no. 103626, doi:
10.1016/j.mechmachtheory.2019.103626.

[20] J. Watton, Fluid Power Systems?: Modeling, Simulation, Analog and
Microcomputer Control. Upper Saddle River, NJ, USA: Prentice-Hall,
1989.

[21] H. M. Handroos and M. J. Vilenius, ‘‘Flexible semi-empirical models
for hydraulic flow control valves,’’ J. Mech. Design, vol. 113, no. 3,
pp. 232–238, Sep. 1991, doi: 10.1115/1.2912774.

[22] M. Pla-Castells, I. García, and R. J. Martínez, ‘‘Approximation of con-
tinuous media models for granular systems using cellular automata,’’ in
Cellular Automata (Lecture Notes in Computer Science), vol. 3305. Berlin,
Germany: Springer, 2004, pp. 230–237, doi: 10.1007/978-3-540-30479-
1_24.

[23] M. Pla-Castells, I. García-Fernández, and R. J. Martínez, ‘‘Interactive
terrain simulation and force distribution models in sand piles,’’ in Cellular
Automata, vol. 4173. Berlin, Germany: Springer, 2006, pp. 392–401, doi:
10.1007/11861201_46.

[24] D. Holz, T. Beer, and T. Kuhlen, ‘‘Soil deformation models for real-
time simulation: A hybrid approach,’’ in Proc. Vriphys 6th Workshop
Virtual Real. Interact. Phys. Simulations, Jan. 2009, pp. 21–30, doi:
10.2312/PE/vriphys/vriphys09/021-030.

[25] S. Jaiswal, P. Korkealaakso, R. Aman, J. Sopanen, and A. Mikkola,
‘‘Deformable terrain model for the real-time multibody simulation of a
tractor with a hydraulically driven front-loader,’’ IEEE Access, vol. 7,
pp. 172694–172708, 2019, doi: 10.1109/ACCESS.2019.2956164.

[26] P. Hintjens, ‘‘ZeroMQ,’’ O’Reilly Media, Sebastopol, CA, USA,
Tech. Rep., 2013, vol. 53, no. 9.

[27] Part 2: Kinds of RL Algorithms—Spinning Up documentation. Accessed:
May 29, 2020. [Online]. Available: https://spinningup.openai.com/en/
latest/spinningup/rl_intro2.html

[28] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Prox-
imal policy optimization algorithms,’’ 2017, arXiv:1707.06347. [Online].
Available: http://arxiv.org/abs/1707.06347

ILYA KURINOV received the B.S. degree in
mechanical engineering from the Saimaa Univer-
sity of Applied Sciences and the M.S. degree in
mechatronics from the Lappeenranta University of
Technology.

Since 2018, he has been working as a Ph.D.
Researcher with the Machine Design Labo-
ratory, LUT University. His research inter-
ests include application of multibody system
dynamics and machine learning algorithms in

automation of mechatronic machines.

GRZEGORZ ORZECHOWSKI received the B.S.
and M.S. degrees and the Ph.D. degree in automa-
tion and robotics from the Warsaw University of
Technology, Warsaw, Poland, in 2007 and 2012.

From 2012 to 2017, he was an Assistant Profes-
sor with the Division of Theory of Machines and
Robots, Warsaw University of Technology. Since
2017, he has been a Postdoctoral Researcher with
the Laboratory of Machine Design, LUT Univer-
sity, Lappeenranta, Finland. His research interests

include the computational methods in mechanics, studies of the deformable
models in challenging dynamical excitations, and reinforcement learning
techniques in application to machine control.

PERTTU HÄMÄLÄINEN received the M.Sc.
(Tech.) degree from the Helsinki University of
Technology, in 2001, the M.A. degree in new
media from the University of Art and Design,
Helsinki, in 2002, and the Ph.D. degree in com-
puter science from the Helsinki University of
Technology, in 2007.

He is currently an Associate Professor with
Aalto University. He has published widely on
human–computer interaction, computer animation

and movement synthesis, and game research.

AKI MIKKOLA received the Ph.D. degree in the
field of machine design in 1997.

Since 2002, he has been working as a Pro-
fessor with the Department of Mechanical Engi-
neering, Lappeenranta University of Technology,
Lappeenranta, Finland. He is currently leading
the Research Team of the Laboratory of Machine
Design, Lappeenranta University of Technology.
His research interests include machine dynamics
and vibration, multibody system dynamics, and

bio-mechanics. He has been awarded five patents and has contributed tomore
than 90 peer-reviewed journal articles.

214006 VOLUME 8, 2020

http://dx.doi.org/10.1016/0045-7825(93)90072-6
http://dx.doi.org/10.1016/j.mechmachtheory.2019.103626
http://dx.doi.org/10.1115/1.2912774
http://dx.doi.org/10.1007/978-3-540-30479-1_24
http://dx.doi.org/10.1007/978-3-540-30479-1_24
http://dx.doi.org/10.1007/11861201_46
http://dx.doi.org/10.2312/PE/vriphys/vriphys09/021-030
http://dx.doi.org/10.1109/ACCESS.2019.2956164

